
COLING •ACL 2006

CSLP-06
Constraints and Language Processing

Proceedings of the Workshop

Chair:
Philippe Blache

Other organizers:
Henning Christiansen, Veronica Dahl and Jean-Philippe Prost

22 July 2006

Sydney, Australia

Production and Manufacturing by
BPA Digital
11 Evans St
Burwood VIC 3125
AUSTRALIA

Université de Provence
9, avenue Robert Schuman
13621 Aix-en-Provence Cedex 01
France

c©2006 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 1-932432-76-0

ii

Table of Contents

Preface . v

Organizers . vii

Workshop Program . ix

Constraints in Language Processing: Do Grammars Count?
Marieke van der Feen, Petra Hendriks and John Hoeks. .1

Control Strategies for Parsing with Freer Word-Order Languages
Gerald Penn, Stefan Banjevic and Michael Demko .9

Numbat: Abolishing Privileges when Licensing New Constituents in Constraint-Oriented Parsing
Jean-Philippe Prost .17

Pragmatic Constraints on Semantic Presupposition
Yafa Al-Raheb .25

Coupling a Linguistic Formalism and a Script Language
Claude Roux .33

Capturing Disjunction in Lexicalization with Extensible Dependency Grammar
Jorge Marques Pelizzoni and Maria das Graças Volpe Nunes .41

Author Index . 51

iii

Preface

The CSLP workshops address the question of constraints and their use in language processing. This is a
characteristically interdisciplinary topic, bringing together perspectives from linguistics, psychology and
computer science.

The 2 previous meetings, CSLP-04 in Roskilde (Denmark) and CSLP-05 in Sitges (Spain), focused
more specifically on the question of constraint solving. For this meeting, we decided to broaden the
perspective and encourage submissions from other domains. This aspect is quite a success: you will find
in these proceedings papers in linguistics, psycholinguistics and natural language processing, all of them
approaching the notion of constraint from different point of views. Moreover, our invited speaker this
year, Prof. Edward Gibson (MIT, USA), also contributed to the enrichment of the perspective.

I would like to warmly thank all the PC members for their great job during the selection process. I
also thank Henning Christiansen for having implemented over the past two years the idea of CSLP
and Veronica Dahl for her support. Last, but not least, I deeply thank Jean-Philippe Prost for his help,
especially during the proceedings editing process.

The Laboratoire Parole et Langage is the main sponsor for CSLP-06.

Philippe Blache
CSLP-06 Chair

v

Organizers

Chair:

Philippe Blache, Université de Provence, France

Other Organizers:

Henning Christiansen, Roskilde University, Denmark
Veronica Dahl, Simon Fraser University, Canada
Jean-Philippe Prost, Macquarie University, Australia, and Université de Provence, France

Program Committee:

Timothy Baldwin, University of Melbourne, Australia
Philippe Blache (Chair), Université de Provence, France
Henning Christiansen, Roskilde University, Denmark
Veronica Dahl, Simon Fraser University, Canada
Rina Dechter, University of California at Irvine, USA
Mark Dras, Macquarie University, Australia
Denys Duchier, Université d’Orléans, France
John Gallagher, Roskilde University, Denmark
Claire Gardent, Loria, France
Edward Gibson, MIT, USA
Mary Harper, Purdue University, USA
Barbara Hemforth, Université de Provence, France
Erhard Hinrichs, Universität Tübingen, Germany
Jerry Hobbs, University of Southern California, USA
Michael Johnston, ATT, USA
Tibor Kiss, Ruhr-Universiẗat Bochum, Germany
Lars Konieczny, Universität Freiburg, Germany
Shalom Lappin, King’s College, UK
Detmar Meurers, Ohio State University, USA
Joachim Niehren, INRIA, France
Gerald Penn, University of Toronto, Canada
Geoffrey Pullum, University of California Santa Cruz, USA
Ivan Sag, Stanford University, USA
Kiril Simov, Bulgarian Academy of Sciences, Bulgaria
Peter Skadhauge, Copenhagen Business School, Denmark
Gert Smolka, Universität des Saarlandes, Germany
Jorgen Villadsen, Roskilde University, Denmark
Eric Villemonte de la Clergerie, INRIA, France

Invited Speaker:

Edward Gibson, MIT, USA

vii

Workshop Program

Saturday, 22 July 2006

8:45–9:00 Opening Remarks

9:00–10:30 Invited Talk by Edward Gibson

10:30–11:00 Coffee break

Session: Constraints and Language Processing

11:00–11:45 Constraints in Language Processing: Do Grammars Count?
Marieke van der Feen, Petra Hendriks and John Hoeks

11:45–12:30 Control Strategies for Parsing with Freer Word-Order Languages
Gerald Penn, Stefan Banjevic and Michael Demko

12:30–14:00 Lunch

14:00–14:45 Numbat: Abolishing Privileges when Licensing New Constituents in Constraint-
Oriented Parsing
Jean-Philippe Prost

14:45–15:30 Pragmatic Constraints on Semantic Presupposition
Yafa Al-Raheb

15:30–16:00 Coffee break

16:00–16:45 Coupling a Linguistic Formalism and a Script Language
Claude Roux

16:45–17:30 Capturing Disjunction in Lexicalization with Extensible Dependency Grammar
Jorge Marques Pelizzoni and Maria das Graças Volpe Nunes

ix

Proceedings of the 3rd Workshop on Constraints and Language Processing (CSLP-06), pages 1–8,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Constraints in Language Processing: Do Grammars Count?

Marieke van der Feen
Department of Artificial

Intelligence,
University of Groningen,

Grote Kruisstraat 2/1,
9712 TS Groningen,

The Netherlands
mvdfeen@ai.rug.nl

Petra Hendriks
Center for Language and

Cognition Groningen,
University of Groningen,

P.O. Box 716,
9700 AS Groningen,

The Netherlands
p.hendriks@rug.nl

John Hoeks
Center for Language and

Cognition Groningen,
University of Groningen

P.O. Box 716,
9700 AS Groningen,

The Netherlands
j.c.j.hoeks@rug.nl

Abstract

One of the central assumptions of Opti-
mality Theory is the hypothesis of strict
domination among constraints. A few
studies have suggested that this hypothe-
sis is too strong and should be abandoned
in favor of a weaker cumulativity hy-
pothesis. If this suggestion is correct, we
should be able to find evidence for cumu-
lativity in the comprehension of Gapping
sentences, which lack explicit syntactic
clues in the form of the presence of a fi-
nite verb. On the basis of a comparison
between several computational models of
constraint evaluation, we conclude that
the comprehension of Gapping sentences
does not yield compelling evidence
against the strict domination hypothesis.

1 Introduction

A linguistic framework which has gained a con-
siderable amount of attention in recent years is
Optimality Theory (Prince and Smolensky,
1993/2004). Optimality Theory (henceforth OT)
is not only used for analyzing and explaining
linguistic phenomena in the domain of phonol-
ogy, but also in the domains of morphology, syn-
tax, semantics and pragmatics. In contrast to
more traditional linguistic frameworks, OT as-
sumes grammatical constraints to be violable.
Because constraints are formulated in such a way
that they are maximally general (and perhaps
even universal across languages), these con-
straints may conflict. To resolve conflicts among
constraints, constraints are assumed to differ in

strength. It is better to violate a weaker constraint
than it is to violate a stronger constraint. The
grammatical structure is the one that violates the
least highly ranked (i.e., strong) constraints.

A fundamental property of OT is the principle
of strict domination. This means that each con-
straint has complete priority over all constraints
ranked lower in the constraint hierarchy. A num-
ber of recent studies, however, have called into
question this fundamental property of OT. Keller
(2001) argues that constraint violations must be
cumulative to account for the pattern of relative
acceptability with respect to the phenomenon of
Gapping. Jäger and Rosenbach (to appear) draw
a similar conclusion on the basis of the observed
variation with respect to the English genitive (the
king’s palace versus the palace of the king).

In this study, we focus on the linguistic phe-
nomenon of Gapping. The central question is
whether the comprehension of Gapping sen-
tences provides evidence in favor of cumulativity
of constraint violations. In section 2, we intro-
duce the phenomenon and discuss the possibility
of an OT model of Gapping. In section 3, we
consider different kinds of cumulativity. Section
4 discusses the way we modeled four different
evaluation algorithms based on these kinds of
cumulativity. A comparison between our compu-
tational models of constraint evaluation in sec-
tion 5 suggests that the comprehension of Gap-
ping does not provide compelling evidence for
abandoning the strict domination hypothesis.

2 Gapping

Gapping is a grammatical operation that deletes
certain subconstituents in the second conjunct of
a coordinate structure, as in (1):

1

(1) Some ate beans, and others rice.

The deleted material always includes the finite
verb, but may also include further constituents
such as the direct object. As a result, it may not
always be possible to uniquely identify which
elements were left out. As an example, consider
the following sentence:

(2) John greeted Paul yesterday and George

today.

This sentence is ambiguous between reading (3),
where first John greeted Paul, and then John
greeted George, and reading (4), where first John
greeted Paul, and then George greeted Paul.

(3) John greeted Paul yesterday and John
greeted George today.

(4) John greeted Paul yesterday and George
greeted Paul today.

The reading in (3) is traditionally analyzed as
resulting from the operation of conjunction re-
duction, whereas the reading in (4) is analyzed as
resulting from Gapping of the finite verb and the
direct object.

2.1 Functional constraints on Gapping

Based on previous work on Gapping, Kuno
(1976) notes that several non-syntactic factors
affect the acceptability and interpretation of Gap-
ping. One of these factors is the distance between
the remnants in the second conjunct and their
counterparts in the first conjunct:

(5) The Minimal Distance Principle:
 The two constituents left behind by Gap-

ping can be most readily coupled with
the constituents (of the same structures)
in the first conjunct that were processed
last of all.

According to this principle, interpretation (3)
should be preferred for sentence (2) because it is
more preferable to couple George in the second
conjunct to the direct object Paul in the first con-
junct, than to the more distant subject John. This
preference is confirmed by experimental evi-
dence (Carlson, 2001). A further principle about
Gapping is that the deleted material has to repre-
sent contextually given information, whereas the
remnants in the second conjunct have to consti-

tute new information. This is captured in the fol-
lowing principle:

(6) The Functional Sentence Perspective
(FSP) Principle of Gapping:
a. Constituents deleted by Gapping
must be contextually known. On the
other hand, the two constituents left be-
hind by Gapping necessarily represent
new information and, therefore, must be
paired with constituents in the first con-
junct that represent new information.
b. It is generally the case that the
closer a given constituent is to sentence-
final position, the newer the information
it represents in the sentence.
c. Constituents that are clearly
marked for nonanaphoricity necessarily
represent new information in violation of
(b). Similarly, constituents that appear
closest tot sentence-final position neces-
sarily represent old information (in vio-
lation of (b)) if coreferential constituents
appear in the corresponding position in
the preceding discourse.

This principle explains the observation that in a
suitable context, interpretation (4) can become
the preferred interpretation for (2) (but see Hoeks
et al. (2006) for experimental evidence that in
addition to context also prosody has to be in ac-
cordance with a Gapping reading to make this
reading the preferred reading):

(7) When did John and George greet Paul?

John greeted Paul yesterday and George
greeted Paul today.

In this example, John, Paul and George are all
contextually introduced. But only John and
George are subjects in the context sentence and
hence can be interpreted as contrastive topics in
the target sentence. Contrast has a similar effect
as newness. Because of this effect of context, the
Gapping reading can become the preferred read-
ing for (2). Two further principles proposed by
Kuno are (8) and (9).

(8) The Tendency for Subject-Predicate In-

terpretation:
When Gapping leaves an NP and a VP
behind, the two constituents are readily
interpreted as constituting a sentential
pattern, with the NP representing the
subject of the VP.

2

(9) The Requirement for Simplex-Sentential
Relationship:
The two constituents left over by Gap-
ping are most readily interpretable as en-
tering into a simplex-sentential relation-
ship. The intelligibility of gapped sen-
tences declines drastically if there is no
such relationship between the two con-
stituents.

The principle in (8) is meant to account for a dif-
ference in preference with object control verbs
versus subject control verbs. The principle in (9)
reflects the observation that Gapping cannot
leave behind remnants that are part of a subordi-
nate clause. Kuno notes that this latter constraint
seems to be the strongest of the four principles,
being nearly inviolable, but does not make the
interaction between his principles explicit.

2.2 An OT model of Gapping

As Kuno already observes, the FSP Principle
seems to be able to override the Minimal Dis-
tance Principle. This observation is regarded by
Keller (2001) as evidence that Gapping is subject
to constraint competition in an optimality theo-
retic sense. Based on Kuno’s principles, Keller
develops an OT model of Gapping, which is able
to account for the pattern of relative acceptability
of Gapping sentences. According to this model,
the degree of acceptability of a candidate struc-
ture depends on the number and type of re-
rankings required to make the structure optimal
(Keller, 1998).

Keller’s OT model differs from standard OT
in a number of ways. Firstly, a distinction is
made between soft and hard constraints. Hard
constraints cause strong acceptability when vio-
lated, while violation of soft constraints causes
only mild unacceptability. According to Keller,
the Requirement for Simplex-Sentential Rela-
tionship is such a hard constraint. The distinction
between soft and hard constraints is needed in
Keller’s model to avoid the problem of overgen-
eration of acceptability differences.

Secondly, Keller’s model assumes that con-
straint violations are cumulative. According to
his model, the degree of unacceptability in-
creases with the number of constraints violated.
In standard OT, on the other hand, no number of
violations of weaker constraints can override one
violation of a stronger constraint, in accordance
with the principle of strict domination.

The aim of Keller’s OT model is to account
for the pattern of relative acceptability of Gap-

ping sentences. The aim of the present study, on
the other hand, is to account for the comprehen-
sion of Gapping sentences. Nevertheless, we fol-
low Keller in adopting Kuno’s functional princi-
ples (reformulated as OT constraints) for our OT
model because Kuno’s principles are principles
of comprehension.

Our model differs from Keller’s model in sev-
eral essential aspects, though. We assume that all
constraints are violable, in accordance with the
basic assumptions of OT. Because certain strong
constraints are not violated by the data under dis-
cussion, they simply appear to be inviolable.
Keller’s second assumption, the assumption that
constraint violations are cumulative, is the topic
of investigation of this study.

3 Cumulativity of constraint violations

In this section we discuss the different ways OT
constraints can interact. In principle, OT con-
straints can interact in an unrestricted way, or in
one of several more or less restricted ways.

3.1 Unrestricted constraint interaction

OT as a linguistic theory is derived from Har-
monic Grammar (Legendre et al., 1990). In Har-
monic Grammar (henceforth HG), each con-
straint is associated with a positive or negative
numerical weight value. For each candidate, a
so-called Harmony value is calculated by sum-
ming the numerically weighted constraints. From
the set of candidates, the candidate with the
highest Harmony value is selected as the optimal
candidate. Consequently, the interaction among
constraints in HG is cumulative. Each constraint
violation lowers the Harmony value of the can-
didate. This type of constraint interaction is es-
sentially unrestricted.

To account for natural language interpretation,
however, unrestricted cumulativity is too liberal,
as is shown by OT analyses of other phenomena.
With respect to Gapping, if Kuno and Keller are
right, no amount of violations on weaker con-
straints of an interpretation satisfying Simplex-
Sentential Relationship can make an interpreta-
tion violating Simplex-Sentential Relationship
the preferred one:

(10) Who did John promise to examine who?

John promised Paul to examine George,
and Ringo Bob.

If Simplex-Sentential Relationship indeed is a
strong constraint, (10) should only mean that

3

Ringo promised to examine Bob (satisfying Sim-
plex-Sentential Relationship but violating the
Minimal Distance Principle and the FSP), and
never that John promised to examine Bob (vio-
lating Simplex-Sentential Relationship).

For the analysis of natural language, therefore,
but also for the establishment of cross-linguistic
generalizations (see Legendre et al., 2006), we
seem to require a type of constraint interaction
which is more restricted than simple numerical
constraint weighting.

3.2 Restricted constraint interaction

In this section we discuss four ways to restrict
constraint interaction: (1) strict domination, (2)
local restricted cumulativity, (3) global restricted
cumulativity, and (4) Keller’s counting cumula-
tivity.

 A B C D
� Candidate 1 * * *
 Candidate 2 *!

Tableau 1: Strict domination

Strict domination is illustrated in tableau 1. The
constraints are ordered from left to right in the
top row in order of descending strength. Under
strict domination, no number of violations of the
weaker constraints B, C and D is able to override
a violation of the strongest constraint A.

 A B C D
 Candidate 1 *! *!
� Candidate 2 *

Tableau 2: Local restricted cumulativity

Tableau 2 illustrates local restricted cumulativity.
When the weaker constraints C and D are simul-
taneously violated, their joint effect can be
stronger than their linear sum. As a result, to-
gether they are able to override the immediately
dominating constraint B. This type of cumulativ-
ity is similar to the effects of local conjunction.
The result is a conjoined constraint C&D, which
is ranked immediately above constraint B in the
hierarchy.

 A B C D
 Candidate 1 *! *!
� Candidate 2 *

Tableau 3: Global restricted cumulativity

An illustration of global restricted cumulativity is
given in tableau 3. In this case, the weaker con-
straints C and D together are able to override a
stronger, but not necessarily immediately domi-
nating, constraint A. Again, this type of cumula-
tivity is similar to the effects of local conjunc-
tion. The result is a conjoined constraint C&D,
which is ranked anywhere above C and D in the
hierarchy.

 A B C D
 Candidate 1 * *! *
� Candidate 2 *

Tableau 4: Keller’s counting cumulativity

Keller’s counting cumulativity is illustrated in
tableau 4. For Keller’s cumulativity, the hierar-
chical relation between the constraints is irrele-
vant. The candidate with the fewest constraint
violations is always optimal. In Keller’s model,
constraint violations are assumed to result in a
gradient pattern. The more constraints are vio-
lated by a given Gapping construction, the less
acceptable the construction is predicted to be. Of
course, this type of cumulativity will greatly
overgenerate in production as well as in compre-
hension if every constraint violation counts as an
equally serious violation. For this reason, a sys-
tem employing this type of cumulativity must
make a distinction between soft and hard con-
straints. Hard constraints cause strong unaccept-
ability. This extra assumption serves to restrict
the overgenerating power of this type of cumula-
tivity.

The four types of cumulativity discussed here
differ in the amount of freedom they allow. Strict
domination is the most restricted type of con-
straint interaction, local restricted cumulativity
the one but most restricted type, global restricted
cumulativity the two but most restricted type,
and Keller’s cumulativity the least restricted
type. As a result, strict domination yields the
strongest hypothesis, and Keller’s cumulativity
the weakest hypothesis. The question we set out
to answer in the next section is how strongly
constraint interaction must be restricted to ac-
count for the comprehension of Gapping sen-
tences.

4 Testing the evaluation algorithms

To test the predictions of the four types of cumu-
lativity discussed in the previous section, a com-
puter model was developed in Prolog. The input

4

to the model is a Gapping sentence in Dutch. The
first conjunct is manually parsed. Information
about the givenness of its constituents, the selec-
tional restrictions of the main verb of the first
conjunct, and featural information for all NPs is
added. The output of the model is formed by the
possible couplings of constituents in the second
conjunct with constituents in the first conjunct.
In addition, for each possible coupling the con-
straint profile is given. For each possible cou-
pling, the model also gives a reconstruction of
the second conjunct by placing the constituents
from the second conjunct in the position of the
constituents they are coupled with in the first
conjunct.

4.1 Constraint ranking

The constraints implemented in the model were
Kuno’s principles, reformulated as OT con-
straints, augmented with constraints on parallel-
ism (cf. Carlson, 2001), thematic selection
(Hoeks and Hendriks, 2005) and word order
(Lamers and de Hoop, 2004). The constraint
ranking used is:

(11) Categorial Parallelism >> Simplex-

Sentential Relationship >> FSP >> The-
matic Selection >> Subject Precedes Ob-
ject >> Syntactic Parallelism >> Mini-
mal Distance >> Subject-Predicate In-
terpretation >> Featural Parallelism

The constraint Categorial Parallelism is added to
ensure that constituents are coupled with con-
stituents of the same syntactic category only. It
prevents, for example, that in (2) today is cou-
pled with Paul. Thematic Selection expresses the
selectional restrictions verbs may impose on their
arguments. For example, the verb bake requires
an inanimate object, the verb introduce requires
an animate object, and the verb take can combine
with either an animate or an inanimate object
(see section 4.3). The constraint Thematic Selec-
tion is violated if the candidate interpretation
does not satisfy these selectional restrictions, for
example if the object of the verb bake is animate.
According to the constraint Subject Precedes Ob-
ject, the subject must linearly precede the object.
Syntactic Parallelism requires the two conjuncts
to have the same syntactic structure. The con-
straint Featural Parallelism, finally, promotes the
coupling of constituents which share features
such as animacy, definiteness, number and gen-
der. The ranking of these constraints was deter-
mined on the basis of the literature (Carlson,

2001; Kuno, 1976) and via comparison of rele-
vant sentences and their meanings.

4.2 Computational considerations

The different types of cumulativity were compu-
tationally modeled as different ways of evaluat-
ing the constraint profiles.

Strict domination can be modeled as numeri-
cal weighting with exponential weights.

Local restricted cumulativity can be modeled
as numerical weighting as well, if the weights are
chosen in such a way that the sum of two adja-
cent constraints is larger than the weight of the
directly dominating constraint. This is the case if,
for example, B is 0.50, C is 0.26, and D is 0.25 in
tableau 2. In our model, local restricted cumula-
tivity only applies to the constraints Thematic
Selection, Subject Precedes Object and Syntactic
Parallelism, and allows the constraints Subject
Precedes Object and Syntactic Parallelism to-
gether to override the directly dominating con-
straint Thematic Selection.

Global restricted cumulativity, on the other
hand, cannot be captured straightforwardly in a
system with weight values. To implement this
evaluation method, therefore, we made explicit
use of constraint conjunction. The newly formed
conjoined constraint C&D was located in the
hierarchy somewhere above its constituting con-
straints C and D. Because violation of this con-
joined constraint is dependent on the violation of
each of the constituting constraints, the new con-
straint can only be evaluated in a second round
of evaluation after all other constraints have been
evaluated. This is an unfortunate complication of
our implementation. Legendre et al. (2006: 352)
show that this type of cumulativity can be im-
plemented with weight values if constraint con-
junction is assumed to involve a superlinear
combination of weights (through summation as
well as multiplication). In our model, only the
constraints Minimal Distance and Subject-
Predicate Interpretation were allowed to conjoin.
The resulting conjoined constraint was located
above Categorial Parallelism in the hierarchy.

For the fourth method of evaluation, Keller’s
counting cumulativity, simply counting the num-
ber of constraint violations suffices. By applying
one of these four evaluation algorithms, the
computational model yields an optimal interpre-
tation for each combination of input and evalua-
tion algorithm.

5

4.3 Input sentences

To test the four evaluation algorithms, we fed the
model three types of input: (i) 10 Gapping sen-
tences taken from a corpus, (ii) test sentences
taken from all five conditions of Carlson’s
(2001) study on Gapping, and (iii) 15 hand-
crafted sentences.

