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Abstract
Natural language processing technology
for the dialects of Arabic is still in its
infancy, due to the problem of obtaining
large amounts of text data for spoken Ara-
bic. In this paper we describe the de-
velopment of a part-of-speech (POS) tag-
ger for Egyptian Colloquial Arabic. We
adopt a minimally supervised approach
that only requires raw text data from sev-
eral varieties of Arabic and a morpholog-
ical analyzer for Modern Standard Ara-
bic. No dialect-specific tools are used. We
present several statistical modeling and
cross-dialectal data sharing techniques to
enhance the performance of the baseline
tagger and compare the results to those
obtained by a supervised tagger trained
on hand-annotated data and, by a state-of-
the-art Modern Standard Arabic tagger ap-
plied to Egyptian Arabic.

1 Introduction

Part-of-speech (POS) tagging is a core natural lan-
guage processing task that can benefit a wide range
of downstream processing applications. Tagging
is often the first step towards parsing or chunking
(Osborne, 2000; Koeling, 2000), and knowledge
of POS tags can benefit statistical language mod-
els for speech recognition or machine translation
(Heeman, 1998; Vergyri et al., 2004). Many ap-
proaches for POS tagging have been developed in
the past, including rule-based tagging (Brill, 1995),

HMM taggers (Brants, 2000; Cutting and oth-
ers, 1992), maximum-entropy models (Rathnaparki,
1996), cyclic dependency networks (Toutanova et
al., 2003), memory-based learning (Daelemans et
al., 1996), etc. All of these approaches require ei-
ther a large amount of annotated training data (for
supervised tagging) or a lexicon listing all possible
tags for each word (for unsupervised tagging). Tag-
gers have been developed for a variety of languages,
including Modern Standard Arabic (MSA) (Khoja,
2001; Diab et al., 2004). Since large amount of text
material as well as standard lexicons can be obtained
in these cases, POS tagging is a straightforward task.

The dialects of Arabic, by contrast, are spoken
rather than written languages. Apart from small
amounts of written dialectal material in e.g. plays,
novels, chat rooms, etc., data can only be obtained
by recording and manually transcribing actual con-
versations. Moreover, there is no universally agreed
upon writing standard for dialects (though several
standardization efforts are underway); any large-
scale data collection and transcription effort there-
fore requires extensive training of annotators to en-
sure consistency. Due to this data acquisition bot-
tleneck, the development of NLP technology for di-
alectal Arabic is still in its infancy. In addition to the
problems of sparse training data and lack of writing
standards, tagging of dialectal Arabic is difficult for
the following reasons:

• Resources such as lexicons, morphological an-
alyzers, tokenizers, etc. are scarce or non-
existent for dialectal Arabic.

• Dialectal Arabic is a spoken language. Tagging
spoken language is typically harder than tag-
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ging written language, due to the effect of dis-
fluencies, incomplete sentences, varied word
order, etc.

• The rich morphology of Arabic leads to a
large number of possible word forms, which
increases the number of out-of-vocabulary
(OOV) words.

• The lack of short vowel information results in
high lexical ambiguity.

In this paper we present an attempt at developing
a POS tagger for dialectal Arabic in a minimally
supervised way. Our goal is to utilize existing re-
sources and data for several varieties of Arabic in
combination with unsupervised learning algorithms,
rather than developing dialect-specific tools. The
resources available to us are the CallHome Egyp-
tian Colloquial Arabic (ECA) corpus, the LDC Lev-
antine Arabic (LCA) corpus, the LDC MSA Tree-
bank corpus, and a generally available morpholog-
ical analysis tool (the LDC-distributed Buckwalter
stemmer) for MSA. The target dialect is ECA, since
this is the only dialectal corpus for which POS an-
notations are available. Our general approach is
to bootstrap the tagger in an unsupervised way us-
ing POS information from the morphological ana-
lyzer, and to subsequently improve it by integrating
additional data from other dialects and by general
machine learning techniques. We compare the re-
sult against the performance of a tagger trained in a
supervised way and an unsupervised tagger with a
hand-developed ECA lexicon.

2 Data

The ECA corpus consists of telephone conversations
between family members or close friends, with one
speaker being located in the U.S. and the other in
Egypt. We use the combined train, eval96 and hub5
sections of the corpus for training, the dev set for
development and the eval97 set for evaluation. The
LCA data consists of telephone conversations on
pre-defined topics between Levantine speakers pre-
viously unknown to each other; all of the available
data was used. The Treebank corpus is a collection
of MSA newswire text from Agence France Press,
An Nahar News, and Unmah Press. We use parts 1
(v3.0), 2 (v2.0) and 3 (v1.0). The sizes of the vari-
ous corpora are shown in Table 1.

The ECA corpus was originally transcribed in a “ro-
manized” form; a script representation was then de-
rived automatically from the romanized transcripts.
The script, therefore, does not entirely conform to
the MSA standard: romanized forms may repre-
sent actual pronunciations and contain such MSA
→ ECA changes as /θ/ → /s/ or /t/ and /ð/ → /z/
or /d/. The resulting representation cannot be unam-
biguously mapped back to MSA script; the variants
/s/ or /t/, for instance, are represented by � or �� ,

rather than �� . This introduces additional noise into

the data, but it also mimics the real-world situation
of variable spelling standards that need to be handled
by a robust NLP system. We use the script represen-
tation of this corpus for all our experiments. The
ECA corpus is accompanied by a lexicon contain-
ing the morphological analysis of all words, i.e. an
analysis in terms of stem and morphological charac-
teristics such as person, number, gender, POS, etc.
Since the analysis is based on the romanized form, a
single tag can be assigned to the majority of words
(75% of all tokens) in the corpus. We use this assign-
ment as the reference annotation for our experiments
to evaluate the output of our tagger. The remaining
25% tokens (ambiguous words) have 2 or more tags
in the lexicon and are thus ignored during evaluation
since the correct reference tag cannot be determined.