The Eindhoven corpus (uit den Boogaart,
1975) is an annotated corpus of Dutch written
text of about 750 000 words. We scanned the
corpus for suitable Gapping sentences, which
had to occur unembedded, contain an overt con-
junction, and should not involve other deletion
operations as well. Unfortunately, we only found
10 such Gapping sentences in the corpus, pre-
sumably because Gapping is quite rare. For all
ten sentences, all evaluation methods produced
the same outputs. Nine out of the ten optimal
interpretations did not violate any of the con-
straints. One sentence involved a constraint vio-
lation by all models, namely a violation of the
constraint Featural Parallelism:

(12) Groep 1 trok de arm na vijftien minuten

uit de testkamer, en groep 4 na een uur.
Group 1 pulled the arm after fifteen
minutes from the test room and group 4
after an hour.

The most plausible interpretation of this sentence
is the interpretation that group 4 pulled the arm
from the test room after an hour. The interpreta-
tion selected by all evaluation methods, however,
was that group 1 pulled group 4 from the test
room after an hour, thus satisfying Minimal Dis-
tance but violating Featural Parallelism. It may
be that the strong parallelism between group 1
and group 4 sets up a contrast which evokes the
constraint FSP even in the absence of an explicit
linguistic context. If this is true, Minimal Dis-
tance must be violated in order to satisfy FSP.

We also fed the models test sentences taken
from Carlson’s (2001) written questionnaire.
Carlson studied the interaction between The-
matic Selection, Featural Parallelism and Mini-
mal Distance by varying verb type (see the dis-
cussion of Thematic Selection in section 4.1) and
properties of the noun phrases. She distinguished
five conditions: the Bake A condition (Alice
bakes cakes for tourists and Caroline for her
family), the Bake B condition (Alice bakes cakes
for tourists and brownies for her family), the
Take A condition (Josh visited the office during
the vacation and Sarah during the week), the

Take B condition (Josh visited Marjorie during
the vacation and Sarah during the week) and the
Introduce condition (Dan amazed the judges with
his talent and James with his musicality).

The four evaluation algorithms behaved ex-
actly the same on all five conditions of Carlson
because none of Carlson’s sentences involves a
simultaneous violation of Subject Precedes Ob-
ject and Syntactic Parallelism (which would give
rise to local restricted cumulativity in our model)
or a simultaneous violation of Minimal Distance
and Subject-Predicate Interpretation (which
would give rise to global restricted cumulativity
in our model). As a result, all models yielded a
100% Gapping response for Carlson’s Bake A
condition (compared to Carlson’s subjects 81%)
because for all models a violation of Thematic
Selection is more serious than a violation of
Minimal Distance. Furthermore, all models
yielded a 100% non-Gapping response for her
Bake B condition (compared to Carlson’s sub-
jects 97%) because a Gapping response violates
Thematic Selection, Minimal Distance and Fea-
tural Parallelism whereas a non-Gapping re-
sponse satisfies all three constraints. Finally, all
models yielded a 100% non-Gapping response
for Carlson’s Take A condition (compared to
Carlson’s subjects 60%), her Take B condition
(compared to Carlson’s subjects 96%) and her
Introduce condition (compared to Carlson’s sub-
jects 79%) because for all models a violation of
Minimal Distance is more serious than a viola-
tion of Featural Parallelism, given the constraint
ranking in (11).

So all models correctly predicted the interpre-
tational preferences found in Carlson’s experi-
ment. However, subjects’ percentages of non-
Gapping responses on the Take A, Take B and
Introduce condition varied considerably. This
variation seems to be due to differences between
the features of the NPs involved. In particular, in
the Take A condition the feature animacy played
a role, which seems to have a stronger effect than
the other grammatical features that were manipu-
lated. However, our constraint Featural Parallel-
ism does not distinguish between animacy and
other grammatical features. Moreover, our OT
model is unable to capture the gradience that
seems to result from the interaction between fea-
tures.

4.4 Generating different predictions

Because the four evaluation algorithms behaved
identically on all sentences taken from the corpus
as well as on all sentences types from Carlson’s

6

study, we had to construct sentences on the basis
of expected constraint violations in order to gen-
erate different predictions for the four evaluation
algorithms. The following sentence is predicted
to distinguish between strict domination and lo-
cal restricted cumulativity:

(13) John picked a rose, and a tulip Paul.

If hearers interpret this sentence as meaning that
a tulip picked Paul, they will have violated the
stronger constraint Thematic Selection in order
to satisfy the two weaker constraints Subject
Precedes Object and Syntactic Parallelism. This
then would constitute evidence for local re-
stricted cumulativity. If, on the other hand, hear-
ers interpret this sentence as meaning that Paul
picked a tulip, then this is evidence for strict
domination. Sentence (14) distinguishes between
strict domination and global restricted cumulativ-
ity:

(14) John asked him to get Paul, and George

to bring Ringo.

Because him is a pronoun, it counts as given for
evaluating the constraint FSP. If hearers interpret
this sentence as meaning that John asked George
to bring Ringo, they will have violated the
stronger constraint FSP in order to satisfy the
weaker constraints Minimal Distance and Sub-
ject-Predicate Interpretation. Because FSP does
not immediately dominate the weaker con-
straints, this would be evidence for global re-
stricted cumulativity. To distinguish between
strict domination and Keller’s counting cumula-
tivity, consider the following sentence:

(15) The children promised John to stop, and

the neighbors to continue.

If hearers interpret this sentence as meaning that
the neighbors promised John to continue, they
violate the single stronger constraint Minimal
Distance in favor of satisfaction of the two
weaker constraints Subject-Predicate Interpreta-
tion and Featural Parallelism. Because these con-
straints would all be considered soft constraints
according to Keller’s distinction between hard
and soft constraints, Keller’s counting cumulativ-
ity predicts that this interpretation is preferred.
The strict domination hypothesis, on the other
hand, predicts that the interpretation is preferred
according to which the children promised the
neighbors to continue, since it is more important

to satisfy the stronger constraint Minimal Dis-
tance than any number of weaker constraints.

5 Results and discussion

For all Gapping sentences occurring in the Eind-
hoven corpus and all Gapping sentences taken
from the written part of Carlson’s psycholinguis-
tic study, the four evaluation algorithms yielded
identical results. These sentences therefore do
not shed any light on the central question of this
study, namely whether the strict domination hy-
pothesis should be abandoned in favor of a
weaker cumulativity hypothesis.

To determine which evaluation algorithm
models the way comprehenders process language
best, we must look at the interpretations of sen-
tences such as (13), (14) and (15). We presented
10 participants with a written questionnaire,
which included 15 sentences distinguishing be-
tween the four evaluation algorithms. The reader
is referred to van der Feen (2005) for the com-
plete list of sentences. The results show that
there does not seem to be a clear preference in
interpretation for sentences such as (13), leaving
the distinction between strict domination and
local restricted cumulativity undecided. For sen-
tences such as (14), on the other hand, there
seems to be a clear preference for the reading
supported by global restricted cumulativity. Sen-
tences such as (15), finally, show no effects at all
of Keller’s counting cumulativity. For only one
sentence only one subject preferred the interpre-
tation according to which the neighbors promised
John to continue, which favors the strict domina-
tion hypothesis and goes against Keller’s cumu-
lativity algorithm. This suggests that constraints
on comprehension may be different from the
principles governing acceptability judgments.
Boersma (2004) argues that the paralinguistic
task of providing acceptability judgments in-
volves comprehension, but under a reverse map-
ping between meaning and form. An alternative
view is that acceptability judgments involve a
mapping from the given form to its optimal
meaning (‘what do I think the sentence means?’),
followed by a mapping from that meaning to the
optimal form for that meaning (‘how would I
express that meaning?’), thus involving princi-
ples of comprehension as well as production.

To conclude, there seems to be a slight indica-
tion of global restricted cumulativity in the com-
prehension of Gapping, but further study with a
larger pool of subjects is required to confirm
these initial findings.

7

However, a few remarks are in place here.
First, note that for hearers to prefer the interpre-
tation that Paul picked a tulip for (13), the hearer
has to find some motivation in the linguistic con-
text of the utterance for why the speaker chose to
put the object first. In the absence of such a con-
text supporting a non-canonical word order, the
reading that Paul picked a tulip might be dis-
preferred anyway.

Also in sentence (14), context seems to play a
crucial role. Although in general pronouns may
be used to refer to given material, in certain con-
texts pronouns can be emphatically stressed. If
the pronoun in (14) is stressed, it is much easier
to couple George to him to obtain the reading
that John asked George to bring Ringo. This ef-
fect of context and prosody may have been the
main reason for the observed preferences.

6 Conclusion

A central principle of Optimality Theory is the
hypothesis of strict domination among con-
straints. In this paper we investigated whether
this hypothesis should be abandoned in favor of
the weaker hypothesis that constraint violations
are cumulative. Studying the effects of four dif-
ferent evaluation algorithms (three of which dis-
play some kind of cumulativity) on the compre-
hension of Gapping sentences, we found a slight
indication of cumulativity effects. However,
these effects are likely to disappear if the context
and prosodic structure of the utterance are taken
into account.

Acknowledgments

The authors thank three anonymous reviewers
for their useful comments and suggestions. This
research was funded by grant # 015.001.103
from NWO, awarded to Petra Hendriks.

References
Paul Boersma. 2004. A stochastic OT account of

paralinguistic tasks such as grammaticality and
prototypicality judgments. Unpublished manu-
script, University of Amsterdam. Rutgers Optimal-
ity Archive #648.

Katy Carlson. 2001. The Effects of Parallelism and
Prosody in the Processing of Gapping Structures.
Language and Speech, 44(1):1-26.

John Hoeks, Petra Hendriks, and Louisa Zijlstra.
2006. The Predominance of Nonstructural Factors
in the Processing of Gapping Sentences. In: R. Sun
and N. Miyake (eds.), Proceedings of the 28th An-
nual Conference of the Cognitive Science Society.

John Hoeks, and Petra Hendriks. 2005. Optimality
Theory and human sentence processing: The case
of coordination. In: B.G. Bara, L. Barsalou, and M.
Bucciarelli (eds.), Proceedings of the 27th Annual
Meeting of the Cognitive Science Society, Erlbaum,
Mahwah, NJ, pp. 959-964.

Gerhard Jäger, and Anette Rosenbach. To appear. The
winner takes it all - almost. Cumulativity in gram-
matical variation. Linguistics.

Frank Keller. 1998. Gradient Grammaticality as an
Effect of Selective Constraint Re-ranking. In: M.C.
Gruber, D. Higgins, K.S. Olson, and T. Wysocki
(eds.) Papers from the 34th Meeting of the Chicago
Linguistic Society. Vol. 2: The Panels, Chicago, pp.
95-109.

Frank Keller. 2001. Experimental Evidence for Con-
straint Competition in Gapping Constructions. In:
G. Müller and W. Sternefeld (eds.), Competition in
Syntax, Mouton de Gruyter, Berlin, pp. 211-248.

Susumo Kuno. 1976. Gapping: A Functional Analy-
sis. Linguistic Inquiry, 7:300-318.

Monique Lamers, and Helen de Hoop. 2004. The role
of animacy information in human sentence proc-
essing captured in four conflicting constraints. In:
H. Christiansen, P. Rossen Skadhauge, and J. Vil-
ladsen (eds.), Constraint Solving and Language
Processing. Workshop proceedings, Roskilde De-
partment of Computer Science, Roskilde Univer-
sity, pp. 102-113.

Géraldine Legendre, Yoshiro Miyata, and Paul
Smolensky. 1990. Harmonic Grammar - A formal
multi-level theory of linguistic well-formedness:
An application. In: Proceedings of the Twelfth An-
nual Conference of the Cognitive Science Society,
Erlbaum, Cambridge, MA, pp. 388-395.

Géraldine Legendre, Antonella Sorace, and Paul
Smolensky. 2006. The Optimality Theory - Har-
monic Grammar Connection. In: P. Smolensky and
G. Legendre (eds.), The Harmonic Mind, Vol. 2,
MIT Press, Cambridge, MA, pp. 339-402.

Alan Prince, and Paul Smolensky. 2004. Optimality
Theory: Constraint interaction in generative
grammar. Oxford, Blackwell. Previously distrib-
uted as Technical Report RuCCSTR-2, New
Brunswick NJ, Rutgers Center for Cognitive Sci-
ence, Rutgers University, 1993.

P.C. Uit den Boogaart. 1975. Woordfrequenties in
geschreven en gesproken Nederlands. Werkgroep
Frequentie-onderzoek van het Nederlands. Oost-
hoek, Scheltema & Holkema, Utrecht.

Marieke Van der Feen. 2005. Do rules add up? A
study of the application of Optimality Theory to the
interpretation of gapping. MSc Thesis Artificial
Intelligence, University of Groningen.

8

Proceedings of the 3rd Workshop on Constraints and Language Processing (CSLP-06), pages 9–16,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Control Strategies for Parsing with Freer Word-Order Languages

Gerald Penn
Dept. of Computer Science

University of Toronto
Toronto M5S 3G4, Canada

Stefan Banjevic
Dept. of Mathematics
University of Toronto

Toronto M5S 2E4, Canada
fgpenn,banjevic,mpademko g@cs.toronto.edu

Michael Demko
Dept. of Computer Science

University of Toronto
Toronto M5S 3G4, Canada

Abstract

We provide two different methods for
bounding search when parsing with freer
word-order languages. Both of these can
be thought of as exploiting alternative
sources of constraints not commonly used
in CFGs, in order to make up for the lack
of more rigid word-order and the standard
algorithms that use the assumption of rigid
word-order implicitly. This work is pre-
liminary in that it has not yet been evalu-
ated on a large-scale grammar/corpus for a
freer word-order language.

1 Introduction

This paper describes two contributions to the
area of parsing over freer word-order (FWO) lan-
guages, i.e., languages that do not readily admit a
semantically transparent context-free analysis, be-
cause of a looser connection between grammati-
cal function assignment and linear constituent or-
der than one finds in English. This is a partic-
ularly ripe area for constraint-based methods be-
cause such a large number of linguistic partial
knowledge sources must be brought to bear on
FWO parsing in order to restrict its search space to
a size comparable to that of standard CFG-based
parsing.

The first addresses the indexation of tabled sub-
strings in generalized chart parsers for FWO lan-
guages. While chart parsing can famously be cast
as deduction (Pereira and Warren, 1983), what
chart parsing reallyis is an algebraic closure over
the rules of a phrase structure grammar, which is
most naturally expressed inside a constraint solver
such as CHR (Morawietz, 2000). Ideally, we
would like to use standard chart parsers for FWO

languages, but because of the constituent ordering
constraints that are implicit in the right-hand-sides
(RHSs) of CFG rules, this is not possible without
effectively converting a FWO grammar into a CFG
by expanding its rule system exponentially into all
possible RHS orders (Barton et al., 1987). FWO
grammar rules generally cannot be used as they
stand in a chart parser because tabled substrings
record a non-terminal categoryC derived over a
contiguous subspan of the input string from word
i to word j. FWO languages have many phrasal
categories that are not contiguous substrings.

Johnson (1985), Reape (1991) and others have
suggested using bit vectors to index chart edges
as an alternative to substring spans in the case of
parsing over FWO languages, but that is really
only half of the story. We still need a control strat-
egy to tell us where we should be searching for
some constituent at any point in a derivation. This
paper provides such a control strategy, using this
data structure, for doing search more effectively
with a FWO grammar.

The second contribution addresses another
source of constraints on the search space: the
length of the input. While this number is not a
constant across parses, it is constant within a sin-
gle parse, and there are functions that can be pre-
computed for a fixed grammar which relate tight
upper and lower bounds on the length of the in-
put to both the height of a parse tree and other
variables (defined below) whose values bound the
recursion of the fixed phrase structure rule sys-
tem. Iteratively computing and caching the val-
ues of these functions as needed allows us to in-
vert them efficiently, and bound the depth of the
search. This can be thought of as a partial substi-
tute for the resource-bounded control that bottom-
up parsing generally provides, Goal-directedness

9

is maintained, because — with the use of con-
straint programming – it can still be used inside
a top-down strategy. In principle, this could be
worthwhile to compute for some CFGs as well, al-
though the much larger search space covered by a
naı̈ve bottom-up parser in the case of FWO gram-
mars (all possible subsequences, rather than all
possible contiguous subsequences), makes it con-
siderably more valuable in the present setting.

In the worst case, a binary-branching immediate
dominance grammar (i.e., no linear precedence)
could specify that every word belongs to the same
category,W , and that phrases can be formed from
every pair of words or phrases. A complete pars-
ing chart in this case would have exponentially
many edges, so nothing in this paper (or in the
aforementioned work on bit vectors) actually im-
proves the asymptotic complexity of the recogni-
tion task. Natural languages do not behave like
this, however. In practice, one can expect more
polymorphy in the part-of-speech/category sys-
tem, more restrictions in the allowable combina-
tions of words and phrases (specified in the imme-
diate dominance components of a phrase structure
rule system), and more restrictions in the allow-
able orders and discontinuities with which those
argument categories can occur (specified in the
linear precedence components of a phrase struc-
ture rule system).

These restrictions engender a system of con-
straints that, when considered as a whole, admit
certain very useful, language-dependent strategies
for resolving the (respectively, don’t-care) nonde-
terministic choice points that a (resp., all-paths)
parser must face, specifically: (1) which lexical
categories to use (or, resp., in which order), given
the input words, (2) which phrase structure rules
to apply (resp., in which order), and (3) given a
particular choice of phrase structure rule, in which
order to search for the argument categories on its
right-hand side (this one is don’t-care nondeter-
ministic even if the parser is looking for only the
best/first parse). These heuristics are generally ob-
tained either through the use of a parameter esti-
mation method over a large amount of annotated
data, or, in the case of a manually constructed
grammar, simply through some implicit conven-
tion, such as the textual order in which the lexicon,
rule system, or RHS categories are stated.1

1In the case of the lexicon and rule system, there is a very
long-standing tradition in logic programming of using this

This paper does not address how to find these
heuristics. We assume that they exist, and instead
address the problem of adapting a chart parser
to their efficient use. To ignore this would in-
volve conducting an enormous number of deriva-
tions, only to look in the chart at the end and
discover that we have already derived the current
bit-vector/category pair. In the case of standard
CFG-based parsing, one generally avoids this by
tabling so-called active edges, which record the
subspaces on which a search has already been ini-
tiated. This works well because the only existen-
tially quantified variables in the tabled entry are
the interior nodes in the span which demarcate
where one right-hand-side category ends and an-
other adjacent one begins. To indicate that one is
attempting to complete the rule,S ! NP V P ,
for example, one must only table the search from
i to j for somek, such thatNP is derivable from
i to k andV P is derivable fromk to j. Our first
contribution can be thought of as a generalization
of these active edges to the case of bit vectors.

2 FWO Parsing as Search within a
Powerset Lattice

A standard chart-parser views constituents as ex-
tending overspans, contiguous intervals of a lin-
ear string. In FWO parsing, constituents partition
the input into not necessarily contiguous subse-
quences, which can be thought of as bit vectors
whoseAND is 0 and whoseOR is 2n � 1, given an
initial n-length input string. For readability, and
to avoid making an arbitrary choice as to whether
the leftmost word should correspond to the most
significant or least significant bit, we will refer
to these constituents as subsets off1 : : : ng rather
than asn-length bit vectors. For simplicity and
because of our heightened awareness of the im-
portance of goal-directedness to FWO parsing (see
the discussion in the previous section), we will
only outline the strictly top-down variant of our
strategy, although natural analogues do exist for
the other orientations.

2.1 State

State is: hN;CanBV;ReqBVi.
The returned result is: UsedBVor failure.

convention. To our knowledge, the first to apply it to the order
of RHS categories, which only makes sense once one drops
the implicit linear ordering implied by the RHSs of context-
free grammar rules, was Daniels and Meurers (2002).

10

Following Penn and Haji-Abdolhosseini
(2003), we can characterize a search state under
these assumptions using one non-terminal,N , and
two subsets/bit vectors, theCanBV andReqBV.2

CanBV is the set of all words thatcan be used
to build anN , and ReqBV is the set of all words
that mustbe used while building theN . CanBV
always contains ReqBV, and what it additionally
contains are optional words that may or may not
be used. If search from this state is successful,
i.e., N is found using ReqBV and nothing that
is not in CanBV, then it returns aUsedBV, the
subset of words that were actually used. We will
assume here that our FWO grammars are not so
free that one word can be used in the derivation of
two or more sibling constituents, although there is
clearly a generalization to this case.

2.2 Process

Search (hN;C;Ri) can then be defined in the
constraint solver as follows:

2.2.1 Initialization

A top-down parse of ann-length string be-
gins with the state consisting of the distinguished
category, S, of the grammar, andCanBV =

ReqBV = f1 : : : ng.

2.2.2 Active Edge Subsumption

The first step is to check the current state against
states that have already been considered. For ex-
pository reasons, this will be presented below. Let
us assume for now that this step always fails to
produce a matching edge. We must then predict
using the rules of the FWO grammar.

2.2.3 Initial Prediction

hN;C;Ri =) hN1; C; �i, where:

1. N0 ! N1 : : : Nk,
2. k > 1, and
3. N tN0#.

As outlined in Penn and Haji-Abdolhosseini
(2003), the predictive step from a state consisting
of hN;C;Ri using an immediate dominance rule,
N0 ! N1 : : : Nk, with k > 1 and no linear prece-
dence constraints transits to a statehN1; C; �i pro-
vided thatN is compatible withN0. In the case
of a classical set of atomic non-terminals, com-
patibility should be interpreted as equality. In the

2Actually, Penn and Haji-Abdolhosseini (2003) use
CanBV andOptBV, which can be defined asCanBV \

ReqBV.

case of Prolog terms, as in definite clause gram-
mars, or typed feature structures, as in head-driven
phrase structure grammar, compatibility can be in-
terpreted as either unifiability or the asymmetric
subsumption ofN by N0. Without loss of gener-
ality, we will assume unifiability here.

This initial predictive step says that there are,
in general, no restrictions on which word must be
consumed (ReqBV = �). Depending on the lan-
guage chosen for expressing linear precedence re-
strictions, this set may be non-empty, and in fact,
the definition of state used here may need to be
generalized to something more complicated than
a single set to express the required consumption
constraints.

2.2.4 Subsequent Prediction

hN;C;Ri =) hNj+1; Cj ; �i, where:

1. N0 ! N1 : : : Nk,
2. N tN0#,
3. hN1; C; �i succeeded withU1,

...
hNj ; Cj�1; �i succeeded withUj ,

4. k > 1 and1 � j < k � 1, and
5. Cj = C \ U1 \ : : : \ U j .

Regardless of these generalizations, however,
each subsequent predictive step, having recog-
nizedN1 : : : Nj , for 1 � j < k � 1, computes the
next CanBVCj by removing the consumed words
Uj from the previous CanBVCj�1, and then tran-
sits to statehNj+1; Cj ; �i. Removing the Used-
BVs is the result of our assumption that no word
can be used by two or more sibling constituents.

2.2.5 Completion

hN;C;Ri =) hNk; Ck�1; Rk�1i, where:

1. N0 ! N1 : : : Nk,
2. N tN0#,
3. hN1; C; �i succeeded withU1,

...
hNk�1; Ck�2; �i succeeded withUk�1,

4. Ck�1 = C \ U1 \ : : : \ Uk�1, and
5. Rk�1 = R \ U1 \ : : : \ Uk�1.

The completion step then involves recognizing
the last RHS category (although this is no longer
rightmost in terms of linear precedence). Here,
the major difference from subsequent prediction is
that there is now a potentially non-empty ReqBV.
Only with the last RHS category are we actually
in a position to enforceR from the source state.

If hNk; Ck�1; Rk�1i succeeds withUk, then
hN;C;Ri succeeds withU1 [: : : [Uk.

11

2.3 Active Edge Subsumption Revisited

So far, this is very similar to the strategy out-
lined in Penn and Haji-Abdolhosseini (2003). If
we were to add active edges in a manner simi-
lar to standard chart parsing, we would tabulate
states likehNa; Ca; Rai and then compare them
in step 2.2.2 to current stateshN;C;Ri by deter-
mining whether (classically)N = Na, C = Ca,
andR = Ra. This might catch some redundant
search, but just as we can do better in the case of
non-atomic categories by checking for subsump-
tion (Na v N) or unifiability (N t Na#), we can
do better onC andR as well because these are sets
that come with a natural notion of containment.

Figure 1 shows an example of how this contain-
ment can be used. Rather than comparing edges
annotated with linear subspans, as in the case of
CFG chart parsing, here we are comparing edges
annotated with sublattices of the powerset lattice
onn elements, each of which has a top element (its
CanBV) and a bottom element (its ReqBV). Ev-
erything in between this top and bottom is a sub-
set of words that has been (or will be) tried if that
combination has been tabled as an active edge.

Figure 1 assumes thatn = 6, and that we have
tabled an active edge (dashed lines) withCa =

f1; 2; 4; 5; 6g, andRa = f1; 2g. Now suppose
later that we decide to search for the same cate-
gory inC = f1; 2; 3; 4; 5; 6g, R = f1; 2g (dotted
lines). Here,C 6= Ca, so an equality-based com-
parison would fail, but a better strategy would be
to reallocate the one extra bit inC (3) to R, and
then searchC 0 = f1; 2; 3; 4; 5; 6g, R0 = f1; 2; 3g
(solid lines). As shown in Figure 1, this solid re-
gion fills in all and only the region left unsearched
by the active edge.

This is actually just one of five possible cases
that can arise during the comparison. The com-
plete algorithm is given in Figure 2. This algo-
rithm works as a filter, which either blocks the
current state from further exploration, allows it to
be further explored, or breaks it into several other
states that can be concurrently explored. Step 1(a)
deals with category unifiability. If the current cat-
egory,N , is unifiable with the tabled active cat-
egory,Na, then 1(a) breaksN into more specific
pieces that are either incompatible withNa or sub-
sumed byNa. By the time we get to 1(b), we know
we are dealing with a piece that is subsumed by
Na. O stands for “optional,” CanBV bits that are
not required.

Check (hN;C;Ri):

� For each active edge,a, with hNa; Ca; Rai,

1. If N tNa#, then:

(a) For each minimal categoryN 0 such
thatN v N 0 andN 0 tNa", concur-
rently:
– Let N := N 0, and continue [to

next active edge].
(b) LetN := N tNa,O := C \R and

Oa := Ca \Ra.
(c) If Ca \ Oa \ C 6= �, then continue

[to next active edge].
(d) If C\O\Ca 6= �, then continue [to

next active edge].
(e) If (Z :=)O \ Ca 6= �, then:

i. LetO := O \ Z,
ii. Concurrently:

A. continue [to next active
edge], and

B. (1) LetC := C \ Z,
(2) goto (1) [to reconsider

this active edge].
(f) If (Z :=)Ca \Oa \O 6= �, then:

i. LetO := O \ Z, C := C \ Z,
ii. continue [to next active edge].

(g) Fail — this state is subsumed by an
active edge.

2. else continue [to next active edge].

Figure 2: Active edge checking algorithm.

Only one of 1(g) or the bodies of 1(c), 1(d), 1(e)
or 1(f) is ever executed in a single pass through the
loop. These are the five cases that can arise dur-
ing subset/bit vector comparison, and they must
be tried in the order given. Viewing the current
state’s CanBV and ReqBV as a modification of the
active edge’s, the first four cases correspond to:
the removal of required words (1(c)), the addition
of required words (1(d)), the addition of optional
(non-required) words (1(e)), and the reallocation
of required words to optional words (1(f)). Unless
one of these four cases has happened, the current
sublattice has already been searched in its entirety
(1(g)).

2.4 Linear Precedence Constraints

The elaboration above has assumed the absence
of any linear precedence constraints. This is the

12

f1,2,3,4,5,6g

f1,2,3,4,5g f1,2,3,5,6g f1,2,3,4,6g f1,2,4,5,6g

f1,2,3,4g f1,2,3,5g f1,2,3,6g f1,2,4,5g f1,2,4,6g f1,2,5,6g

f1,2,3g f1,2,4g f1,2,5g f1,2,6g

f1,2g

Figure 1: A powerset lattice representation of active edge checking with CanBV and ReqBV.

worst case, from a complexity perspective. The
propagation rules of section 2.2 can remain un-
changed in a concurrent constraint-based frame-
work in which other linear precedence constraints
observe the resulting algebraic closure and fail
when violated, but it is possible to integrate these
into the propagators for efficiency. In either case,
the active edge subsumption procedure remains
unchanged.

For lack of space, we do not consider the char-
acterization of linear precedence constraints in
terms of CanBV and ReqBV further here.

3 Category Graphs and Iteratively
Computed Yields

Whereas in the last section we trivialized linear
precedence, the constraints of this section sim-
ply do not use them. Given a FWO grammar,G,
with immediate dominance rules,R, over a set of
non-terminals,N , we define thecategory graph
of G to be the smallest directed bipartite graph,
C(G) = hV;Ei, such that:

� V = N [R [fLex;Emptyg,

� (X; r) 2 E if non-terminalX appears on the
RHS of ruler,

� (r;X) 2 E if the LHS non-terminal ofr is
X,

� (Lex; r) 2 E if there is a terminal on the
RHS of ruler, and

� (Empty; r) 2 E if r is an empty production
rule.

We will call the vertices ofC(G) eithercategory
nodesor rule nodes. Lex and Empty are consid-
ered category nodes. The category graph of the
grammar in Figure 3, for example, is shown in

S! VP NP VP1 ! V NP
NP1 ! N’ S VP2 ! V
NP2 ! N’ N ! fboy, girlg
N’1 ! N Det Det! fa, the, thisg
N’2 ! N V ! fsees, callsg

Figure 3: A sample CFG-like grammar.

Figure 4. By convention, we draw category nodes
with circles, and rule nodes with boxes, and we la-
bel rule nodes by the LHS categories of the rules
they correspond to plus an index. For brevity, we
will assume a normal form for our grammars here,
in which the RHS of every rule is either a string of
non-terminals or a single terminal.

Category graphs are a minor variation of the
“grammar graphs” of Moencke and Wilhelm
(1982), but we will use them for a very differ-
ent purpose. For brevity, we will consider only
atomic non-terminals in the remainder of this sec-
tion. Category graphs can be constructed for par-
tially ordered sets of non-terminals, but in this
case, they can only be used to approximate the val-
ues of the functions that they exactly compute in
the atomic case.

13

S

S

NP VP

NP1 NP2 VP1 VP2

N’

N’2 N’1

N Det V

N Det V

Lex Empty

Figure 4: The category graph for the grammar in
Figure 3.

Restricting search to unexplored sublattices
helps us with recursion in a grammar in that it
stops redundant search, but in some cases, recur-
sion can be additionally bounded (above and be-
low) not because it is redundant but because it can-
not possibly yield a string as short or long as the
current input string. Inputs are unbounded in size
across parses, but within a single parse, the input
is fixed to a constant size. Category graphs can be
used to calculate bounds as a function of this size.
We will refer below to the length of an input string
below a particular non-terminal in a parse tree as
theyield of that non-terminal instance. Theheight
of a non-terminal instance in a parse tree is 1 if it
is pre-terminal, and 1 plus the maximum height of
any of its daughter non-terminals otherwise. Non-
terminal categories can have a range of possible
yields and heights.

3.1 Parse Tree Height

Given a non-terminal,X, let Xmax(h) be the
maximum yield that a non-terminal instance ofX

at heighth in any parse tree can produce, given

the fixed grammarG. Likewise, letXmin(h) be
the minimum yield that such an instance must pro-
duce. Also, as an abuse of functional notation, let:

Xmax(� h) = max0�j�hX
max(j)

Xmin(� h) = min0�j�hX
min(j)

Now, using these, we can come back and define
Xmax(h) andXmin(h):

Lexmax(h) =

Lexmin(h) =

(
1 h = 0

undefined otherwise

Emptymax(h) =

Emptymin(h) =

(
0 h = 0

undefined otherwise

and for all other category nodes,X:

Xmax(1) =

Xmin(1) =

8><
>:

0 X ! � 2 R

1 X ! t 2 R

undefined otherwise

and forh > 1:

Xmax(h) = max
X!X1:::Xk2R

�
max
1�i�k

Xmax
i (h� 1)

+
kP

j=1;j 6=i

Xmax
j (� h� 1)

!

Xmin(h) = min
X!X1:::Xk2R

�
min
1�i�k

Xmin
i (h� 1)

+
kP

j=1;j 6=i

Xmin
j (� h� 1)

!
:

For example, in Figure 3, there is only one rule
with S as a LHS category, so:

Smax(h) = max

�
NPmax(h� 1) + VPmax(� h� 1)
NPmax(� h� 1) + VPmax(h� 1)

Smin(h) = min

�
NPmin(h� 1) + VPmin(� h� 1)
NPmin(� h� 1) + VPmin(h� 1):

These functions compute yields as a function
of height. We know the yield, however, and
want bounds on height. Given a grammar in
which the non-pre-terminal rules have a constant
branching factor, we also know thatXmax(h) and
Xmin(h), are monotonically non-decreasing inh,
where they are defined. This means that we can it-
eratively computeXmax(h), for all non-terminals
X, and all valuesh out to the firsth0 that pro-
duces a value strictly greater than the current yield
(the length of the given input). Similarly, we can
computeXmin(h), for all non-terminalsX, and

14

all valuesh out to the firsth00 that is equal to or
greater than the current yield. The height of the
resulting parse tree,h, can then be bounded as
h0 � 1 � h � h00. These iterative computations
can be cached and reused across different inputs.
In general, in the absence of a constant branching
factor, we still have a finite maximum branching
factor, from which an upper bound on any poten-
tial decrease inXmax(h) andXmin(h) can be de-
termined.

This provides an interval constraint. Because
there may be heights for whichXmax(h) and
Xmin(h) is not defined, one could, with small
enough intervals, additionally define a finite do-
main constraint that excludes these.

These recursive definitions are well-founded
when there is at least one finite string derivable
by every non-terminal in the grammar. TheXmin

functions converge in the presence of unit produc-
tion cycles inC(G); theXmax functions can also
converge in this case. Convergence restricts our
ability to constrain search with yields.

A proper empirical test of the efficacy of these
constraints requires large-scale phrase structure
grammars with weakened word-order constraints,
which are very difficult to come by. On the other
hand, our preliminary experiments with simple
top-down parsing on the Penn Treebank II sug-
gest that even in the case of classical context-free
grammars, yield constraints can improve the effi-
ciency of parsing. The latency of constraint en-
forcement has proven to be a real issue in this
case (weaker bounds that are faster to enforce
can produce better results), but the fact that yield
constraints produce any benefit whatsoever with
CFGs is very promising, since the search space is
so much smaller than in the FWO case, and edge
indexing is so much easier.

3.2 Cycle Variables

The heights of non-terminals from whose category
nodes the cycles ofC(G) are not path-accessible
can easily be bounded. Using the above height-
dependent yield equations, the heights of the other
non-terminals can also be bounded, because any
input string fixes the yield to a finite value, and
thus the height to a finite range (in the absence
of convergingXmin sequences). But we can do
better. We can condition these bounds not only
upon height but upon the individual rules used. We
could even make them depend upon sequences of

rules, or on vertical chains of non-terminals within
trees. IfC(G) contains cycles, however, there
are infinitely many such chains (although finitely
many of any given length), but trips around cycles
themselves can also be counted.

Let us formally specify that acycle refers to
a unique path from some category node to itself,
such that every node along the path except the last
is unique. Note that becauseC(G) is bipartite,
paths alternate between category nodes and rule
nodes.

Now we can enumerate the distinct cycles of
any category graph. In Figure 4, there are two,
both passing through NP and S, with one pass-
ing through VP in addition. Note that cycles,
even though they are unique, may share nodes as
these two do. For each cycle, we will arbitrarily
choose anindex nodefor it, and call the unique
edge along the cycle leading into that node itsin-
dex link. It will be convenient to choose the distin-
guished non-terminal,S, as the index node when
it appears in a cycle, and in other cases, to choose
a node with a minimal path-distance toS in the
category graph.

For each cycle, we will also assign it a unique
cycle variable(writtenn, m etc.). The domain of
this variable is the natural numbers and it counts
the number of times in a parse that we traverse
this cycle as we search top-down for a tree. When
an index link is traversed, the corresponding cycle
variable must be incremented.

For each category nodeX in C(G), we can de-
fine the maximum and minimum yield as before,
but now instead of height being the only indepen-
dent parameter, we also make these functions de-
pend on the cycle variables of all of the cycles
that pass throughX. If X has no cycles passing
through it, then its only parameter is stillh. We
can also easily extend the definition of these func-
tions to rule nodes.

Rather than provide the general definitions here,
we simply give some of the equations for Figure 4,

15

for shortage of space:

Smax(h; n;m) = Smax(h; �n; �m)

Smax(h; n; �m) = Smax(h; �n; �m)

Smax(h; �n; �m) =

max
i+ j = n,
k + l = m

8>>><
>>>:

NPmax(h� 1;�i; k)

+VPmax(� h� 1; j; �l)

NPmax(� h� 1;�i; k)

+VPmax(h� 1; j; �l)

NPmax(h; �n; �m) = max

(
NPmax

1 (h; �n; �m)

NPmax
2 (h; n;m)

NPmax
1 (h; �n; �m) =

max

8>>><
>>>:

N’max(h� 1)
+Smax(� h� 1; n� 1;m� 1)

N’max(� h� 1)

+Smax(h� 1; n� 1;m� 1)

NPmax
1 (h; n; �m) =

max

8>>><
>>>:

N’max(h� 1)

+Smax(� h� 1; n;m� 1)

N’max(� h� 1)

+Smax(h� 1; n;m� 1)

NPmax
1 (h; �n;m) =

max

8>>><
>>>:

N’max(h� 1)

+Smax(� h� 1; n� 1;m)
N’max(� h� 1)

+Smax(h� 1; n� 1;m)

NPmax
2 (h; n;m) =

(
N’max(h� 1) n =m = 0

undefined o:w:

VPmax
1 (h; n; �m) =

max

8>>><
>>>:

Vmax(h� 1)

+NPmax(� h� 1; n;m� 1)

Vmax(� h� 1)

+NPmax(h� 1; n;m� 1)

We think of functions in which overscores are
written over some parameters as entirely differ-
ent functions that have witnessed partial traver-
sals through the cycles corresponding to the over-
scored parameters, beginning at the respective in-
dex nodes of those cycles.

Cycle variables are a local measure of non-
terminal instances in that they do not depend on
the absolute height of the tree — only on a fixed
range of nodes above and below them in the tree.
These makes them more suitable for the itera-
tive computation of yields that we are interested
in. BecauseXmax and Xmin are now multi-
variate functions in general, we must tabulate an
entire table out to some bound in each dimension,
from which we obtain an entire frontier of accept-
able values for the height and each cycle variable.
Again, these can be posed either as interval con-

straints or finite domain constraints.
In the case of grammars over atomic categories,

using a single cycle variable for every distinct cy-
cle is generally not an option. The grammar in-
duced from the local trees of the 35-sentence sec-
tion wsj 0105 of the Penn Treebank II, for ex-
ample, has 49 non-terminals and 258 rules, with
153,026 cycles. Grouping together cycles that dif-
fer only in their rule nodes, we are left with 204
groupings, and in fact, they pass through only
12 category nodes. Yet the category node with
the largest number of incident cycles (NP) would
still require 163 cycle (grouping) variables — too
many to iteratively compute these functions effi-
ciently. Naturally, it would be possible to con-
flate more cycles to obtain cruder but more effi-
cient bounds.

References
G. E. Barton, R. C. Berwick, and E. S. Ristad. 1987.

Computational Complexity and Natural Language.
MIT Press.

M. Daniels and W. D. Meurers. 2002. Improving
the efficiency of parsing with discontinuous con-
stituents. In7th International Workshop on Natural
Language Understanding and Logic Programming
(NLULP).

M. Johnson. 1985. Parsing with discontinuous con-
stituents. InProceedings of the 23rd Annual Meet-
ing of the Association for Computational Linguis-
tics, pages 127–132.

U. Moencke and R. Wilhelm. 1982. Iterative algo-
rithms on grammar graphs. In H. J. Schneider and
H. Goettler, editors,Proceedings of the 8th Confer-
ence on Graphtheoretic Concepts in Computer Sci-
ence (WG 82), pages 177–194. Carl Hanser Verlag.

F. Morawietz. 2000. Chart parsing and constraint
programming. InProceedings of the 18th Inter-
national Conference on Computational Linguistics
(COLING-00), volume 1, pages 551–557.

G. Penn and M. Haji-Abdolhosseini. 2003. Topologi-
cal parsing. InProceedings of the 10th Conference
of the European Chapter of the Association for Com-
putational Linguistics (EACL-03), pages 283–290.

F. C. N. Pereira and D. H. D. Warren. 1983. Parsing
as deduction. InProceedings of 21st Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 137–144.

M. Reape. 1991. Parsing bounded discontinuous con-
stituents: Generalisations of some common algo-
rithms. In M. Reape, editor,Word Order in Ger-
manic and Parsing, pages 41–70. Centre for Cogni-
tive Science, University of Edinburgh.

16

Proceedings of the 3rd Workshop on Constraints and Language Processing (CSLP-06), pages 17–24,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Numbat: Abolishing Privileges when Licensing New Constituents in
Constraint-oriented Parsing

Jean-Philippe Prost
Centre for Language Technology

Macquarie University, Sydney, Australia
andLaboratoire Parole et Langage

Universit́e de Provence, Aix-en-Provence, France
jpprost@ics.mq.edu.au

Abstract

The constraint-oriented approaches to lan-
guage processing step back from the gen-
erative theory and make it possible, in the-
ory, to deal with all types of linguistic re-
lationships (e.g. dependency, linear prece-
dence or immediate dominance) with the
same importance when parsing an input
utterance. Yet in practice, all implemented
constraint-oriented parsing strategies still
need to discriminate between “important”
and “not-so-important” types of relations
during the parsing process.

In this paper we introduce a new
constraint-oriented parsing strategy based
on Property Grammars, which overcomes
this drawback and grants the same impor-
tance to all types of relations.

1 Introduction

In linguistics, the termgradienceis often used to
refer to the notion of acceptability as a gradient,
as opposed to a more classical all-or-none notion.
The research goal of this project is to build an ex-
perimental platform for computing gradience, i.e.
for quantifying the degree of acceptability of an
input utterance. We called this platform Numbat.

In order to be able to quantify such a gradi-
ent of acceptability with noa priori opinion on
the influence played by different types of linguis-
tic relationships, we want to adopt a framework
where no one type of (syntactic) relation (e.g. de-
pendency, immediate dominance, or linear prece-
dence) is preferred over the other ones. Although
a constraint-oriented (CO) paradigm such asProp-
erty Grammars(Blache, 2001) theoretically does
not rely on any preferred relations, we observe that
the parsing strategies implemented so far (Moraw-
ietz and Blache, 2002; Balfourier et al., 2002;
Dahl and Blache, 2004; VanRullen, 2005) do not

account for such a feature of the formalism. The
strategy we have designed overcomes that prob-
lem and allows for constituents to be licensed by
any type of relation. Not only does our approach
maintain a close connection between implementa-
tion and underpinning theory, but it also allows for
the decisions made with respect to gradience to be
better informed. The purpose of the present pa-
per is to present this new parsing strategy, and to
emphasise how it “abolishes the privilege” usually
only granted to a subset of syntactic relationships.

Section 2 presents some background informa-
tion about the CO approaches and briefly intro-
duces the Property Grammars formalism. Section
3 exposes and discusses the parsing strategy im-
plemented in Numbat. Section 4 then draws the
conclusion.

2 Constraint-oriented Approaches

The main feature common to all Constraint-
oriented approaches is that parsing is mod-
elled as a Constraint Satisfaction Problem (CSP).
Maruyama’s Constraint Dependency Grammar
(CDG) (Maruyama, 1990) is the first formalism
to introduce the parsing process as a CSP solver.
Several extensions of CDG have then been pro-
posed (Heinecke et al., 1998; Duchier, 1999; Foth
et al., 2004).

Menzel and colleagues (Heinecke et al., 1998;
Foth et al., 2004) developed a weighted (or
“graded”) version of CDG. Their parsing strate-
gies are explored in the context of robust parsing.
These strategies are based on an over-generation
of candidate solutions. In this approach the CSP is
turned into an optimisation problem, where sub-
optimal solutions are filtered out according to a
function of the weights associated to the violated
constraints, and the notion of well-formedness is
replaced by one of optimality. Indeed, the over-
generation introduces inconsistencies in the con-
straint system, which prevents the use of the con-

17

straint system as a set of well-formedness condi-
tions, since even a well-formed utterance violates
a subset of constraints. Consequently it is not pos-
sible to distinguish an optimal structure of an ill-
formed utterance from an optimal structure of a
well-formed utterance.

Duchier (1999) relies onset constraintsandse-
lection constraints1 to axiomatise syntactic well-
formedness and provides a concurrent constraint
programming account of the parsing process. With
theeXtended Dependency Grammar(XDG) (De-
busmann et al., 2004) the notion of dependency
tree is further extended to “multi-dimensional” de-
pendency graph, where each dimension (e.g.Im-
mediate DominanceandLinear Precedence) is as-
sociated with its own set of well-formedness con-
ditions (calledprinciples). Duchier (2000) sees
dependency parsing as aconfiguration problem,
where given a finite set of components (nodes in
a graph) and a set of constraints specifying how
these components may be connected, the task con-
sists of finding a solution tree.

It seems, to the best of our knowledge, that nei-
ther of these works around XDG attempts to ac-
count for ill-formedness.

The Property Grammars (PG), introduced by
Blache (Blache, 2001; Blache, 2005)2, step back
from Dependency Grammar. Solving the con-
straint system no longer results in a dependency
structure but in a phrase structure, whose granular-
ity may be tailored from a shallow one (i.e. a col-
lection of disconnected components) to a deep one
(i.e. a single hierarchical structure of constituents)
according to application requirements3. This fea-
ture makes the formalism well suited for account-
ing for both ill-formedness and well-formedness,
which is a key requirement for our experimental
platform.

Introducing degrees of acceptability for an ut-
terance does not mean indeed that it should be
done at the expense of well-formedness: we want
our model to account for ill-formedness and yet
to also be able to recognise and acknowledge
when an utterance is well-formed. This require-

1Although they are referred to with the same name by
their respective authors, Duchier’s notion ofselection con-
straint is not to be confused with Dahl’sselection constraints
(Dahl and Blache, 2004). The two notions are significantly
different.

2The Property Grammars were defined on the basis of the
5P formalism (B̀es and Blache, 1999).

3For a discussion regarding PG and parsing with variable
granularity see (VanRullen, 2005).

ment rules out Optimality-theoretic frameworks
as well as the ones based on Maruyama’s CDG.
Note that this is not to say that the task could
not be achieved in a CDG-based framework; sim-
ply at this stage there is no work based on CDG,
which would combine both an account of well-
formedness and of optimality. A CO framework
based on PG seems therefore best-suited for our
purpose. Meanwhile, though different parsing
strategies have been proposed for PG (Moraw-
ietz and Blache, 2002; Balfourier et al., 2002;
Dahl and Blache, 2004; VanRullen, 2005), none
of these strategies implements the possibility af-
forded by the theory to rely onany type of con-
straint in order to license a (possibly ill-formed)
constituent.

We will see in this paper how the parsing strat-
egy implemented in Numbat overcomes this prob-
lem.

2.1 TheProperty Grammars Formalism

2.1.1 Terminology

Construction. In PG a constructioncan be a
lexical item’s Part-of-Speech, a phrase, or top-
level constructions such as, for example, the
Caused-motion or the Subject-auxiliary Inversion
constructions. The notion of construction is sim-
ilar to the one in Construction Grammar (CxG)4,
as in (Goldberg, 1995), where:

Cx is a constructioniff Cx is a form-
meaning pair〈Fi, Si〉 such that some as-
pect of Fi or some aspect ofSi is not
strictly predictable from Cx’s compo-
nent parts or from other previously es-
tablished constructions.

In this paper we only focus on syntax. For us, at
the syntactic level, a construction is defined by a
form, where a form is specified as a list of proper-
ties. When building a traditional phrase structure
(i.e. a hierarchical structure ofconstituents) a con-
struction can be simply seen as a non-terminal.

Property. A property is a constraint, which
models a relationship among constructions. PG
pre-defines several types of properties, which are
specified according to their semantics. Moreover,
the framework allows for new types to be defined.

4Blache (2004) discussed how PG can be used as a formal
framework for CxG.

18

In Numbat, a property type is also called arela-
tion. Section 2.1.2 briefly presents some of the
pre-defined property types and their semantics.

Assignment. In PG anassignmentis a list of
constituents. Let’s consider, for example, the three
constituentsDET, ADJ and N, the following lists
are possible assignments: [DET], [ADJ], [DET,
ADJ], [ADJ, N], [DET, N], [DET, ADJ, N], etc..

2.1.2 Some Pre-defined Property Types

Here are some property types pre-defined in PG.
See (Blache, 2005) for more types and more de-
tailed definitions.

Notation. We note:

• K a set of constructions, with{C, C1, C2} ∈
K;

• C a set of constituents, with{c, c1, c2} ∈ C;

• A an assignment;

• ind a function such thatind(c,A) is the in-
dex ofc in A;

• cx a function such thatcx(c) is the construc-
tion of c;

• P(C1, C2)[c1, c2,A] or (C1 P C2)[c1, c2,A]
the constraint such that the relationP param-
etered with(C1, C2), applies to[c1, c2,A].

Linear Precedence (≺).
By definition,(C1 ≺ C2)[c1, c2,A] holds iff















cx(c1) = C1, and
cx(c2) = C2, and
{c1, c2} ∈ A, and
ind(c1,A) < ind(c2,A)

Exclusion (<).
By definition,(C1 < C2)[c1, c2,A] holds iff







cx(c1) = C1, and
cx(c2) = C2, and
{c1, c2} ∩ A 6= {c1, c2}

Uniqueness (Uniq).
By definition,Uniq(C)[c,A] holds iff







cx(c) = C, and
c ∈ A, and
∀c′ ∈ A\{c}, cx(c′) 6= C

2.2 Related Problems

CO parsing with PG is an intersection of differ-
ent classes of constraint-related problems, each of
which is listed below.

Configuration problem. Given a set of com-
ponents and a set of constraints specifying how
these components can be connected, a configu-
ration problem consists of finding a solution tree
which connects the components together. Deep
parsing with PG is a configuration problem where
the components are constituents, and the resulting
structure is a phrase structure. By extension, a so-
lution to such a problem is called aconfiguration.
A configuration problem can be modelled with a
(static) CSP.

Dynamic CSP. In our case the problem is actu-
ally dynamic, in that the set of constraints to be
solved evolves by the addition of new constraints.
As we will see it later new constituents are inferred
during the parsing process, and subsequently new
constraints are dynamically added to the system.
When dealing with deep parsing, i.e. with well-
formedness only, the problem can be tackled as
a Dynamic CSP, and solving techniques such as
Local Search(Verfaillie and Schiex, 1994) can be
applied.

Optimisation problem. In order to account for
ill-formedness as well as well-formedness, we
need to allow constraint relaxation, which turns
the problem into an optimisation one. The ex-
pected outcome is thus an optimal configuration
with respect to some valuation function. Should
the input be well-formed, no constraints are re-
laxed and the expected outcome is a full parse.
Should the input be ill-formed, constraints are re-
laxed and the expected outcome is either an opti-
mal full parse or a set of (optimal) partial parses.

3 Numbat Architecture

3.1 The Parsing Strategy in Numbat

Relying on a design pattern used in various optimi-
sation techniques, such asdynamic programming,
the top-level strategy adopted in Numbat consists
in three main steps:

1. splitting the problem into overlapping sub-
problems;

2. solving the sub-problems—or building opti-
mal sub-solutions;

19

3. building an optimal global solution, using the
sub-solutions.

More specifically, the strategy adopted pro-
ceeds by successivegenerate-and-test: the possi-
ble models to local systems are generated, then
their satisfiability is tested against the grammar.
The partial solutions are re-injected in the pro-
cess dynamically, and the basic process is iterated
again. Note that the generate-and-test method is
not compulsory and is only chosen here because
it allows us to conveniently control and then filter
the assignments.

Given an input utterance, the parsing process is
made up of a re-iteration of the basic following
steps:

1. Building Site. Build a set of constituents;

2. Assignation. Build all the possible assign-
ments, i.e. all the possible combinations of
one or more constituents;

3. Checkpoint Alpha. Filter out illegal assign-
ments;

4. Appropriation . For every assignment, iden-
tify and build all the relevant properties
among its elements, which leaves us with a
property store, i.e. a constraint system;

5. Checkpoint Bravo. Filter out illegal assign-
ments and irrelevant properties;

6. Satisfaction. Solve the constraint system;

7. Formation. Identify forms of construction,
i.e. subsets of properties from the property
store and nominate the corresponding candi-
date constructions;

8. Polling booth. Decide which of the candi-
date constructions are licensed and carried
over to the next iteration;

The process stops when no new constituent can be
built.

Each of these steps is defined in the following
section.

3.1.1 Building Site

During the first iteration, this phase builds one
constituent for each Part-of-Speech (POS) associ-
ated with an input word. From the second itera-
tion onwards, new constituents are built provided
the candidate assignments output by the previous
round.

3.1.2 Assignation

From one iteration to the next new assignments
are built, involving at least one of the new con-
stituents. These constituents result from the pre-
vious iteration. Notice that the amount of new as-
signments created by each iteration grows expo-
nentially with the amount of constituents (the ’old’
ones and the new ones). Fortunately, the next step
will filter out a large proportion of them.

This phase of assignation is essential to the pro-
cess, and makes Numbat different from any other
parsing strategy for PG. The difference will be
made clear in the Satisfaction phase.

3.1.3 Checkpoint Alpha

In Numbat we use afiltering profile to specify
which combination of heuristics applies during the
parsing process. This feature proves to be very
useful when performing experiments, as it allows
an incremental approach, in order to determine the
relative importance of each of the criteria on gra-
dience by turning on and off one or other heuristic.

The heuristics play different roles. They are pri-
marily used to prune the search space as early as
possible in the process. Meanwhile, most of them
capture language specific aspects (e.g. Contigu-
ity, see below). These language specific heuris-
tics are already present in previous works on PG in
one form or another. We are working in the same
framework and accept these restrictions, which
might be relaxed by future work on the formal
side.

During Checkpoint Alpha the following heuris-
tics may apply.

Heuristic 1 (Distinct Constituents) An as-
signment may contain no pairwise intersecting
constituents.

That is, any two constituents may not have any
constituent in common. For example, the con-
stituents{DET1, ADJ2} and{ADJ2, NOUN3}may
not belong to the same assignment, since they have
one constituent in common.

Heuristic 2 (Contiguity) An assignment is a set
of contiguous elements.

This heuristic rules out crossing-over elements.
Although this heuristic has little consequence
when dealing with languages such as French or
English, it may have to be turned off for languages
with cross-serial dependencies such as Dutch. But
if turned off, an additional problem then occurs

20

that the semantics of pre-defined property types
must be re-defined. The linear precedence, for in-
stance, would need to account for the order be-
tween two crossing-over phrases, which is not the
case in the current definition. On the other hand,
notice that long distance dependencies arenot
ruled out by heuristic 2, since nested constituents
are still legal.

3.1.4 Appropriation

This step has to do with the gathering of all the
properties relevant to every assignment from the
grammar. This operation is made easier by pre-
processing the grammar, which is done at an ini-
tialisation step. During this preliminary phase, a
lookup table is created for the grammar, where all
the properties are indexed by their operands. Ev-
ery property is also linked directly to the construc-
tions for which it participates in the definition—
i.e. the constructions for which the property is
a member of the form. This table is actually a
hash table, where the keys are the constructions
on which the properties hold. For example, the
property (Det≺ Noun) is indexed by the couple
of constructions (Det, Noun). And the property
({Pronoun, Adv} < V) is indexed by the triplets
of constructions (Pronoun, Adv, V). Thus, given
an assignment, i.e. a set of constituents, all we
have to do here is to retrieve all the relevant prop-
erties from the lookup table, using all the (rele-
vant) combinations of constituents as keys.

3.1.5 Checkpoint Bravo

Filters apply here, which aim to prune again the
search space. The following heuristics may apply.

Heuristic 3 (Full Coverage) Every element of an
assignment must be involved in at least one con-
straint. That is, for each element in an assignment
there must be at least one constraint defined over
this element.

Example 1 Consider the assignmentA =
〈Det, N, V 〉, and the grammar made up of the fol-
lowing properties:

VP ::= {V ≺ NP} (1)

NP ::= {Uniq(N), Det≺ N, N ≺ Adj} (2)

S ::= {NP≺ VP} (3)

According to heuristic 3A is ruled out, since theV
element is notcoveredby any constraints, whether
we build an NP or a VP.

Notice that this heuristic is semantically equiv-
alent to theConstituencyproperty present in early
versions of PG5. TheConstituencyproperty used
to specify which types of constituent (i.e. con-
structions) were legal ones (for a construction).
Such a constraint is unnecessary since the infor-
mation can be retrieved by simply listing all the
types of constituents used in the definitions of
properties. In example 1 for instance, the set
of legal constituents for theNP construction is
[Det, N, Adj].

A main reason for dealing with constituency as
a filter rather than as a constraint is to improve ef-
ficiency by reducing the amount of constraints in
the system. Indeed, a filter aims to rule out con-
straints, which are subsequently removed from the
constraint system. If dealt with as a constraint it-
self, Constituency would only make the constraint
system more complex.

Heuristic 3 raises the issue of ruling out assign-
ments with “free” constituents, i.e. constituents
which are not connected to the rest of the assign-
ment. Such a situation may occur, for example,
in the case of an unknown word, either because
it is absent from the lexicon, or misspelled. We
choose to leave it up to the grammar writer to de-
sign their ownad hocsolutions regarding how to
handle such cases. It may be done, for instance,
through the definition of a “wildcard construc-
tion”, and perhaps also a “wildcard property type”,
which will be used appropriately in the grammar.

3.1.6 Satisfaction

At this stage, only legal assignments and rele-
vant properties are kept in the system. All the re-
quired information for evaluating the properties is
thus available and all we have to do now is to solve
the constraint system.

The solver we use is implemented in Constraint
Handling Rules (CHR) (Fr̈uhwirth, 1994). Un-
like other CHR implementations of PG (Moraw-
ietz and Blache, 2002; Dahl and Blache, 2004)
where the semantics of the property types are en-
coded in the handlers6—and therefore each type
of property requires a different handler—, the ap-
proach we have adopted allows us to externalise
the semantics and to generalise the properties eval-
uation with one single handler. The algorithm un-

5TheConstituencyproperty is discarded in the version of
PG underpinning Numbat.

6A CHR handler is a rule of the general form(A => B
| C), which can be read “if A then (if B then C)”

21

derlying this handler can be expressed as follows:
for each (list of n constituents, assignment, property)

if (the list of nconstituentsand theassignmentmatch the

property’s ones)

then

if (propertyis satisfied)

then (tick propertyas beingSATISFIED)

else(tick propertyas beingVIOLATED)

The CHR handler takes the following form:

listOfConstituents(Ccs) &&
assignment(Asg) &&
property(Pp) ==>
Pp.isConsistentWith(Asg,Ccs) |

(Pp.isSatisfied() ->
sat(Pp) ; unSat(Pp)).

3.1.7 Formation

This phase is concerned with identifying the
constructions in the grammar which can be trig-
gered (i.e. licensed) by the properties present in
the property store. A construction istriggeredby
any of the properties which are used to define this
construction. This task can be performed easily
by accessing them directly in the lookup table (see
section 3.1.4), using a property’s operands as the
key. The constructions which are triggered are
called target constructions. We then build a con-
stituent for each of these target construction. Such
a constituent is called acandidate constituent.

This phase basically builds constituent struc-
tures. During the next iteration these candidates
may be used in turn as constituents. The process
thus accounts for recursive structures as well as
non-recursive ones. Meanwhile, it is interesting to
emphasise that building such a constituent struc-
ture is not necessary when parsing with PG. We
could, for instance, deal with the whole sentence
at once as a sequence of word order constraints.
This way no constituent structure would be needed
to license infinite sets of strings. In this case, the
efficiency of such a process is something that has
been worked on extensively within the CSP field.
What we are contributing is merely a representa-
tion and translation to CSP, which allows us to
take advantage of these efficiencies that decades
of other work have produced.

Monotonic and Non-monotonic Constraints.
The notions ofSelection Constraintin (Dahl and
Blache, 2004) and ofnon-Lacunar Constraint
in (VanRullen, 2005) are equivalent and denote

a class of constraint types, whose semantics is
monotonic, in that their satisfiability does not
change when new elements are added to the as-
signment. Constraint types such as Linear Prece-
dence or Obligation, for example, are monotonic.
On the other hand the constraintUniq(C)[c,A]
(see 2.1.2), for example, is non-monotonic: if the
contextual assignmentA grows—i.e. if new con-
stituents are added to it—the constraint needs to
be re-evaluated. In parsing strategies where the as-
signments are built dynamically by successive ad-
ditions of new constituents, the evaluation of the
relevant constraints is performed on the fly, which
means that the non-monotonic constraints need to
be re-evaluated every time the assignment grows.
This problem is tackled in different ways, accord-
ing to implementation. But we observe that in all
cases, the decision to trigger new candidate con-
stituents relies only on the evaluation of the mono-
tonic constraints. The decision process usually
simply ignores the non-monotonic ones. Numbat,
by fixing the assignments prior to evaluating the
local constraint systems, includes both the mono-
tonic and the non-monotonic constraints in the li-
censing process (i.e. in the Formation phase).

3.1.8 Polling Booth

This phase is concerned with the election pro-
cess, which leads to choosing the candidates who
will make it to the next iteration.

The following heuristics may apply.

Heuristic 4 (Minimum Satisfaction) An assign-
ment is valid only if at least one constraint holds
on any of its constituents.

Notice that in all other implementations of PG this
heuristic is much more restrictive and requires that
amonotonicconstraint must hold.

Heuristic 5 (Full Input Span) A valid (partial or
final) solution to the parsing problem is either a
single constituent which spans exactly the input
utterance, or a combination of constituents (i.e.
a combination of partial parses) which spans ex-
actly the input utterance.

In theory, we want the Polling Booth to build all
the candidate constituents we have identified, and
re-inject them in the system for new iterations. In
practice, different strategies may apply in order to
prune the search space, such as strategies based on
the use of a ranking function. In our case, every it-
eration of the parsing process only propagates one

22

valid combination of constituents to the next iter-
ation (e.g. the best one according to a valuation
function). Somehow such a strategy corresponds
to always providing the main process with a “dis-
ambiguated” set of input constituents from one it-
eration to another. This heuristic may also be used
as a termination rule.

A question then arises regarding the relaxation
policy: Do all the constraint types carry same im-
portance with respect to relaxation? This ques-
tion addresses the relative importance of differ-
ent constraint types with respect to acceptability.
Does, for instance, the violation of a constraint
of Linear Precedence between a Determiner and
a Noun in a Noun Phrase have the same impact
on the overall acceptability of the Noun Phrase
than the violation of Uniqueness of the Noun (still
within a Noun Phrase)? From a linguistic point of
view, the answer to that question is not straight-
forward and requires number of empirical studies.
Some works have been carried out (Gibson, 2000;
Keller, 2000), which aim to provide elements of
answer in very targeted syntactic contexts.

The impact that the relaxation of different con-
straint types has on acceptability should not be bi-
ased by a particular parsing strategy. Thus, the
framework provides the linguist (and the grammar
writer) with maximum flexibility when it comes to
decide the cost of relaxing different types of con-
straint on acceptability, sinceany typemay be re-
laxed. Intuitively, one can clearly relax (in French)
a constraint of Agreement in gender between de-
terminer and noun; on the other hand one could
not as easily relax constraints of type Obligation,
which are often used to specify heads. A com-
plete breakdown of constraints into relaxable and
non-relaxable is future work. But at the end, the
parser just produces sets of satisfied and violated
constraints, regardless of how important they are.
There will then be a separate process for predict-
ing gradience, where the relative importance of
particular constraints in determining acceptability
will be decided experimentally.

4 Conclusion

In this paper we have presented the constraint-
oriented parsing strategy based on Property Gram-
mars, that we have developed as part of the Num-
bat platform. We have also demonstrated that,
unlike other existing parsers for PG, this strategy
does not privilege any particular type of property

when licensing a new constituent. By doing so,
this parser contributes to maintain a close connec-
tion with the underpinning theory. In the context
of robust parsing, where decisions must be made
on the basis of a balance between satisfied and vi-
olated properties, it also allows the decision pro-
cess to be better informed by providing it with
more grounding linguistic material concerning the
input.

For the same reason, this contribution is also
fairly valuable in the context of our prime research
goal, which is concerned with quantifying accept-
ability.

In further works we plan to evaluate the perfor-
mance of the parser. We also plan to use Numbat
to run series of experiments on gradience, in order
to design and test a suitable valuation function to
be used to assess the degree of acceptability of an
input utterance.

References

Jean-Marie Balfourier, Philippe Blache, and Tris-
tan Van Rullen. 2002. From Shallow to Deep Pars-
ing Using Constraint Satisfaction. InProc. of the
6th Int’l Conference on Computational Linguistics
(COLING 2002).

Gabriel B̀es and Philippe Blache. 1999. Propriét́es et
analyse d’un langage. InTALN.

Philippe Blache. 2001.Les Grammaires de Propriét́es
: des contraintes pour le traitement automatique des
langues naturelles. Herm̀es Sciences.

Philippe Blache. 2004. Constraints: an operational
framework for constructions grammars. InICCG-
04, pages 25–26.

Philippe Blache. 2005. Property Grammars: A fully
constraint-based theory. In Henning Christiansen,
Peter Rossen Skadhauge, and Jorgen Villadsen, ed-
itors, Constraint Solving and Language Processing,
volume 3438 ofLNAI. Springer.

Veronica Dahl and Philippe Blache. 2004. Directly
executable constraint based grammars. InJournees
Francophones de Programmation en Logique avec
Contraintes, pages 149–166, Angers, France.

Ralph Debusmann, Denys Duchier, and Geert-Jan M.
Kruijff. 2004. Extensible Dependency Grammar: A
New Methodology. InProceedings of the 7th Inter-
national Conference on Computational Linguistics
(COLING 2004).

Denys Duchier. 1999. Axiomatizing Dependency
Parsing Using Set Constraints. InProceedings 6th
Meeting on the Mathematics of Language, Orlando,
FL.

23

Denys Duchier. 2000. Configuration Of Labeled Trees
Under Lexicalized Constraints And Principles. To
appear in the Journal of Language and Computation,
December.

Kilian Foth, Wolfgang Menzel, and Ingo Schrd̈er.
2004. Robust Parsing with Weighted Constraints.
Natural Language Engineerings.

Thom Fr̈uhwirth. 1994. Theory and Practice of Con-
straint Handling Rules.The Journal of Logic Pro-
gramming, 37((1-3)), October. Special Issue on
Constraint Logic Programming.

Edward Gibson. 2000. The Dependency Locality
Theory: A Distance-Based Theory of Linguistic
Complexity. In Alec Marantz, Yasushi Miyashita,
and Wayne ONeil, editors,Image, Language, Brain,
pages 95–126. Cambridge, Mass., MIT Press.

Adele Goldberg. 1995. Constructions: A Con-
struction Grammar Approach to Argument Struc-
ture. Chicago University Press.

Johannes Heinecke, Jürgen Kunze, Wolfgang Menzel,
and Ingo Shr̈oder. 1998. Eliminative Parsing with
Graded Constraints. InProc. 7th CoLing conf., 36th
Annual Meeting of the ACL, volume Coling–ACL
’98, pages pp. 526–530, Montreal, Canada.

Frank Keller. 2000.Gradience in Grammar - Exper-
imental and Computational Aspects of Degrees of
Grammaticality. Ph.D. thesis, University of Edin-
burgh.

Hiroshi Maruyama. 1990. Structural Disambiguation
with Constraint Propagation. InProceedings 28th
Annual Meeting of the ACL, pages pp. 31–38, Pit-
tburgh, PA.

Frank Morawietz and Philippe Blache. 2002. Pars-
ing natural languages with chr. Under consideration
for publication in Theory and Practice of Logic Pro-
gramming.

Tristan VanRullen. 2005.Vers une analyse syntaxique
à granularit́e variable. Ph.D. thesis, Université de
Provence, Informatique.

Gérard Verfaillie and Thomas Schiex. 1994. Solution
reuse in dynamic CSPs. InAAAI ’94: Proc. of the
twelfth national conf. on AI (vol. 1), pages 307–312,
Menlo Park, CA, USA. American Ass. for AI.

24

Proceedings of the 3rd Workshop on Constraints and Language Processing (CSLP-06), pages 25–32,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Pragmatic Constraints on Semantic Presupposition

Yafa Al-Raheb
National Centre for Language Technology

School of Computing
Dublin City University, Ireland
yafa.alraheb@gmail.com

Abstract

The literature investigating the notion
of presupposition in Discourse Represen-
tation Theory (DRT) has mainly been
dubbed as being semantic (Simons 2003).
This paper investigates the linguistic ap-
plication of pragmatic-based constraints to
the ‘semantic’ notion of presupposition in
DRT. By applying pragmatic-based con-
straints to presuppositional phenomenon,
we aim to defend DRT against the accu-
sation that DRT’s interpretation of presup-
positional phenomenon is essentially ‘se-
mantic’ and push this interpretation fur-
ther towards the pragmatic side of the se-
mantic/pragmatic interface.1

1 Introduction

Devising an appropriate theory of presupposition
has been one of the main issues in semantics, prag-
matics and most recently computational linguis-
tics. Indeed, many theorists have argued exten-
sively about the definition that captures the mean-
ing of presupposition and whether presuppositions
are a property of the utterance or of the speaker.
Developments in dynamic semantics, as opposed
to static semantics, resulting in DRT, have led
to a framework suitable for the representation of
linguistic phenomenon. Some of DRT’s princi-
pal concerns are with finding the right truth con-
ditions and interpretation for referential expres-
sions, specifically anaphora. This is relevant for
further investigation of ‘pragmatic’ presupposition
because it has in fact been proposed by van der

1I gratefully acknowledge support from Science Founda-
tion Ireland grant 04/IN/I527.

Sandt and Geurts (1991) that it is anaphora that
lies at the basis of presupposition.

However, Simons (2003) has recently noted
some pragmatic limitations in the present state of
DRT. She refers in the following quotation to ‘dy-
namic semantics’, the field taken to include DRT.

Dynamic semantics does not attempt
to understand presupposition and pre-
suppositional constraints in terms of
the speaker’s beliefs and intentions, or
to root presuppositional constraints in
terms of the broad goals of communica-
tors (Simons 2003: 27).

Indeed, Simons concludes that DRT is a the-
ory of semantic and not pragmatic presupposition
(2003). The criticism that DRT is only semantic
is not wholly justified. While DRT stems from
the need for appropriate semantic representation
of discourse, DRT does recognize the importance
of context in representing referents in discourse,
which is generally taken to mark a pragmatic per-
spective on presupposition. Additionally, theories
within DRT, such as the Binding Theory (Geurts
1999), have attempted to make DRT more prag-
matic; in particular, Presupposition as Anaphora
Theory’s construction process of presupposition
(van der Sandt and Geurts 1991). However, while
this paper aims to show that DRT is not entirely
devoid of pragmatics, it argues that DRT is in need
of a more pragmatic treatment of presupposition,
which (a) pays more attention to the beliefs and
intentions of the speaker and the hearer and their
relation to presupposition and (b) makes presup-
positional constraints more precise. Further, other
scholars have criticized DRT for being essentially
truthconditional. Werth, for example, claims that
DRT is essentially only about truthconditionality:

25

[DRT’s] goal is truth-conditionality and
its models are minimal worlds inhabited
by predicates and variables... it does not
model human understanding: there is no
place in it for participant roles, setting,
background knowledge, purposes, even
inferences (Werth 1999: 65).

Again, this criticism is not entirely just. To address
the aforementioned pragmatic limitations of DRT,
the aim of this paper is to address the problem
of insightfully capturing pragmatic constraints on
presuppositional phenomenon within the frame-
work of DRT. To achieve this, a pragmatically-
constrained definition of presupposition is at-
tempted. This is followed by setting some prag-
matic constraints on agents’ conception of presup-
positional phrases based on the agents’ roles in
conversation. An example of how these pragmatic
constraints operate in DRT is then examined. Fur-
thermore, an overall structure computationally en-
compassing these pragmatic constraints in DRT is
described.

2 Pragmatic-based Presupposition

In linguistics the treatment of presupposition has
generally been split between two camps, seman-
tics and pragmatics. Karttunen (1973) maintains
that the semantic perspective on presupposition
sees presupposition as emanating from the sen-
tence, and the pragmatic perspective as emanat-
ing from the speaker. Levinson argues that pre-
supposition cannot be viewed as semantic in the
narrow sense (based on formal logic and truth con-
ditionality), but rather as dependent on context
and ‘the actual linguistic structure of sentences’
(Levinson 1983: 167). Theories defining presup-
position within pragmatics depend mainly on mu-
tual knowledge (or common ground).

Within computational linguistics the treatment
of presupposition falls mainly within dynamic se-
mantics, within which DRT has developed. In the
broadest terms presupposition, whether in linguis-
tics or philosophy, has been viewed as a relation
between sentences or propositions, where the pre-
supposed proposition is not in focus in the presup-
position sentence. DRT, and dynamic semantics in
general, is precisely concerned with such relations
– i.e. with the relations between an utterance and
previous utterances in the discourse.

Given these varying definitions as to what con-
stitutes presupposition, before attempting to in-

troduce pragmatic constraints to presupposition in
DRT, we must first explain what pragmatic presup-
position, as used in this paper, constitutes. Two
important notions come into question when as-
sessing what constitutes presupposition, namely,
the notion of givenness and the relationship be-
tween the beliefs (or the cognitive states) of the
agents involved in a conversation.

2.1 Presupposition and Givenness
While presuppositions can be defined as that part
of the utterance that is taken to be ‘given’ (Lam-
brecht 1994), the notion of ‘given’ needs clari-
fying. ‘Given’ means known information, infor-
mation that the speaker regards as known to both
speaker and hearer - information directly relating
to the topic of the dialogue or as part of gen-
eral background knowledge assumptions about the
world. The presupposition in this sense is a re-
flection of the speaker’s assumptions about the
hearer’s state of mind, i.e. the speaker assumes the
hearer already knows this information (Lambrecht
1994). An alternate meaning of ‘given’ is when
the speaker knows that the information the presup-
position provides is, in fact, new to the hearer. In
this case, the speaker introduces the new informa-
tion ‘as if’ it were given, in order to indicate that
the presupposed information is not the focus of
the speaker’s attention. Unlike Stalnaker’s under-
standing of presupposition (Stalnaker 2002), this
understanding of ‘given’ to include information
new to the hearer means that the presupposition
introduced is not necessarily part of what is often
termed the ‘common ground’.

Thus, we might think in terms of a speaker
‘packaging’ information as a presupposition
(speaker presupposition). In this approach, the
speaker has the choice of picking information she
deems to be known to the hearer or information
that she deems to be new to the hearer, knowing
that to do so, she (the speaker) is communicating
that the presupposition is not the focus of her ut-
terance, but rather she would like the hearer to di-
rect his attention to the new information provided
by the rest of the utterance. For new, presupposed
information to pass as given, the speaker must be
aware that introducing an ‘out of the ordinary’ or
‘remarkable’ presupposition will cause problems.
For instance, example (1) is less likely to cause
problems than example (2) when the hearer knows
that the speaker lives in the city centre.

26

(1) The car across the street from my house
belongs to my neighbour.

(2) The small jet across the street from my
house belongs to my neighbour,

2.2 Presupposition and Agents’ Cognitive
States

To define pragmatic presupposition within DRT,
presupposition should be understood to be a prop-
erty of the agent. Lambrecht (1994) understands
pragmatic presupposition as an interest in the as-
sumptions speakers make about hearers. There are
two types of agent presupposition, speaker pre-
supposition and hearer presupposition. This is
different from semantic presupposition, i.e. sen-
tence presupposition. Agent presupposition dif-
fers from sentence presupposition in that the latter
stems from sentence meaning, whereas the former
attaches itself to the beliefs of the speaker and her
intentions.

In essence, the effect of presupposition is to give
insights about the speaker’s beliefs as well as the
speaker’s beliefs about the hearer’s beliefs. In this
sense, the dynamic semantic notion of ‘taken for
granted’ means that the speaker believes the pre-
supposition to be either known information or in-
formation that is not the desired focus of atten-
tion. When a speaker introduces a presupposition
in her utterance, she is not primarily concerned
with the information the presupposition provides,
but rather in the new information, the ‘assertion’
part, the utterance communicates.

Presupposition is related to the beliefs of the
speaker. Speaker belief leads to presupposi-
tion, which indicates the beliefs of the speaker to
the hearer. Presupposition is a reflection of the
speaker’s state of mind. What speakers presup-
pose gives an indication as to what speakers be-
lieve or accept (weakly believe) and what they be-
lieve hearers believe or accept within the context
of a dialogue (cf. Al-Raheb 2005). This is stronger
than what is generally conceded in the relevant lit-
erature (Geurts 1999).

While this view of pragmatic presupposition
shares Stalnaker’s (2002) view concerning the im-
portance of beliefs and context to understanding
linguistic phenomena, the present view of presup-
position has a different understanding of the rela-
tionship between belief and presupposition. Stal-
naker sees beliefs, not in terms of the speaker, but
rather in terms of the vague term the ‘common

ground’ (cf. Al-Raheb 2005). ‘[T]o believe p to
be common ground is to presuppose in Stalnaker’s
sense’ as Simons (2003: 19) puts it. The view pre-
sented here takes the position that presuppositions
reflect the speaker’s beliefs, regardless of whether
the beliefs are part of common ground or not.

3 Pragmatic Constraints

Having defined what is meant by pragmatic pre-
supposition, we now move to discuss introducing
pragmatic constraints on the phenomenon of pre-
supposition in DRT. In order to enhance the prag-
matic representation of presuppositional phenom-
enon in DRT, Gricean maxims need to be formu-
lated in terms of pragmatic constraints on gener-
ating presuppositional utterances (speaker’s per-
spective) and interpreting them (hearer’s perspec-
tive). The maxims are reformulated in terms of
the cognitive relationship between the speaker and
the hearer, producing constraints on presupposi-
tion which are necessary for successful communi-
cation.

Following Grice’s Cooperative Principle (Grice
1989), by adhering to the maxims, dialogue agents
are being cooperative and not attempting to de-
ceive or lie to one another (Grice 1989). The inten-
tion to communicate requires the speaker to assess
her beliefs concerning the hearer’s beliefs. This
way of thinking about dialogue communication
leads to the formulation of pragmatic constraints.
It is proposed that these constraints broadly cor-
respond to Grice’s quantity and quality maxims.
Section 4 describes an implementation of the prag-
matic constraints introduced in this section.

To make her contribution informative (maxim
of quantity), the speaker needs to follow the first
pragmatic constraint placed on making an asser-
tion (BCA1): to express an assertion the speaker
needs to believe that the hearer does not hold the
assertion, A, as a belief. In other words, the
speaker believes the hearer does not hold the belief
that A. This is similar to van der Sandt’s (1992)
informativity constraint, although his informativ-
ity constraint is not directly linked to beliefs. This
pragmatic constraint is illustrated in the following
example:

(3) Speaker: Mia likes dancing.
Hearer: Yeah I know.

In example (3) the hearer indicates previous
knowledge of A, which means that either the

27

speaker is not following BCA1, or that the speaker
was not aware that the hearer believes A. With
each new utterance, the speaker must be aware of
the BCA1.

The second pragmatic constraint placed on as-
sertion is BCA2. Following from our assumptions
concerning Grice’s quality maxim, for a speaker
to express an assertion, the speaker must herself
believe or accept that assertion. That is to say, be-
ing cooperative, to express A, the speaker must be-
lieve or accept that A.

Similarly, to introduce a presupposition, the
speaker must include the presupposition in her
beliefs or acceptance space (quality maxim),
(BCP1). If the speaker is initiating a topic, the
hearer has more grounds to conclude the speaker
believes P (BCP1a). At the same time, the speaker
must also be aware that when introducing P, the
speaker is communicating that the speaker be-
lieves P. That is to say, if the speaker initiates the
topic of P, the hearer may assume that the speaker
believes P. However, when it is the hearer’s turn to
become the speaker, and he refers to the presup-
position, P, introduced by the speaker, the speaker,
who introduced P, may assume a weaker belief on
the part of the hearer, namely that the hearer ac-
cepts P. Thus, presuppositions are built on the cur-
rent context, which is built upon the union of be-
liefs and acceptance spaces of an agent. In other
words, if the hearer refers to a presupposition em-
ployed previously by the speaker, the hearer (who
now becomes the speaker) at least accepts P (i.e.
holds P in his acceptance space) (BCP2).

For example,

(4) S1: I must buy Vincent’s wife a birthday
present.
H1: I didn’t know Vincent was married.
S2: Yes, he is. His wife likes chocolate.
H2: She may also like flowers.
S3: I’ll buy her chocolates.

The speaker initiates the presupposition (in exam-
ple (4) it is new information to the hearer) that Vin-
cent has a wife. According to BCP1, the hearer
may safely assume and indeed add to his beliefs
about the speaker’s beliefs that the speaker be-
lieves P (Vincent has a wife). However, when the
hearer comes to refer to P (Vincent’s wife), the
speaker does not necessarily infer that the hearer
believes Vincent is married, but rather that the
hearer accepts P. Introducing a topic for the pre-
supposition allows the hearer to add more strength

to her representation of the speaker’s beliefs, i.e.
to establish belief rather than acceptance. This
would be more evident in a context where the
speaker is attempting to persuade the hearer to do
something. For information dialogues, where the
information provider has the authority of possess-
ing the answers to the information seeker’s ques-
tions, the beliefs of the information provider may
attain a stronger position than they would in other
types of social contexts (cf. Al-Raheb 2005). The
information seeker is less likely to challenge or
evaluate the strength of belief of the information
provider. If we contrast example (4) with example
(5), the strength of beliefs are much higher, we can
assume, than for when the hearer is not required to
perform any action.

(5) S1: You should buy Vincent’s wife a
birthday present.
H1: I didn’t know Vincent was married.
S2: Yes he is. His wife likes chocolate.
H2: She may also like flowers.
S3: But she prefers chocolate.
H3: I’ll get her some chocolate.

In example (4), where the hearer was not re-
quired to perform any action, it is safer for the
speaker to assume that the hearer accepts P as the
hearer is not committing himself to doing any task,
than to assume the stronger case, i.e. the hearer
believes P. However, in example (5) where the
hearer agrees to buying Vincent’s wife a present in
H3 (that is the hearer commits to perform an ac-
tion for Vincent’s wife), the speaker will conclude
that the hearer believes the presupposed proposi-
tion and adds this to the speaker’s representation
of the hearer’s beliefs. In other words, when the
hearer makes P, in H3, the speaker concludes that
the hearer believes P and adds this to the speaker’s
representation, or beliefs set, of the hearer’s be-
liefs. Thus, someone getting someone else’s com-
mitment to do something implies greater strength
of belief about a presupposition which affects that
commitment.

Allowing the hearer to assume weaker belief
brings us back to Simons’ (2003) suggestion of
modifying Stalnaker’s understanding of presuppo-
sition to become what she terms the ‘disposition
of presupposition’: speakers ‘act as if’ they take
the presupposition for granted. Simons (2003) ar-
gues that speakers do not need to believe the pre-
suppositions they use. With acceptance, as un-
derstood by the view of pragmatic presupposition

28

presented in this paper, speakers do not have to
hold the strong belief P. But, at the same time,
to express P, speakers should not hold the belief
that P is false. That is, being cooperative neces-
sitates that when the speaker utters P, the speaker
does not hold the belief that ¬ P. Speakers may
indicate stronger belief. However, if there is no
such indication (e.g. ‘Definitely’, or ‘I couldn’t
agree more’), hearers may conclude that speakers
at least hold the presupposition in their acceptance
space. Speakers may later allow the hearer to con-
clude that they hold greater strength of belief than
at first assumed.

4 Implementing Pragmatic Constraints

The following set of operations implement the
pragmatic constraints on presupposition and asser-
tion set out in section 3, namely BCA1, BCA2,
BCP1, and BCP2.2 We begin, firstly, by show-
ing how the pragmatic constraint operations are
implemented and by demonstrating how the code
works on linear DRSs (cf. Al-Raheb 2005). Sec-
ondly, we demonstrate how the constraints work
on a real example by passing an example dialogue
through the implemented pragmatic constraints for
both the speaker and the hearer.

4.1 Implementation

The first pragmatic constraint on assertion (BCA1)
is represented by beliefConstraintA1. It checks
that a condition is not in the hearer’s Belief DRS
nor inside the hearer’s Acceptance DRS in a
Speaker’s Belief or Acceptance DRS. Agent’s Be-
lief DRSs represent stronger beliefs they hold and
stronger beliefs they have about other agents in di-
alogue, whereas Acceptance DRSs represent their
weaker beliefs about the dialogue and about the
weaker beliefs held by other agents in dialogue (cf.
Al-Raheb 2005). When a condition is not found in
either embedded DRS, it succeeds.

The second pragmatic constraint on assertion
(BCA2) is represented by beliefConstraintA2,
which checks if a condition is either in the
speaker’s Belief or Acceptance DRS. The oper-
ation succeeds once a match is found.3 BCP1

2The implementation outlined in this section demon-
strates how pragmatic constraints on presupposition can be
implemented, but does not describe the entire architecture of
checking that these constraints are adhered to in processing
an entire dialogue.

3These pragmatic constraints on assertion are not demon-
strated as the focus of this paper is presupposition.

drs1:drs([x, z],
[walter(x),
vincent(z),
attitude(i, ‘BEL’, drs2),
drs2:drs([],

[attitude(you, ‘BEL’, drs3),
drs3:drs([],

[])]),
attitude(i, ‘ACCEPT’, drs4),
drs4:drs([],

[c1: dancer(z),
attitude(you, ‘ACCEPT’, drs5),
drs5:drs([],

[])])]).

becomes:

drs1:drs([x, z],
[walter(x),
vincent(z),
attitude(i, ‘BEL’, drs2),
drs2:drs([],

[attitude(you, ‘BEL’, drs3),
drs3:drs([],

[b1: singer(x)])]),
attitude(i, ‘ACCEPT’, drs4),
drs4:drs([],

[c1: dancer(z),
attitude(you, ‘ACCEPT’, drs5),
drs5:drs([],

[])])]).

Figure 1: Hearer BCP1

has been subdivided into speaker and hearer.
The speaker side, beliefConstraintSpeakerP1
checks if a condition is a member of the speaker’s
belief or acceptance DRS.

For the hearer, beliefConstraintHearerP1
checks if a condition is not a member of the
speaker’s acceptance or belief DRS, then checks
if the condition is not a member of the hearer’s
belief or acceptance DRS. If this check passes,
the condition is added to the hearer’s belief about
the speaker’s belief, i.e. speaker’s belief DRS
embedded inside the hearer’s DRS. When us-
ing ‘beliefConstraintHearerP1’ to check for the
condition ‘singer(X)’, we get the second DRS as a
result in Figure 1.

The second version of the hearer’s BCP1, be-
liefConstraintHearerP1a, checks if a condition
is not a member of the speaker’s belief or accep-
tance DRS, and is a member of the hearer’s be-
lief or acceptance DRS. Then, it adds the condi-
tion to the speaker’s acceptance DRS, embedded
inside the hearer’s acceptance DRS. This is shown
in Figure 2.

The second pragmatic constraint on Presuppo-

29

drs1:drs([x, z],
[walter(x),
vincent(z),
attitude(i, ‘BEL’, drs2),
drs2:drs([],

[b1: singer(x),
attitude(you, ‘BEL’, drs3),
drs3:drs([],

[])]),
attitude(i, ‘ACCEPT’, drs4),
drs4:drs([],

[c1: dancer(z),
attitude(you, ‘ACCEPT’, drs5),
drs5:drs([],

[])])]).

becomes:

drs1:drs([x, z],
[walter(x),
vincent(z),
attitude(i, ‘BEL’, drs2),
drs2:drs([],

[b1: singer(x),
attitude(you, ‘BEL’, drs3),
drs3:drs([],

[])]),
attitude(i, ‘ACCEPT’, drs4),
drs4:drs([],

[c1: dancer(z),
attitude(you, ‘ACCEPT’, drs5),
drs5:drs([],

[c2: singer(x)])])]).

Figure 2: Hearer BCP1a

sition (BCP2) is also divided into speaker side
and hearer side. The speaker’s side, belief-
ConstraintSpeakerP2, checks a condition, e.g.
‘singer(X)’, is a member of the speaker’s belief or
acceptance DRS, but not a member of the hearer’s
acceptance or belief DRS, embedded inside the
speaker’s DRSs (Figure 3). Once this is fulfilled,
the condition is added to the hearer’s acceptance
DRS, embedded inside the speaker’s acceptance
DRS.

BCP2, from the hearer’s perspective, uses be-
liefConstraintHearerP2, which checks whether
a condition, e.g. ‘singer(X)’, is a member of the
speaker’s belief or acceptance DRS (embedded in-
side the hearer’s DRSs), and then checks if the
condition is not a member of the hearer’s accep-
tance or belief DRSs. It then adds the condition to
the hearer’s acceptance DRS, as in Figure 4.

4.2 Application

The following example

drs1:drs([x, z],
[walter(x),
vincent(z),
attitude(i, ‘BEL’, drs2),
drs2:drs([],

[b1: singer(x),
attitude(you, ‘BEL’, drs3),
drs3:drs([],

[])]),
attitude(i, ‘ACCEPT’, drs4),
drs4:drs([],

[c1: dancer(z),
attitude(you, ‘ACCEPT’, drs5),
drs5:drs([],

[])])]).

becomes:

drs1:drs([x, z],
[walter(x),
vincent(z),
attitude(i, ‘BEL’, drs2),
drs2:drs([],

[b1: singer(x),
attitude(you, ‘BEL’, drs3),
drs3:drs([],

[])]),
attitude(i, ‘ACCEPT’, drs4),
drs4:drs([],

[c1: dancer(z),
attitude(you, ‘ACCEPT’, drs5),
drs5:drs([],

[c2: singer(x)])])]).

Figure 3: Speaker BCP2

(6) S1: You have to buy Vincent’s wife a
present.
H1: Should I send Mia flowers?
S1: Mia likes chocolate. Buy her some.
H2: I’ll buy her chocolate.

is passed through the implemented pragmatic con-
straints to briefly demonstrate how the pragmatic
constraints can be employed in dialogue. Figures 5
and 6 show the initial beliefs of both agents before
the dialogue is initiated. To proceed, the pragmatic
constraints for the speaker are applied. If the prag-
matic constraints do not apply, the dialogue cannot
go forward. This starts a recognition process on
the part of the hearer.

To utter S1, the speaker is constrained by BCP1
for the speaker, which dictates that the presupposi-
tion to be uttered needs to be part of the speaker’s
beliefs or acceptance DRSs (cf. section 3). When
this is verified, the speaker is able to make an
utterance containing the presupposition resulting

30

drs1:drs([x, z],
[walter(x),
vincent(z),
attitude(i, ‘BEL’, drs2),
drs2:drs([],

[attitude(you, ‘BEL’, drs3),
drs3:drs([],

[b1: singer(x)])]),
attitude(i, ‘ACCEPT’, drs4),
drs4:drs([],

[c1: dancer(z),
attitude(you, ‘ACCEPT’, drs5),
drs5:drs([],

[])])]).

becomes:

drs1:drs([x, z],
[walter(x),
vincent(z),
attitude(i, ‘BEL’, drs2),
drs2:drs([],

[attitude(you, ‘BEL’, drs3),
drs3:drs([],

[b1: singer(x)])]),
attitude(i, ‘ACCEPT’, drs4),
drs4:drs([],

[c1: dancer(z),
c2: singer(x),
attitude(you, ‘ACCEPT’, drs5),
drs5:drs([],

[])])]).

Figure 4: Hearer BCP2

in Figure 7.4 Here, the speaker already believes
the hearer believes the contents of the presuppo-
sition, ‘Vincent has a wife’, and as such nothing
needs to be changed in the speaker’s beliefs about
the hearer’s beliefs, BCP2 for the speaker. If,
however, the speaker did not already believe the
hearer believes the presupposition, the contents of
the presupposition would be added to the hearer’s
acceptance DRS inside the speaker’s acceptance
DRS according to BCP2 for the speaker.

In the process of recognizing the speaker’s ut-
terance, the hearer’s pragmatic constraints are em-
ployed and if they are violated, again the dialogue
cannot proceed. The first pragmatic constraint for
the hearer to apply is BCP1, which checks whether
both the speaker and the hearer do not believe
or accept the presupposition. Upon finding that
both the speaker and the hearer believe the pre-
supposition, there is no need to add anything to ei-
ther the hearer’s or the speaker’s belief and accep-
tance spaces. If, however, that was not the case,
BCP1 and BCP1a alter the hearer’s and speaker’s

4Figures 7 and 8 show both agents’ beliefs after S1 is ut-
tered.

belief states accordingly by adding the contents
of the presupposition as indicated in section 4.1.
The same reasoning applies to checking whether
BCP2 applies, for if the hearer did not already be-
lieve or accept the presupposition, BCP2 adds the
contents of the presupposition to the hearer’s ac-
ceptance DRS. After this, the speaker’s pragmatic
constraints are checked against the hearer’s, who
is now the speaker, utterance and so on.

drs1:

i you v m

drs2:
attitude(you, ‘ACCEPT’, drs3)

drs3:

attitude(i, ‘ACCEPT’, drs2)
attitude(i, ‘BEL’, drs4)

drs4:

x y
b1:vincent(v)
b2:male(v)
b3:married(v, m)
b4:has(v,m)
b5:mia(m)
b6:wife(m)
b7:female(m)
b8:buy(you, m, x)
b9:present(x)
b10:chocolate(y)
b11:like(m, y)
b12:buy(you, m, y)
attitude(you, ‘BEL’, drs5)

drs5:

b13:vincent(v)
b14:male(v)
b15:married(v, m)
b16:has(v,m)
b17:mia(m)
b18:wife(m)
b19:female(m)

attitude(i, ‘INT’, drs6)

drs6:

Figure 5: Speaker Initial State

5 Conclusion

This paper has introduced a pragmatic view of pre-
supposition both in terms of givenness and the ef-
fects agents’ cognitive states have on formulating
presupposition. To introduce this pragmatic view
of presupposition into DRT, some pragmatic con-
straints have been formulated and demonstrated by
way of example. In addition, an implementation of
these pragmatic constraints on presupposition has
been introduced into the extended DRT represen-
tation formulated by Al-Raheb (2005).

References
Al-Raheb, Y. 2005. Speaker/Hearer Representation in

a Discourse Representation Theory Model of Pre-
supposition: A Computational-Linguistic Approach.
Phd. University of East Anglia.

31

drs1:

i you v m

drs2:
attitude(you, ‘ACCEPT’, drs3)

drs3:

attitude(i, ‘ACCEPT’, drs2)
attitude(i, ‘BEL’, drs4)

drs4:

x z
b18:vincent(v)
b19:male(v)
b20:married(v, m)
b21:has(v,m)
b22:mia(m)
b23:wife(m)
b24:female(m)
b25:flowers(z)
attitude(you, ‘BEL’, drs5)

drs5:

b26:vincent(v)
b27:male(v)
b28:married(v, m)
b29:has(v,m)
b30:mia(m)
b31:wife(m)
b32:female(m)

attitude(i, ‘INT’, drs6)

drs6:

Figure 6: Hearer Initial State

drs1:

i you v

drs2:
attitude(you, ‘ACCEPT’, drs3)

drs3:

attitude(i, ‘ACCEPT’, drs2)
attitude(i, ‘BEL’, drs4)

drs4:

y
b1:vincent(v)
b2:male(v)
b3:married(v, m)
b4:has(v,m)
b5:mia(m)
b6:wife(m)
b7:female(m)
b8:buy(you, m, x)
b9:present(x)
b10:chocolate(y)
b11:like(m, y)
b12:buy(you, m, y)
attitude(you, ‘BEL’, drs5)

drs5:

b13:vincent(v)
b14:male(v)
b15:married(v, m)
b16:has(v,m)
b17:mia(m)
b18:wife(m)
b19:female(m)

attitude(i, ‘INT’, drs6)

drs6:

m x v
a1:buy(you, m, x)
a2:present(x)
p1:female(m)
p2:wife(m)
p3:male(v)
p4:vincent(v)
inform(i, you, a1)
inform(i, you, a2)

Figure 7: Speaker Generation: After S1

Geurts, B. 1999. Presuppositions and Pronouns: Cur-
rent Research in the Semantics/ Pragmatics Inter-
face. Oxford: Elsevier.

drs1:

i you v

drs2:
attitude(you, ‘ACCEPT’, drs3)

drs3:

attitude(i, ‘ACCEPT’, drs2)
attitude(i, ‘BEL’, drs4)

drs4:

x, z
b18:vincent(v)
b19:male(v)
b20:married(v, m)
b21:has(v,m)
b22:mia(m)
b23:wife(m)
b24:female(m)
b25:flowers(z)
attitude(you, ‘BEL’, drs5)

drs5:

b26:vincent(v)
b27:male(v)
b28:married(v, m)
b29:has(v,m)
b30:mia(m)
b31:wife(m)
b32:female(m)

attitude(i, ‘INT’, drs6)

drs6:

a1:buy(i, m, x)
a2:present(x)
p1:female(m)
p2:has(v, m)
p3:married(v, m)
p4:wife(m)
p5:male(v)
p6:vincent(v)
inform(you, i, a1)
inform(you, i, a2)

Figure 8: Hearer Recognition: After S1

Grice, P. 1989. Studies in the Way of Words. Cam-
bridge, MA: Harvard University Press.

Lambrecht, K. 1994. Information Structure and Sen-
tence Form: Topic, Focus and the Mental Represen-
tations of Discourse Referents. Cambridge: Cam-
bridge University Press.

Levinson, S. 1983. Pragmatics. Cambridge: Cam-
bridge University Press.

Simons, M. 2003. ‘Presupposition and Accommo-
dation: Understanding the Stalnakerian Picture’.
Philosophical Studies 112, pp. 251–278.

Stalnaker, R. 2002. ‘Common ground’. Linguistics
and Philosophy 25(5-6), pp. 701–721.

van der Sandt, R. and Geurts, B. 1991. ‘Presupposi-
tion, Anaphora, and Lexical Content’. In: O. Her-
zog and C.-R. Rollinger (Eds.). Text Understand-
ing in LILOG. pp. 259–296. Berlin, Heidelberg:
Springer Verlag.

van der Sandt, R. 1992. ‘Presupposition Projection as
Anaphora Resolution’. Journal of Semantics 9, pp.
333–377.

Werth, P. 1999. Text Worlds: Representing Conceptual
Space in Discourse. New York: Longman.

32

Proceedings of the 3rd Workshop on Constraints and Language Processing (CSLP-06), pages 33–40,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Coupling a Linguistic Formalism and a Script Language

Abstract

This article presents a novel syntactic
parser architecture, in which a linguistic
formalism can be enriched with all sorts
of constraints, included extra-linguistic
ones, thanks to the seamless coupling of
the formalism with a programming lan-
guage.

1 Introduction

The utilization of constraints in natural language
parsers (see Blache and Balfourier,2001 or
Tapanainen and Järvinen , 1994) is central to
most systems today. However, these constraints
are often limited to purely linguistic features,
such as linearity or dependency relations be-
tween categories within a given syntactic tree.
Most linguistic formalisms have been created
with the sole purpose of extracting linguistic in-
formation from bits and pieces of text. They usu-
ally use a launch and forget strategy, where a text
is analyzed according to local constraints, dis-
played and then discarded to make room for the
next block of text. These parsers take each sen-
tence as an independent input, on which gram-
mar rules are applied together with constraints.
However, no sentence is independent of a text,
and no text is really independent of extra-
linguistic information. In order to assess cor-
rectly the phrase President Bush, we need to
know that Bush is a proper name, whose function
is “President”. Washington can be a town, a
state, the name of a famous president, but also
the name of an actor. Moreover, the analysis of a
sentence is never an independent process, if
President Bush is found in a text, the reference to
president, later in the document will be related to
this phrase.
These problems are certainly not new and a
dense literature has been written about how to

better deal with these issues. However, most
solutions rely on formalism enrichments with
solutions “engraved in stone”, that makes it diffi-
cult to adapt a grammar to new domains (see De-
clerck, 2002, or Roux, 2004), even though they
use XML representation or database to store
huge amounts of extra-linguistic information.
The interpretation of these data is intertwined
into the very fabric of the parser and requires
deep modifications to use new sources with a
complete different DTD.
Of course, there are many other ways to solve
these problems. For instance, in the case of lan-
guages such as Prolog or Lisp, the grammar for-
malism is often indistinguishable from the pro-
gramming language itself. For these parsers, the
querying of external information is easily solved
as grammar rules can be naturally augmented
with non-linguistic procedures that are written in
the same language. In other cases, when the
parser is independent from any specific pro-
gramming languages, the problem can prove dif-
ficult to solve. The formalism can of course be
augmented with new instructions to tackle the
querying of external information. However the
time required to enrich the parser language may
not be worth the effort, as the development of a
complete new instruction set is a heavy and
complex task that is loosely related to linguistic
parser programming.
We propose in this article a new way of building
natural language parsers, with the coupling of a
script language with an already rich linguistic
formalism.

2 Scripting

The system we describe in this article mix a
natural language parser, namely Xerox Incre-
mental Parser (XIP hereafter, see Aït-Mohktar et
al., 2002, Roux, 1999) with a scripting language,
in our case Python. The interaction of a grammar
with scripting instructions is almost as old as

Claude Roux
Xerox Research Centre Europe/ 6,

chemin de Maupertuis, 38240 Meylan,
France

Claude.roux@xrce.xerox.com

33

computational linguistics. Pereira and Shieber for
instance, in their book: Prolog and Natural Lan-
guage Processing (see Pereira and Shieber, 1987)
already suggested mixing grammar rules with
extra-linguistic information. This mélange was
made possible thanks to the homogeneity be-
tween grammar rules and the external code, writ-
ten in both cases in the same programming lan-
guage. However, these programming languages
are not exactly tuned to do linguistic analyses;
they are often slow and cumbersome. Moreover,
they blur the boundary between program and
grammar rules, as the programming language is
both the algorithm language and the rule lan-
guage. Allen (see Allen, 1994) proposes a differ-
ent approach in his TRAINS Parsing system. The
grammar formalism is independent to a certain
extent from the implementation language, which
is LISP in this case. However, since the grammar
is translated into a LISP program, it is easy for a
linguist to specialize the generated rules with
external LISP procedures. Nevertheless, the
grammar formalism remains very close to LISP
data description, which makes the grammar rules
somewhat difficult to read.
The other solution, which is usually favored by
computational linguists, is to store the external
information in databases, which are accessed
with some pre-defined instructions and translated
into linguistic features. For instance (see De-
clerk, 2002 or Roux, 2004), the external informa-
tion is presented as an XML document whose
DTD is defined once and for all. This DTD is
then enriched with extra-linguistic information
that a parser can exploit to guide rule application.
This method alleviates the necessity of a com-
plex interaction mechanism between the parser
and its external data sources. The XPath lan-
guage is used to query this document in order to
retrieve salient information at parsing time,
which is then translated into local linguistic fea-
tures. However, only static information can be
exploited, as these XML databases must be built
beforehand.
Similar mechanisms have also been proposed in
other architectures to help heterogeneous linguis-
tic modules to communicate through a common
XML interface (see Cunningham et al.,2002,
Blache and Guénot , 2003). These architectures
are very powerful as they connect together tools
that only need to comply with a common in-
put/output DTD. Specialized Java modules can
then be written which are applied to intermediate
representations to add their own touch of extra-
linguistic data. Since, the intermediate represen-

tation is an XML document, the number of pos-
sible enrichments is almost limitless, as each
module will only extract from this document the
XML markup tags that it is designed to handle.
However, since XML is by nature furiously ver-
bose, the overall system might be very slow as it
might spend a large amount of time translating
external XML representation into internal repre-
sentations.
Furthermore, applications that require natural
language processing also have different pur-
poses, different needs. They may require a shal-
low output, such as a simple tokenization with a
whiff of tagging, or a much deeper analysis. Syn-
tactic parsing is usually integrated as a black box
into these architectures, with little control left
over the grammar execution, control which nev-
ertheless might prove very important in many
cases. An XML document, for instance, often
contains some specific markup tags to identify a
title, a section or author name. If the parser is
given some indications about the input, it could
be guided through the grammar maze to favor
these rules that are better suited to analyze a title
for example.
Finally, syntactic parsing, when it is limited to
lexical information, often fails to assess correctly
some ambiguous relations. Thus, the only way to
deal with PP-attachment or anaphoric pronoun
antecedents is to use both previous analyses and
external information. However, most syntactic
parsers are often ill geared to link with external
modules. The formalism is engraved into a C
program as in Link Grammar (see Grinberg et
al.,1995) or as in Sylex (see Constant, 1995)
which offers little or no opening to the rest of the
world, as it is mainly designed to accomplish one
unique task. We will show how the seamless in-
tegration of a script language into the very fabric
of the formalism simplifies the task of keeping
track of previous analyses together with the use
of external sources of data.

3 Xerox Incremental Parser (XIP)

The XIP engine has been developed by a re-
search team in computational linguistics at the
Xerox Research Centre Europe (see Aït-Mokhtar
et al., 2001). It has been designed from the be-
ginning to follow a strictly incremental strategy,
where rules apply one after the other. There is
only one analysis path that is followed for a
given linguistic unit (phrase, sentence or even
paragraph): the failure of a rule does not prevent
the whole analysis from continuing to comple-

34

tion. Since the system never backtracks on any
rules, XIP cannot propel itself into a combinato-
rial explosion.

XIP can be divided into two main components:

• A component that builds a chunk tree on
the basis of lexical nodes.

• A component that creates functions or
dependencies that connect together distant
nodes from the chunk tree.

The central goal of this parser is the extraction of
dependencies. A dependency is a function that
connects together distant nodes within a chunk
tree. The system constructs a dependency be-
tween two nodes, if these two nodes are in a spe-
cific configuration within the chunk tree or if a
specific set of dependencies has already been
extracted for some of these nodes (see Hagege
and Roux, 2002). The notion of constraint em-
bedded in XIP is both configurational and Boo-
lean. The configuration part is based on tree
regular rules which express constraints over node
configuration, while the Boolean constraints are
expressed over dependencies.

3.1 Three Level of Analysis

The parsing is done in three different stages:

• Part-of-speech disambiguation and
chunking.

• Dependency Extraction between words
on the basis of sub-tree patterns over the
chunk sequence.

• Combination of those dependencies with
Boolean operators to generate new de-
pendencies, or to modify or delete existing
dependencies.

3.2 The Different Steps of Analysis

Below is an example of how a sentence is parsed.
We present a little grammar, written in the XIP
formalism, together with the output yielded by
these rules.

Example
The chunking rules produce a chunk tree.

In a first stage, chunking rules are applied and
the following chunk tree is built for this sen-
tence.
Below is a small XIP grammar that can analyze
the above example:

1> AP = Adj.
2> NP @= Det,(AP),(Noun),Noun.
3> FV= verb.
4> SC= NP,FV.

Each rule is associated with a layer number,
which defines the order in which the rules must
be executed.
If this grammar is applied to the above sentence,
the result is the following:

TOP{SC{NP{The AP{chunking} rules}
 FV{produce}}
 NP{a chunk tree}
 .}

TOP is a node that is automatically created, once
all chunking rules have applied, to transform this
sequence of chunks into a tree.
(The “@” denotes a longest match strategy. The
rule is then applied to the longest sequence of
categories found in the linguistic unit)

The next step consists of extracting some basic
dependencies from this tree. These dependencies
are obtained with some very basic rules that only
connect nodes that occur in a specific sub-tree
configuration.

SUBJ(produce,rules)
OBJ(produce,tree)

SUBJ is a subject relation, which has been ex-
tracted with the following rule:

| NP{?*, noun#1}, FV{?*,verb#2}|
 SUBJ(#2,#1).

This rule links together the noun and the verb
respectively the sub-nodes of a NP and a VP that
are next to each other. The “{…}” denotes a pat-
tern over sub-nodes.

Other rules may then be applied to this output,
to add or modify existing dependencies.

if (SUBJ(#1,#2) & OBJ(#1,#3))
 TRIPLET(#2,#1,#3).

For instance, the above rule will generate a three
slot dependency TRIPLET with the nodes ex-
tracted from the subject and object dependencies.
If we apply this rule to our previous example, we
will create: TRIPLET(rules,produce,tree).

35

3.3 Script Language

The utilization of a script language deeply in-
grained into the parser fabric might sound like a
pure technical gadget with very little influence
on parsing theories. However, the development
of a parser often poses some very trivial prob-
lems, which we can sum up in the three questions
below:

• How can we use previous analyses?

• How do we access external information?

• How do we control the grammar from an
embedding application?

Usually, the answer for each of these questions
leads to three different implementations, as none
of these problems seem to have any connections
whatsoever. Their only common point seems to
be some extra-programming into the parser en-
gine. If a grammar and a parser are both written
in the same programming language, the problem
is relatively simple to solve. However, if the
grammar is written in a formalism specifically
designed for linguistic analysis interpreted with a
linguistic compiler (as it is the case for XIP),
then any new features that would implement
some of these instructions translate into a modi-
fication of the parsing engine itself. However,
one cannot expand the parser engine forever. The
solution that has been chosen in XIP is to de-
velop a script language, which linguists can use
to enrich the original grammatical formalism
with new instructions.

3.4 First attempts

The first attempts to add scripting instructions to
XIP consisted in enriching the grammar with
numerical and string variables together with
some instructions to handle these values. For
instance, it is possible in XIP to declare a string
variable, to instantiate it with the lemma value of
a syntactic node and to apply some string modi-
fications upon it. However, the development of
such a script language, however useful it proved,
became closer and closer to a general-purpose
programming language, which XIP was not de-
signed to be. The task of developing a full-
fledged programming language with a large in-
struction set is a complex ongoing process,
which has little connection with parsing theories.
Nevertheless, there was a need for such an ad-
dendum, which led the development team to link
XIP with Python, whose own ongoing develop-

ment is backed up by thousands of dedicated
computer scientists.

3.5 Python

Scripting languages have been around for a very
long time. Thus Perl and Awk have been part of
the Unix OS for at least twenty years. Python is
already an old language, in computational time
scale. It has been central to the Linux environ-
ment for more than ten years. Most of the basic
installation procedures are written in that lan-
guage. It has also been ported to a variety of plat-
forms such as Windows or Mac OS. The lan-
guage syntax is close to C, but lacks type verifi-
cation. However, the language is thoroughly
documented and a large quantity of specialized
libraries is available. Python has also been cho-
sen because of the simplicity of its API, which
allows programmers to link easily a Python en-
gine to their own application or to enlarge the
language with new libraries. The other reason of
this choice, over for instance a more conven-
tional language such as C or Java is the fact that
it is an interpreted language. A XIP grammar is a
set of text files, which are all compiled on the fly
in memory every time the parser is run. It stems
from this choice that any addenda to this gram-
mar should be written in a language that is also
compiled on the fly. In this way, the new instruc-
tions can be developed in parallel with the
grammar and immediately put in test. It also
simplifies the non-trivial task of debugging a
complete grammar as any modifications on any
parts of the grammar can be immediately ex-
perimented together with the python script.
We have produced two different versions of the
XIP-python parsing engine.

3.6 Python Embedded within XIP

We have linked the python engine to XIP, which
allows us to call and execute python scripts from
within the parsing engine. In this case, a gram-
mar rule can call a python script to verify spe-
cific conditions. The python scripts are then ap-
pended to the grammar itself. These scripts have
full access to all linguistic objects constructed so
far. XIP is the master program with python
scripts being triggered by grammar rules.

3.7 XIP as a Python Library

We have created a specific XIP library which can
be freely imported in python. In this case, the
XIP library exports a basic API, compliant with
the python programming interface, which allows
python developers to benefit from the XIP en-

36

gine. The XIP results are then returned as python
objects. Since the purpose in this article is to
show how a grammar formalism can be enriched
with new instructions, we will mainly concen-
trate on the first point.

3.8 Interfacing Python and a XIP grammar

A XIP grammar mainly handles syntactic nodes,
features, categories, and dependencies. In order
to be efficient, a Python script, called from a XIP
grammar, should have access to all this informa-
tion in a simple and natural way. The notion of
procedure has already been added to the XIP
formalism. They can be used in any sort of rule.

Example

if (subject(#1,#2) & TestNode(#1))
 ambiguous(#1).

The above rule tests the existence of a subject
dependency and will use the TestNode procedure
to check some properties of the #1 node. If all
these conditions are true, then a new depend-
ency: ambiguous is created with #1 as parameter.

3.9 Interface

The TestNode procedure is declared in a XIP
grammar in the following way:

Example
Python: //XIP field name

TestNode(#1). //the XIP procedure name, with
 XIP parameter style.

//All that follows is in Python
def TestNode(node):
…

The only constraint is that the XIP procedure
name (TestNode) should also have been imple-
mented as a Python procedure. If this Python
procedure is missing, then the grammar compila-
tion fails.
The system works as a very simple linker, where
the code integrity is verified to the presence of
common names in XIP and Python.
However, the next step, which consists in trans-
lating XIP data into Python data, is done at run-
time.
XIP recognizes many different sorts of data,
which can all be transmitted to a Python script,
such as syntactic nodes, dependencies, integer
variables, string variables, or even vector vari-
ables. Each of these data is then translated into

simple Python variables. However, the syntactic
nodes and the dependencies are not directly
transformed into Python objects; we simply
propagate them into the Python code as integers.
Each node and each dependency has a unique
index, which simplifies the task of sharing pa-
rameters between XIP and Python.

3.10 XIP API

Python procedures have access to all internal
parsing data through a specific API. This API
consists of a dozen instructions, which can be
called anywhere in the Python code. For in-
stance, XIP provides Python instructions to re-
turn a node or a dependency object on the basis
of its index. We have implemented the Python
XipNode class, with the following fields:

class XipNode
 index #the unique index of the node
 POS #the part of speech
 Lemma #a vector of possible lemmas
 for the node
 Surface #the surface form as it ap
 pears in the sentence
 features #a vector of attribute-value
 features
 leftoffset,rightoffset #the text offsets
 next,previous,parent,child # indexes

A XipNode object is automatically created when
the object creator is called with the node index as
parameter. We can also travel through the syn-
tactic tree, thanks to the next, previous, parent,
child indexes that are provided by this class.
There is a big difference between using this API
and exploiting the regular output of a syntactic
parser. Since the Python procedures are called at
runtime from the grammar, they have full access
to the on-going linguistic data. Second, the selec-
tion of syntactic nodes on which to apply Python
procedures is done at the grammar level, which
means that the access of specific nodes is done
through the parsing engine itself, without any
need to duplicate any sorts of tree operators,
which would be mandatory in the case of a Java,
XML or C++ object. Finally, the memory foot-
print is only limited to the nodes that are re-
quested by the application, there is no need to
reduplicate the whole linguistic data structure.
The memory footprint reduction also has the ef-
fect of speeding up the execution.

37

3.11 Other Basic Instructions

XIP provides the following Python instructions:

• XipDependency(index) builds a Xip-
Dependency object.

• nodeset(POS) returns a vector of node
indices corresponding to a POS: node-
set(“noun”)

• dependencyset(POS) returns a vector of
dependency indices corresponding to a
dependency name: dependen-
cyset(“SUBJECT”)

• dependencyonfirstnode(n) returns a
vector of dependency indices, whose first
parameter is the node index n: depend-
encyonfirstnode(12)

These basic instructions make it possible for a
Python script to access all internal XIP data at
any stages.

3.12 An Example

Let us define the Python code of TestNbSenses,
which checks whether a verbal node is highly
ambiguous according to WordNet. As a demon-
stration, a verb will be said to be highly ambigu-
ous if the number of its senses is larger than 10.

def TestNbSenses(i):
 n=XipNode(i)
 senses=N[n.lemma].getSenses()
 if len(senses)>=10:
 return 1
 return 0

We can now use this procedure in a syntactic
rule to test the ambiguity of a verb in order to
guide the grammar:

if (subject(#1,#2) & TestNbSenses(#1))
 ambiguous(#1).

The dependency ambiguous will be created for a
verbal node, if this verb is highly ambiguous.

4 Back to the Initial Questions

The questions we wish to answer are the follow-
ing:

• How can we use previous analyses?

• How do we access external information?

• How do we control the grammar from an
embedding application?

We have shown in the previous section how new
instructions could be easily defined and thus be-
come part of the XIP formalism. These instruc-
tions are mapped to a Python program which
offers all we need to answer the above questions.

4.1 How can we use previous analyses?

Since, we have a full access to the internal lin-
guistic representation of XIP, we can store what-
ever data we might find useful for a given task.
For instance, we could decide to count the num-
ber of time a word has been detected in the
course of parsing. This could be implemented
with a Python dictionary variable.

Python:

countword(#1).
getcount(#1).
…

The first procedure countword receives a node
index as input. It translates it into a XipNode,
and it uses the lemma as an entry for the Python
dictionary wordcounter. At the end of the proc-
ess, wordcounter contains a list of words with
their number of occurrences. The second proce-
dure implements a simple test which returns the
number of time a word has been found. It returns
0, if it is an unknown word.
The grammar rule below is used to count words:

|Noun#1| {

countword(#1);
}

The instruction |noun#1| automatically loops
between all noun nodes.
The rule below is used to test if a word has al-
ready been found:

if (subject(#1,#2) & getcount(#2)) …

4.2 How do we access external information?

We have already given an example with Word-
Net. Thanks to the large number of libraries
available, a Python script can benefit from
WordNet information. It can also connect to a
variety of databases such as MySQL, which also
allows a grammar to query a database for spe-
cific data.
For instance, we could store in a database verb-
noun couples that have been extracted from a

38

large corpus. Then, at runtime, a grammar could
check whether a certain verb and a certain noun
have already been found together in another
document.

Example

Python:
TestCouple(#1,#2).

def TestCouple(v,n):
noun=XipNode(n)
verb=XipNode(v)
cmd=”select * from couples where ”
cmd+=”verb=”+verb.lemma+"
cmd+=” and noun=”+noun.lemma+”;”
nb=mysql.execute(cmd)
return nb

In the XIP grammar:

|FV{verb#1},PP{prep,NP{noun#2}}|
 if (TestCouple(#1,#2))
 Complement(#1,#2).

If we have a verb followed by a PP, then if we
have already found in a previous analysis a link
between the verb and the noun embedded in the
PP, we create a dependency Complement over
the verb and the noun.

4.3 How do we control the grammar from
an embedding application?

Since a Python script can exploit any sort of in-
put, from text files to databases; it becomes rela-
tively simple to implement a simple Python pro-
cedure that blocks the execution of certain
grammar rules. If we examine the above exam-
ple, we can see how the grammar execution can
be modified by an external calling program. For
instance, the selection of a different database will
have a strong influence on how dependencies are
constructed.

5 Expression Power

The main goal of this article is to describe a way
to articulate no-linguistic constraints with a dedi-
cated linguistic formalism. The notion of con-
straint in this perspective does not only apply to
purely linguistic properties such as category or-
der or dependency building constraints; it is
enlarged to encompass properties that are rarely
taken into account in syntactic theories. It should
be noted, however, that if most theories are de-
signed to apply to a single sentence, nothing pre-

vents these formalisms to benefit from extra-
linguistic data through a complex feature system
that would encode the sentence context. How
these features are instantiated is nevertheless out
the realm of these theories. The originality of our
system lies in the fact that we intertwine from the
beginning these constraints into the fabric of the
formalism. Since any rules can be governed by a
Boolean expression, which in turn can accept any
Boolean python functions, it becomes feasible to
define a formalism in which a constraint is no
longer reduced to only linguistic data, but to any
properties that a full-fledged programming lan-
guage can allow. Thus, any rule can be con-
strained during its application with complex con-
straints which are implemented as a python script.

Example

pythontest is a generic Boolean python function,
which any XIP rules can embed within its own
set of constraints.

Below are some examples of XIP rules, which
are constrained with this generic python function.
A constraint in XIP is introduced with the key-
word “if”.

• A chunking rule:

PP = prep, NP#1, if (pythontest(#1)).
• A dependency rule:

if (subject(#1,#2) & pythontest(#1)) …

However, since any rule might be constrained
with an external process it should be noted that
this system can no longer be described as a pure
linguistic parser. Its expression power largely
exceeds what is usually expected from a syntac-
tic formalism.

6 Implementation Examples

We have successfully used Python in our gram-
mars in two different applications so far. The
first implementation consists of a script that is
called at the end of any sentence analysis to store
the results in a MySQL database. Since the sav-
ing is done with a Python program, it is very
simple to modify this script to store only infor-
mation that is salient to a particular application.
In this respect, the maintenance of such a script
is much simpler and much flexible than its C++
or Java counterpart. The storage is also done at
runtime which limits the amount of data kept in
memory.

39

The second example is the implementation of a
co-reference system (Salah Aït-Mohktar to ap-
pear), which uses Python as a backup language
to keep a specific representation of linguistic in-
formation that is used at the end of the analysis
to link together pronouns and their antecedents.
Once again, this program could have been cre-
ated in C++ or Java, using the C++ or the Java
XIP API, however, the development of such a
system in python benefits from the simplicity of
the language itself and its direct bridge to inter-
nal XIP representation.

7 Conclusion

The integration of a linguistic parser into an ap-
plication has always posed some tricky prob-
lems. First, the grammar, whether it has been
compiled into an external library or run through
an interpreter, often works as a black box, which
allows little or no possibility of interfering with
the internal execution. Second, the output is usu-
ally frozen into one single object which forces
the calling applications to perform format trans-
lation afterward. In many systems (Cunningham
et al.,2002, Grinberg et al., 1995), the output is
often a large, complex object, or a large XML
document. This has an impact on both memory
footprint (these objects might be very large) and
the analysis speed as the system must re-
implement some tree operators to traverse these
objects. Thereby, the automatic extraction of all
nodes that share a common property on the basis
of these objects requires some cumbersome pro-
gramming, when this could be more elegantly
handled through the linguistic formalism. Third,
the use of extra-linguistic information often im-
poses a modification of the parsing engine itself,
which prevents developers from switching
quickly between heterogeneous data sources. For
a long time, linguistic formalisms have been
conceived as specialized theoretical languages
with little if no algorithmic possibilities. How-
ever, today, the use of syntactic parsers in large
applications triggers the need for more than just
pure linguistic description. For all these reasons,
the integration of a script language as part of the
formalism seems a reasonable solution, as it will
transform dedicated linguistic formalisms to lin-
guistically driven programming languages.

Reference

Gazdar G., Klein E., Pullum G., Sag A. I., 1985. Gen-
eralized Phrase Structure Grammar, Blackwell,
Cambridge Mass., Harvard University Press.

Pereira F. and S. Shieber, 1987. Prolog and Natural
Language Analysis, CSLI, Chicago University
Press.

Allen J. F, 1994. TRAINS Parsing System, Natural
Language Understanding, Second Ed., chapters
3,4,5.

Tapanainen P., Järvinen T. 1994. Syntactic analysis
of natural language using linguistic rules and cor-
pus-based patterns, Proceedings of the 15th con-
ference on Computational linguistics, Kyoto, Japan,
pages: 629-634.

Constant P. 1995. L'analyseur Linguistique SYLEX, 5
ème école d'été du CNET.

Grinberg D., Lafferty John, Sleator D., 1995. A robust
parsing algorithm for link grammars, Carnegie
Mellon University Computer Science technical re-
port CMU-CS-95-125, also Proceedings of the
Fourth International Workshop on Parsing Tech-
nologies, Prague, September, 1995.

Fellbaum C., 1998. WordNet: An Electronic Lexical
Database, Rider University and Princeton Univer-
sity, Cambridge, MA: The MIT Press (Language,
speech, and communication series), 1998, xxii+423
pp; hardbound, ISBN 0-262-06197-X.

Roux C. 1999. Phrase-Driven Parser,Proceedings of
VEXTALL 99, Venezia, San Servolo, V.I.U. - 22-
24.

Blache P., Balfourier J.-M., 2001. Property Gram-
mars: a Flexible Constraint-Based Approach to
Parsing, in proceedings of IWPT-2001.

Aït-Mokhtar S., Chanod J-P., Roux C., 2002. Robust-
ness beyond shallowness incremental dependency
parsing, NLE Journal, 2002.

Hagège C., Roux C.,2002. A Robust And Flexible
Platform for Dependency Extraction, in proceed-
ings of LREC 2002.

Declerck T. 2002, A set of tools for integrating lin-
guistic and non-linguistic information, Proceedings
of SAAKM.

H. Cunningham, D. Maynard, K. Bontcheva, V. Tab-
lan.,2002. GATE: A Framework and Graphical
Development Environment for Robust NLP Tools
and Applications, Proceedings of the 40th Anni-
versary Meeting of the Association for Computa-
tional Linguistics (ACL'02), Philadelphia, July
2002.

Blache P., Guénot M-L. 2003. Flexible Corpus Anno-
tation with Property Grammars, BulTreeBank Pro-
ject

Roux C., 2004. Une Grammaire XML, TALN Confe-
rence, Fez, Morocco, April, 19-22, 2004.

[Python] http://www.python.org/

40

Proceedings of the 3rd Workshop on Constraints and Language Processing (CSLP-06), pages 41–50,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Capturing Disjunction in Lexicalization
with Extensible Dependency Grammar

Jorge Marques Pelizzoni
ICMC - Univ. de São Paulo - Brazil

Langue & Dialogue - LORIA - France
Jorge.Pelizzoni@loria.fr

Maria das Graças Volpe Nunes
ICMC - Univ. de São Paulo - Brazil

gracan@icmc.usp.br

Abstract
In spite of its potential for bidirectionality,
Extensible Dependency Grammar (XDG)
has so far been used almost exclusively
for parsing. This paper represents one of
the first steps towards an XDG-based inte-
grated generation architecture by tackling
what is arguably the most basic among
generation tasks: lexicalization. Herein
we present a constraint-based account of
disjunction in lexicalization, i.e. a way
to enable an XDG grammar to generate
all paraphrases — along the lexicalization
axis, of course — realizing a given in-
put semantics. Our model is (i) efficient,
yielding strong propagation, (ii) modu-
lar and (iii) favourable to synergy inas-
much as it allows collaboration between
modules, notably semantics and syntax.
We focus on constraints ensuring well-
formedness and completeness and avoid-
ing over-redundancy.

1 Introduction

In text generation the term lexicalization (Reiter
and Dale, 2000) refers to deciding which among a
choice of potentially applicable lexical items real-
izing a given intended meaning are actually going
to take part in a generated utterance. It can be re-
garded as a general, necessary generation task —
especially if one agrees that the term task does not
necessarily imply pipelining — and remarkably
pervasive at that. For instance, even though the
realization of such a phrase as “a ballerina” owes
much to referring expression generation, a com-
plementary task, it is still a matter of lexicaliza-
tion whether to prioritize that specific phrase over
all its possible legitimate alternates, e.g. “a female
dancer”, “a dancing woman” or “a dancing female
person”. However, prior to the statement of prior-
itizing criteria or selection preferences and rather

as the very substratum thereto, the ultimate matter
of lexicalization is exactly alternation, choice —
in one word, disjunction.

Given the combinatorial nature of language
and specifically the interchangeability of lexical
items yielding hosts of possible valid solutions to
one same instance lexicalization task, disjunction
may well become a major source of (combinato-
rial) complexity. Our subject matter in this pa-
per is solely disjunction in lexicalization as a ba-
sis for more advanced lexicalization models, and
our purpose is precisely to describe a constraint-
based model that (i) captures the disjunctive po-
tential of lexicalization, i.e. allows the generation
of all mutually paraphrasing solutions (according
to a given language model) to any given lexical-
ization task, (ii) ensures well-formedness, espe-
cially ruling out over-redundancy (such as found
in “∗a dancing female dancer/ballerina/woman”)
and syntactic anomalies (“∗a dancer woman”), and
does so (iii) modularly, in that not only are con-
cerns neatly separated (e.g. semantics vs. syntax),
but also solutions are reusable, and future exten-
sions, likely to be developed with no change to
current modules, (iv) efficiently, having an imple-
mentation yielding strong propagation and thus
prone to keep complexity at acceptable levels, and
(v) synergicly, inasmuch as it promotes the inter-
play between modules (namely syntax and seman-
tics) and seems compatible with the concept of in-
tegrated generation architectures (Reiter and Dale,
2000), i.e. those in which tasks are not executed in
pipeline, but are rather interleaved so as to avoid
failed or suboptimal choices during search.

We build upon the Extensible Dependency
Grammar (XDG) (Debusmann et al., 2004b; De-
busmann et al., 2004a; Debusmann et al., 2005)
model and its CP implementation in Oz (Van Roy
and Haridi, 2004), namely the XDG Develop-
ment Toolkit1 (XDK) (Debusmann et al., 2004c).

1http://www.ps.uni-sb.de/~rade/xdg.

41

In fact, all those appealing goals of modularity,
efficiency and synergy are innate to XDG and
the XDK, and our work can most correctly be
regarded as the very first attempts at equipping
XDG for generation and fulfilling its bidirectional
promise.

The paper proceeds as follows. Section 2 pro-
vides background information on XDG and the
XDK. Section 3 motivates our lexicalization dis-
junction model and describes it both intuitively
and formally, while Section 4 presents implemen-
tation highlights, assuming familiarity with the
XDK and focusing on the necessary additions and
modifications to it, as well as discussing perfor-
mance. Finally, in Section 5 we conclude and dis-
cuss future work.

2 Extensible Dependency Grammar

An informal overview of XDG’s core concepts is
in order; for a formal description of XDG, how-
ever, see (Debusmann and Smolka, 2006; Debus-
mann et al., 2005). Strictly speaking, XDG is
not a grammatical framework, but rather a descrip-
tion language over finite labelled multigraphs that
happens to show very convenient properties for
the modeling of natural language, among which a
remarkable reconciliation between monostratality,
on one side, and modularity and extensibility, on
the other.

Most of XDG’s strengths stem from its multi-
dimensional metaphor (see Fig. 1), whereby an
(holistic or multidimensional) XDG analysis con-
sists of a set of concurrent, synchronized, comple-
mentary, mutually constraining one-dimensional
analyses, each of which is itself a graph sharing
the same set of nodes as the other analyses, but
having its own type or dimension, i.e., its own
edge label and lexical feature types and its own
well-formedness constraints. In other words, each
1D analysis has a nature and interpretation of its
own, associates each node with one respective in-
stance of a data type of its own (lexical features)
and establishes its own relations/edges between
nodes using labels and principles of its own.

That might sound rather autistic at first, but the
1D components of an XDG analysis interact in
fact. It is exactly their sharing one same set of
nodes, whose sole intrinsic property is identity,
that provides the substratum for interdimensional
communication, or rather, mutual constraining.

html

Figure 1: Three concurrent one-dimensional
analyses. It is the sharing of one same set of
nodes that co-relates and synchronizes them into
one holistic XDG analysis.

ID

1

Mary

2

wants

3

to

4

laugh

5

.

root

part

vinfsubj

LP

1

Mary

2

wants

3

to

4

laugh

5

.

nounf
finf

partf
infinf

root

root

partf

vinffsubjf

DS

1

Mary

2

wants

3

to

4

laugh

5

.

root del

subjdsu
bjd

subd

PA

1

Mary

2

wants

3

to

4

laugh

5

.

root
root del

arg1

arge

arg1

SC

1

Mary

2

wants

3

to

4

laugh

5

.

root del

a

s

Figure 2: A 5D XDG analysis for “Mary wants to
laugh.” according to grammar Chorus.ul deployed
with the XDK

42

That is chiefly achieved by means of two devices,
namely: multidimensional principles and lexical
synchronization.

Multidimensional principles. Principles are
reusable, usually parametric constraint predicates
used to define grammars and their dimensions.
Those posing constraints between two or more 1D
analyses are said multidimensional. For example,
the XDK library provides a host of linking princi-
ples, one of whose main applications is to regu-
late the relationship between semantic arguments
and syntactic roles according to lexical specifica-
tions. The framework allows lexical entries to con-
tain features of the type lab(D1) → {lab(D2)},
i.e. mappings from edge labels in dimension D1

to sets of edge labels in D2. Therefore, lexi-
cal entries specifying {pat→ {subj}} might be
characteristic of unaccusative verbs, while those
with {agt→ {subj} , pat→ {obj}} would suit
a class of transitive ones. Linking principles pose
constraints taking this kind of features into ac-
count.

Lexical synchronization. The lexicon compo-
nent in XDG is specified in two steps: first, each
dimension declares its own lexicon entry type;
next, once all dimensions have been declared, lex-
icon entries are provided, each specifying the val-
ues for features on all dimensions. Finally, at run-
time it is required of well-formed analyses that
there should be at least one valid assignment of
lexicon entries to nodes such that all principles are
satisfied. In other words, every node must be as-
signed a lexicon entry that simultaneously satisfies
all principles on all dimensions, for which reason
the lexicon is said to synchronize all 1D compo-
nents of an XDG analysis. Lexical synchroniza-
tion is a major source of propagation.

Figure 2 presents a sample 5D XDG analysis
involving the most standard dimensions in XDG
practice and jargon, namely (i) PA, capturing
predicate argument structure; (ii) SC, captur-
ing the scopes of quantifiers; (iii) DS, for deep
syntax, i.e. syntactic structure modulo control and
raising phenomena; (iv) ID, for immediate domi-
nance in surface syntax (as opposed to DS); and
(v) LP, for linear precedence, i.e. a structure
tightly related to ID working as a substratum for
constraints on the order of utterance of words. In
fact, among these dimensions LP is the only one
actually to involve a concept of order. PA and DS,

in turn, are the only ones not constrained to be
trees, but directed acyclic graphs instead. Further
details on the meaning of all these dimensions, as
well as the interactions between them, would be
beyond the scope of this paper and have been dealt
with elsewhere. From Section 3 on we shall focus
on PA and, to a lesser extent, the dimension with
which it interfaces directly: DS.

Emulating deletion. Figure 2 also illustrates the
rather widespread technique of deletion, there ap-
plied to infinitival “to” on dimensions DS, PA,
and SC. As XDG is an eminently monostratal and
thus non-transformational framework, “deletion”
herein refers to an emulation thereof. According
to this technique, whenever a node has but one in-
coming edge with a reserved label, say del, on di-
mension D it is considered as virtually deleted on
D. In addition, one artificial root node is postu-
lated from which emerge as many del edges as re-
quired on all dimensions. The trick also comes in
handy when tackling, for instance, multiword ex-
pressions (Debusmann, 2004), which involve wor-
thy syntactic nodes that conceptually have no se-
mantic counterparts.

3 Modelling Lexicalization Disjunction
in XDG

Generation input. Having revised the basics of
XDG, it is worth mentioning that so far it has
been used mostly for parsing, in which case the in-
put type is usually rather straightforward, namely
typewritten sentences or possibly other text units.
Model creation is also very simple in parsing and
consists of (i) creating exactly one node for each
input token, all nodes being instances of one sin-
gle homogeneous feature structure type automat-
ically inferred from the grammar definition, (ii)
making each node select from all the lexical en-
tries indexed by its respective token, (iii) posing
constraints automatically generated from the prin-
ciples found in the grammar definition and (iv)
deterministically assigning values to the order-
related variables in nodes so as to reflect the actual
order of tokens in input.

As concerns generation, things are not so clear,
though. For a start, take input, which usually
varies across applications and systems, not to
mention the fact that representability and com-
putability of meaning in general are open issues.
Model creation should follow closely, as it is a di-
rect function of input. Notwithstanding, we can

43

to some extent and advantage tell what genera-
tion input is not. Under the hypothesis of an
XDG-based generation system tackling lexicaliza-
tion, input is not likely to contain some direct rep-
resentation of fully specified PA analyses, much
though this is usually regarded as a satisfactory
output for a parsing system (!). What happens
here is that generating an input PA analysis would
presuppose lexicalization having already been car-
ried out. In other words, PA analyses accounting
for e.g. “a ballerina” and “a dancing female hu-
man being” have absolutely nothing to do with
each other whereas what we wish is exactly to
feed input allowing both realizations. Therefore,
PA analyses are themselves part of generation out-
put and are acceptable as parsing output inasmuch
as “de-lexicalization” is considered a trivial task,
which is not necessarily true, however.

Although our system still lacks a comprehen-
sive specification of input format and semantics,
we have already established on the basis of the
above rationale that our original PA predicates
must be decomposed into simpler, primitive predi-
cates that expose their inter-relations. For the pur-
pose of the present discussion, we understand that
it suffices to specify that our input will contain flat
first-order logic-like conjunctions such as

∃x (dance(x) ∧ female(x) ∧ human(x)) ,

in order to characterize entities, even if the fi-
nal accepted language is sure to have a stricter
logic component than first-order logic and might
involve crossings with yet other formalisms. Pred-
icates, fortunately, are not necessarily unary; and,
for example, “A ballerina tapped a lovely she-dog”
might well be generated from the following input:

∃e, x, y




dance(x) ∧ female(x)∧
∧human(x) ∧ event(e)∧
∧ past(e) ∧ tap(e, x, y)∧
∧female(y) ∧ dog(y)∧

lovely(y)



. (1)

Deletion as the substance of disjunction. Nat-
urally, simply creating one node for each input
semantic literal is not at all the idea behind our
model. For example, if “woman” is to be ac-
tually employed in a specific lexicalization task,
then it should continue figuring as one single node
in XDG analyses as usual in spite of potentially
covering a complex of literals. In fact, XDG and,
in specific, PA analyses should behave and resem-
ble much the same as they used to.

However, one remarkable difference of analyses
in our generation model as compared to parsing
lies in the role and scope of deletion, which in-
deed constitutes the very substance of disjunction
now. By assigning all nodes but the root one ex-
tra lexical entry synchronizing deletion on all di-
mensions2, we build an unrestrained form of dis-
junction whereby whole sets of nodes may as well
act as if not taking part in the solution. Now it
is possible to create nodes at will, even one for
each applicable lexical item, and rely on the fact
that, many ill-formed outputs as the set of all so-
lutions may contain, it still covers all correct para-
phrases, i.e. those in which all and only the right
nodes have been deleted. For example, should one
node be created for each of “ballerina”, “woman”,
“dancer”, “dancing”, “female” and “person”, all
possible combinations of these words, including
the correct ones, are sure to be generated.

Our design obviously needs further constrain-
ing, yet the general picture should be visible by
now that we really intend to finish model creation
— or rather, start search — with (i) a bunch of per-
fectly floating nodes in that not one edge is given
at this time, all of which are equally willing and
often going to be deleted, and (ii) a bunch of con-
straints to rule out ill-formed output and provide
for efficiency. There are two main gaps in this
summary, namely:

• what these constraints are and

• how exactly nodes are to be created.

This paper restricts itself to the first question. The
second one involves issues beyond lexicalization,
actually permeating all generation tasks, and is
currently our research priority. Consequently, in
all our experiments most of model creation was
handcrafted.

In the name of clarity, we shall hereafter ab-
stract over deletion, that is to say we shall in all re-
spects adhere to the illusion of deletion, that nodes
may cease to exist. In specific, whenever we refer
to the sisters, daughters and mothers of a node, we
mean those not due to deletion. In other words, all
happens as if deleted nodes had no relation what-
soever to any other node. This abstraction is ex-
tremely helpful and is actually employed in our
implementation, as shown in Section 4.

2That is, specifying valencies such that an incoming del
edge is required on all dimensions simultaneously.

44

3.1 How Nodes Relate

In the following description, we shall mostly re-
strict ourselves to what is novel in our model as
compared to current practice in XDG modelling.
Therefore, we shall emphasize dimension PA and
the new constraints we had to introduce in order
to have only the desired PA analyses emerge. Ex-
cept for sparse remarks on dimension DS and its
relationship with PA, which we shall also discuss
briefly, we assume without further mention the
concurrence of other XDG dimensions, principles
and concepts (e.g. lexical synchronization) in any
actual application of our model.

Referents, arguments and so nodes meet. For
the most part, ruling out ill-formed output con-
cerns posing constraints on acceptable edges, es-
pecially when one takes into account that all we
have is some floating nodes to start with. Let us
first recall that dimension PA is all about predicate
arguments, which are necessarily variables thanks
to the flat nature of our input semantics. Roughly
speaking, each PA edge relates a predicate with
one of its arguments and thus “is about” one sin-
gle variable. Therefore, our first concern must be
to ensure that every PA edge should land on a node
that “is (also) about” the same variable as the edge
itself.

In order to provide for such an “aboutness”
agreement, so to speak, one must first provide for
“aboutness” itself. Thus, we postulate that every
node should now have two new features, namely
(i) hook, identifying the referent of the node,
i.e. the variable it is about, and (ii) holes, map-
ping every PA edge label ` into the argument (a
variable) every possible `-labelled outgoing edge
should be about. Normally these features should
be lexicalized. The coincidence with Copestake et
al.’s terminology (Copestake et al., 2001) is not
casual; in fact, our formulation can be regarded as
a decoupled fragment of theirs, since neither our
holes involves syntactic labels nor are scopal is-
sues ever touched. As usual in XDG, we leave it
for other modules such as mentioned in the previ-
ous section to take charge of scope and the rela-
tionship between semantic arguments and syntac-
tic roles. The role of these new features is depicted
in Figure 3, in which an arrow does not mean an
edge but the possibility of establishing edges.

Completeness and compositionality. Next we
proceed to ensure completeness, i.e. that every so-

Figure 3: For every node v and on top of e.g. va-
lency constraints, features hook and holes further
constrain the set of nodes able to receive edges
from v for each specific edge label.

lution should convey the whole intended seman-
tic content. To this end, nodes must have fea-
tures holding semantic information, the most ba-
sic of which is bsem, standing for base seman-
tic content, or rather, the semantic contribution a
lexical entry may make on its own to the whole.
For example, “woman” might be said to contribute
λx.female(x)∧human(x), while “female”, only
λx. female(x). Normally bsem should be lexi-
calized.

In addition, we postulate feature sem for hold-
ing the actual semantic content of nodes, which
should not be lexicalized, but rather calculated
by a principle imposing semantic composition-
ality. In our rather straightforward formulation,
for every node v, sem(v) is but the conjunction
of bsem(v) and the sems of all its PA daughters
thus:

sem(v)
=

bsem(v) ∧∧ {sem(u) : v −→PA u} ,
(2)

where v `−→D u denotes that node u is a daughter of
v on dimension D through an edge labelled ` (the
absence of the label just denotes that it does not
matter).

Finally, completeness is imposed by means of
node feature axiom, upon which holds the invari-
ant

sem(v)⇒ axiom(v) , (3)

for every node v. The idea is to have axiom as
a lexicalized feature and consistently assign it the
neutralizing constant true for all lexical entries
but those meant for the root node, in which case
the value should equal the intended semantic con-
tent.

Coreference classes, concentrators and revi-
sions to dimensions PA and DS. The unavoid-

45

able impediment to propagation is intrinsic choice,
i.e. that between things equivalent and that we
wish to remain so. That is exactly what we would
like to capture for lexicalization while attempting
to make the greatest amount of determinacy avail-
able to minimize failure. To this end, our strategy
is to make PA analyses as flat as possible, with
coreferent nodes — i.e. having the same ref-
erent or hook — organizing in plexuses around,
or rather, directly below hopefully one single node
per plexus, thus said to be a concentrator. This
offers advantages such as the following:

1. the number of leaf nodes is maximized,
whose sem features are determinate and
equals their respective bsems;

2. coreferent nodes tend to be either potential
sisters below a concentrator or deleted. This
allows most constraints to be stated in terms
of direct relationships of mother-, daughter-
or sisterhood. Such proximity and concen-
tration is rather opportune because we are
dealing simply with potential relationships as
nodes will usually be deleted. In other words,
our constraints aim mostly at ruling out un-
desired relations rather than establishing cor-
rect ones. The latter must remain a matter of
choice.

It is in order to define which are the best candi-
dates for concentrators. Having different concen-
trators in equivalent alternative realizations, such
as “a ballerina”, “a female dancer” or “a danc-
ing woman” (hypothetical concentrators are un-
derlined), would be rather hampering, since the
task of assigning “concentratingness” would then
be fatally bound to lexicalization disjunction it-
self and not much determinacy could possibly be
derived ahead of committing to this or that re-
alization. In face of that, the natural candidate
must be something that remains constant all along,
namely the article. Certainly, what specific arti-
cle and, among others, whether to generate a defi-
nite/anaphoric or indefinite/first-time referring ex-
pression is also a matter of choice, but not pertain-
ing to lexicalization. For the sake of simplicity and
scope, let us stick to the case of indefinite articles,
keeping in mind that possible extensions to our
model to cope with (especially definite anaphoric)
referring expression generation shall certainly re-
quire some revisions.

DS

a dancing female person ∗

npd

modd
modd

root

PA

a dancing female person ∗

apply apply apply

root

Figure 4: new PA and DS analyses for “a dancing
female person”. An asterisk stands for the root
node

Electing articles for concentrators means that
they now directly dominate their respective nouns
and accompanying modifiers on dimension PA as
shown in Figure 4 for “a dancing female person”.
One new edge label apply is postulated to connect
concentrators with their complements, the follow-
ing invariants holding:

1. for every node v, hook(v) =
holes(v)(apply), i.e. only coreferent
nodes are linked by apply edges;

2. every concentrator lexical entry provides a
valency allowing any number of outgoing
apply edges, though requiring at least one.

Roughly speaking, the intuition behind this new
PA design is that the occurrence of a lexical (as
opposed to grammatical) word corresponds to the
evaluation of a lambda expression, resulting in
a fresh unary predicate built from the basesem
of the word/node and the sems of its children.
In turn, every apply edge denotes the applica-
tion of one such predicate to the variable/referent
of a concentrator. In fact, even verbs might be
treated analogously if Infl constituents were mod-
elled, constituting the concentrators of verb base
forms. Also useful is the intuition that PA abstracts
over most morphosyntactic oppositions, such as
that between nouns and adjectives, which figure
as equals there. The subordination of the latter
word class to the former becomes a strictly syntac-
tic phenomenon or, in any case, other dimensions’
affairs.

Dimension DS is all about such oppositions,
however, and should remain much the same ex-
cept that the design is rather simplified if DS main-
tains concentrator dominance. As a result, arti-
cles must stand as heads of noun — or rather, de-

46

Figure 5: Starting conditions with perfectly float-
ing nodes in the lexicalization of “a ballerina” and
its paraphrases

terminer — phrases, which is not an unheard-of
approach, just unprecedented in XDG. Naturally,
standard syntactic structures should appear below
determiners, as exemplified in Figure 4. Granted
this, the flatness of PA and its relation to DS can
straightforwardly be accomplished by the applica-
tion of XDK library principles Climbing, whereby
PA is constrained to be a flattening of DS, and Bar-
riers, whereby concentrators are set as obstacles to
climbing by means of special lexical features. Fig-
ure 5 thus illustrates the starting conditions for the
lexicalization of “a ballerina” and its paraphrases,
including the bsems of nodes. Notice that we have
created distinct nodes for different parts of speech
of one same word, “female”. The relevance of this
measure shall be clarified along this section as we
develop this example.

Fighting over-redundancy. We currently em-
ploy two constraints to avoid over-redundancy.
The first is complete in that its declarative seman-
tics already sums up all we desire to express in that
matter, while the other is redundant, incomplete,
but supplied to improve propagation.

The complete constraint is imposed between
every node and each of its potential daughters.
Apart from overhead reasons, it might as well be
imposed between every pair of nodes. However,
the set of potential daughters of a node v is best
approximated by function dcands thus:

dcands(v)
=

(
⋃ {〈x〉 : x ∈ ran(holes(v))})− {v} ,

where 〈x〉 denotes the coreference class of vari-
able x; and ran(f), the range of function f . It is
worth noticing that in generation dcands is known
at model creation.

Given a node u and a potential daughter v ∈
dcands(u), this constraint involves hypothesiz-
ing what the actual semantic content of u would
be like if v were not among its daughters.
Let hdsv(u) and hsemv(u) be respectively the
hypothetical set of daughters of u counting v out
and its “actual” semantic content in that case,
which can be defined thus:

hdsv(u) = {w : u −→PA w} − {v}
and

hsemv(u) = bsem(u)∧
∧∧ {sem(w) : w ∈ hdsv(u)} . (4)

The constraint consists of ensuring that, if the ac-
tual semantic content of the potential daughter v
would be subsumed by the hypothetical semantic
content of u, then v can never be a daughter of u.
In other words, each daughter of u must make a
difference. Formally, we have the following:

(hsemv(u)⇒ sem(v))→ ¬ (u −→PA v) (5)

where the two implication symbols, ⇒ and →
have the same interpretation in this logic state-
ment, but are nonetheless distinguished because
their implementations are radically different as
shall be discussed in Section 4. Constraint (5)
is especially active after some choices have been
made. Suppose, in our “a ballerina” example,
that “dancing” is the only word selected so far
for lexicalization. Let u and v be respectively
the nodes for “a” and “dancing”. In this case,
the consequent in (5) is false and so must be the
antecedent hsemv(u) ⇒ dance(x), which im-
plies that hsemv(u) can never “contain” the literal
dance(x). From (4) and the fact that articles have
neutral base semantics — i.e. bsem(u) = true —
it follows that all further daughters of u must not
imply dance(x). As that does not hold for “bal-
lerina” and “dancer”, these nodes are ruled out as
daughters of u and thus deleted for lack of moth-
ers. Conversely, if “ballerina” had been selected

47

in the first place, (5) would trivially detect the re-
dundancy of all other words and analogously en-
tail their deletion.

In turn, the redundant constraint ensures that,
for every pair of coreferent nodes u and v ∈
〈upvar(u)〉, if the actual semantic content of v
is subsumed by u, then they can never be sisters.
Formally:

(sem(u)⇒ sem(v))→
(v /∈ sistersPA(u)) .

(6)

This constraint is remarkable for being active
even in the absence of choice since it is established
between potential sisters, which usually have their
sems sufficiently, if not completely, determined.
Surprisingly enough, the main effect of (6) is on
syntax, by constraining alliances on DS. As our
new version of the XDK’s Climbing principle is
now aware of sisterhood constraints, it will con-
strain every node on PA to have as a mother on
DS either its current PA mother or some node be-
longing to one of its PA sister trees3. In ground
terms, when (6) detects that e.g. “woman” sub-
sumes “female (adj./n.)” and constrains them not
to be sisters on PA, the Climbing principle will
rule out “woman” as a potential DS mother of
“female (adj.)”. It is worth mentioning that once
v /∈ sistersD(u) is imposed, our sisterhood con-
straints entail u /∈ sistersD(v).

Redundant compositionality constraints. Al-
though a complete statement of semantic compo-
sitionality is given by Equation 2, we introduce
two redundant constraints to improve propagation.
The first of them attempts to advance detection of
nodes whose semantic contribution is strictly re-
quired even before the sem features of their moth-
ers become sufficiently constrained. It does so
by means of an strategy analogous to that of (5),
namely by hypothesizing, for every node v, what
the total semantic content would be like if v were
deleted. Let root, hdownv(u) and htotsemv be
respectively the root node, the set of nodes directly
or indirectly below u counting v out, and the to-
tal semantic content supposing v is deleted, which
can be defined thus:

hdownv(u) = downPA(u)− {v}
and

htotsemv =
∧
{sem(u) : u ∈ hdownv(root)} .

3If the subgraphs option is active, which is the case here.

The constraint can be formally expressed thus:

deleted(v)→ (htotsemv ⇒ sem(v)) . (7)

Unfortunately, (7) is not of much use in our current
example, better applying to cases where there are a
greater number of alternative inner nodes. For ex-
ample, in the lexicalization of (1), this constraint
was immediately able to infer that “lovely” must
not be deleted since it was the sole node contribut-
ing lovely(y).

The second redundant compositionality con-
straint attempts to advance detection of nodes not
counting on enough potential sisters to fulfill the
actual semantic content of their mothers. To this
end, for every node v, the following constraint is
imposed:

∧ {sem(u) : u −→PA v}
=


∧ {bsem(u) : u −→PA v}

∧∧ {sem(u) : u ∈ eqsisPA(v)}


 ,

(8)

where

eqsisD(v) =
{
∅, iff v is deleted on D
sistersD(v) ∪ {v} , else.

(9)

which reads “the actual semantic content of the
mothers of a node is equal to their base seman-
tic content in conjunction with the actual se-
mantic content of this node and its sisters”. It
is worth noticing that, when v is deleted, both
{u : u −→PA v} and eqsisPA(v) become empty so
that (8) still holds. This constraint is especially
interesting because our new versions of principles
Climbing and Barriers, which hold between DS
and PA, propagate sisters constraints in both di-
rections. In association with (6) and (8), these
principles promote an interesting interplay be-
tween syntax and semantics. Resuming our ex-
ample, let v be node “female (n.)”. Before any
selection is performed, constraint (6) infers that
only “dancing”, “person” and “dancer” can be sis-
ters to v on PA and thus (now due to Climbing)
daughters to v on DS. They cannot be mothers
to v because its valency on DS and Climbing are
enough to establish that, if v has any mother at
all on DS, it is “a”. Again taking the DS valency
of v into account, it is possible to infer that, if v
has any daughter at all on DS, it is “dancing”, i.e.
the only adjective in the original set of candidate

48

daughters. It is the new sisterhood-aware version
of Barriers that propagates this new piece of in-
formation back to PA. This principle now knows
that the sisters of v on PA must come from ei-
ther (i) the tree below v on DS, (ii) one of its DS
sister trees or (iii) some DS tree whose root be-
longs to eqsisDS(inter) for some node inter ap-
pearing — on DS — between v and one of its
mothers on PA. In our example, (ii) and (iii) are
known to be empty sets, while (i) is at most “danc-
ing”. Consequently, “dancing” is the only poten-
tial PA sister of v. Now (8) is finally able to con-
tribute. As “a” is the only possible DS mother
of v and any article has empty basic semantics,
one is entitled to equate

∧ {sem(u) : u −→PA v} to∧ {sem(u) : u ∈ eqsisPA(v)}. Even though it is
not known whether v will ever have mothers or
daughters, (8) knows that the left-hand side of the
equation yields either the whole intended seman-
tics or nothing, while the right-hand side yields ei-
ther nothing or at most dance(x) ∧ female(x) .
Therefore, the only solution to the equation is
nothing on both sides, implying that eqsisPA(v)
is empty and thus v is deleted by definition (9).

Such strong interplay is only possible because
we have created distinct nodes for the different
parts of speech — or rather, the two different DS
valencies — of “female”. With somewhat more
complicated, heavier constraints it would be pos-
sible to have the same propagation for one sin-
gle node selecting from different parts of speech.
Notwithstanding, that does not seem worth the ef-
fort because a model creation algorithm would be
perfectly able to detect the diverging DS valencies,
create as many nodes as needed and distribute the
right lexical entries among them.

4 Implementation and Performance
Remarks

The ideas presented in Section 3 were fully im-
plemented in a development branch of the XDK.
As with the original XDK, all development is
based on the multiparadigm programming system
Mozart4.

The implementation closely follows the original
CP approach of the XDK and strongly reflects the
constraints we have presented after some rather
standard transformations to CP, namely:

• variable identifiers in hooks and holes, as
well as all semantic input literals such as

4http://www.mozart-oz.org

human(x) and tap(e, x, y), are encoded as
integer values. Features bsem/sem are im-
plemented as set constants/variables of such
integers;

• logic conjunction ∧ is thus modelled by set
union ∪. Each “big” conjunction is re-
duced to the form

∧ {f(v) : v ∈ V }, where
V is a set variable of integer-encoded node
identifiers, and modelled by a union selec-
tion constraint

⋃ 〈f(1) f(2) ... f(M)〉 [V],
whereM is the maximum node identifier and
which constrains its result — a set variable
— to be the union of f(v) for all v ∈ V ;

• implications of the form x ⇒ y are imple-
mented as y ⊆ x, while those of the form
x → y as reify(x) ≤ reify(y) , where
the result of reify(x) is an integer-encoded
boolean variable constrained to coincide with
the truth-value of expression x.

Our branch of the XDK now counts on two new
principles, namely (i) Delete, which requires the
Graph principle, creates doubles for the node at-
tributes introduced by the latter, providing the il-
lusion of deletion, and introduces features for sis-
terhood constraints; and (ii) Compsem, imposing
all constraints described in Section 3.

A few preliminary proof-of-concept experi-
ments were carried out with input similar to (1)
and linguistically and combinatorially analogous
to our “ballerina” example. In all of them, the sys-
tem was able to generate all paraphrases with no
failed state (backtracking) in search, which means
that propagation was maximal for all cases. Al-
though our design supports more complex linguis-
tic constructs such as relative clauses and prepo-
sition phrases and is expected to behave similarly
for those cases, we have not made any such exper-
iments so far. This is so because we are currently
prioritizing the issue of model creation and cover-
age of other generation tasks.

5 Conclusions and Future Work

In this paper we have presented the results of the
very first steps towards the application of XDG to
Natural Language Generation, hopefully in an in-
tegrated architecture. Our main contribution and
focus was a formulation of lexicalization disjunc-
tion in XDG terms, preserving the good properties
of modularity and extensibility while achieving

49

good propagation. We also hope to have demon-
strated how strong the interplay between linguis-
tic dimensions can be in XDG. As basic issues
as the very nature of input were discussed also as
an evidence that there is still a long way to go.
We are currently working on extending our design
to cover other generation tasks than lexicalization
and perform model creation.

Acknowledgements

We would like to thank Claire Gardent and Denys
Duchier, for all their invaluable insights and com-
ments, and group Langue & Dialogue and Brazil-
ian agencies CNPq and CAPES, for funding this
research project and travel to COLING/ACL.

References
Copestake, A. A., Lascarides, A., and Flickinger, D.

(2001). An algebra for semantic construction in
constraint-based grammars. In Meeting of the As-
sociation for Computational Linguistics, pages 132–
139.

Debusmann, R. (2004). Multiword expressions as de-
pendency subgraphs. In Proceedings of the ACL
2004 Workshop on Multiword Expressions: Integrat-
ing Processing, Barcelona/ESP.

Debusmann, R., Duchier, D., Koller, A., Kuhlmann,
M., Smolka, G., and Thater, S. (2004a). A rela-
tional syntax-semantics interface based on depen-
dency grammar. In Proceedings of the COLING
2004 Conference, Geneva/SUI.

Debusmann, R., Duchier, D., and Kruijff, G.-J. M.
(2004b). Extensible dependency grammar: A new
methodology. In Proceedings of the COLING
2004 Workshop on Recent Advances in Dependency
Grammar, Geneva/SUI.

Debusmann, R., Duchier, D., and Niehren, J. (2004c).
The xdg grammar development kit. In Proceedings
of the MOZ04 Conference, volume 3389 of Lec-
ture Notes in Computer Science, pages 190–201,
Charleroi/BEL. Springer.

Debusmann, R., Duchier, D., and Rossberg, A. (2005).
Modular Grammar Design with Typed Parametric
Principles. In Proceedings of FG-MOL 2005, Ed-
inburgh/UK.

Debusmann, R. and Smolka, G. (2006). Multi-
dimensional dependency grammar as multigraph de-
scription. In Proceedings of FLAIRS-19, Melbourne
Beach/US. AAAI.

Reiter, E. and Dale, R. (2000). Building Natural Lan-
guage Generation Systems. Cambridge University
Press.

Van Roy, P. and Haridi, S. (2004). Concepts, Tech-
niques, and Models of Computer Programming.
MIT Press.

50

Author Index

Al-Raheb, Yafa,25

Banjevic, Stefan,9

Demko, Michael,9

Hendriks, Petra,1
Hoeks, John,1

Marques Pelizzoni, Jorge,41

Penn, Gerald,9
Prost, Jean-Philippe,17

Roux, Claude,33

van der Feen, Marieke,1
Volpe Nunes, Maria das Graças,41

51

	Program
	Constraints in Language Processing: Do Grammars Count?
	Control Strategies for Parsing with Freer Word-Order Languages
	Numbat: Abolishing Privileges when Licensing New Constituents in Constraint-Oriented Parsing
	Pragmatic Constraints on Semantic Presupposition
	Coupling a Linguistic Formalism and a Script Language
	Capturing Disjunction in Lexicalization with Extensible Dependency Grammar