Both the LCA and the MSA Treebank data sets
were transcribed in standard MSA script. The LCA
corpus only consists of raw orthographic transcrip-
tions; no further annotations exist for this data set.
Each word in the Treebank corpus is associated with
all of its possible POS tags; the correct tag has been
marked manually. We use the undecomposed word
forms rather than the forms resulting from splitting
off conjunctions, prepositions, and other clitics. Al-
though improved tokenization can be expected to
result in better tagging performance, tokenization
tools for dialectal Arabic are currently not available,
and our goal was to create comparable conditions
for tagging across all of our data sets. Preprocessing
of the data thus only included removing punctuation
from the MSA data and removing word fragments
from the spoken language corpora. Other disfluen-
cies (fillers and repetitions) were retained since they
are likely to have predictive value. Finally, single-
ton words (e.g. inconsistent spellings) were removed
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from the LCA data. The properties of the different
data sets (number of words, n-grams, and ambigu-
ous words) are displayed in Table 1.

ECA LCA MSA
train dev test

sentences 25k 6k 2.7k 114k 20k
# tokens 156k 31k 12k 476k 552k
# types 15k 5k 1.5k 16k 65k
# bigrams 81k 20k 7k 180k 336k
# trigrams 125k 26k 10k 320k 458k
% ambig. 24.4 27.8 28.2 — —

Table 1: Corpus statistics for ECA, LCA and MSA.

The only resource we utilize in addition to raw
data is the LDC-distributed Buckwalter stemmer.
The stemmer analyzes MSA script forms and out-
puts all possible morphological analyses (stems and
POS tags, as well as diacritizations) for the word.
The analysis is based on an internal stem lexi-
con combined with rules for affixation. Although
the stemmer was developed primarily for MSA, it
can accommodate a certain percentage of dialectal
words. Table 2 shows the percentages of word types
and tokens in the ECA and LCA corpora that re-
ceived an analysis from the Buckwalter stemmer.
Since both sets contain dialectal as well as standard
MSA forms, it is not possible to determine precisely
how many of the unanalyzable forms are dialectal
forms vs. words that were rejected for other rea-
sons, such as misspellings. The higher percentage
of rejected word types in the ECA corpus is most
likely due to the non-standard script forms described
above.

Type Token
N ECA LCA ECA LCA

0 37.6 23.3 18.2 28.2
1 34.0 52.5 33.6 40.4
2 19.4 17.7 26.4 19.9
3 7.2 5.2 16.2 10.5
4 1.4 1.0 5.0 2.3
5 0.1 0.1 0.4 0.6

Table 2: Percentage of word types/tokens with N possible
tags, as determined by the Buckwalter stemmer. Words with
0 tags are unanalyzable.

The POS tags used in the LDC ECA annota-

tion and in the Buckwalter stemmer are rather fine-
grained; furthermore, they are not identical. We
therefore mapped both sets of tags to a unified, sim-
pler tagset consisting only of the major POS cate-
gories listed in Table 2. The mapping from the orig-
inal Buckwalter tag to the simplified set was based
on the conversion scheme suggested in (Bies, 2003).
The same underlying conversion rules were applica-
ble to most of the LDC tags; those cases that could
not be determined automatically were converted by
hand.

Symbol Gloss (%)
CC coordinating conjunction 7.15
DT determiner 2.23
FOR foreign word 1.18
IN preposition 7.46
JJ adjective 6.02
NN noun 19.95
NNP proper noun 3.55
NNS non-singular noun 3.04
NOTAG non-word 0.05
PRP pronoun 5.85
RB adverb 4.13
RP particle 9.71
UH disfluency, interjection 9.55
VBD perfect verb 6.53
VBN passive verb 1.88
VBP imperfect verb 10.62
WP relative pronoun 1.08

Table 3: Collapsed tagset and percentage of occur-
rence of each tag in the ECA corpus.

Prior to the development of our tagger we com-
puted the cross-corpus coverage of word n-grams
in the ECA development set, in order to verify our
assumption that utilizing data from other dialects
might be helpful. Table 4 demonstrates that the
n-gram coverage of the ECA development set in-
creases slightly by adding LCA and MSA data.

Types Tokens
1gr 2gr 3gr 1gr 2gr 3gr

ECA 64 33 12 94 58 22
LCA 31 9 1.4 69 20 3.7
ECA + LCA 68 35 13 95 60 23
MSA 32 3.7 0.2 66 8.6 0.3
ECA + MSA 71 34 12 95 60 22

Table 4: Percentages of n-gram types and tokens in ECA dev
set that are covered by the ECA training set, the LCA set, com-
bined ECA training + LCA set, and MSA sets. Note that adding
the LCA or MSA improves the coverage slightly.
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3 Baseline Tagger

We use a statistical trigram tagger in the form of a
hidden Markov model (HMM). Let w0:M be a se-
quence of words (w0, w1, . . . , wM ) and t0:M be the
corresponding sequence of tags. The trigram HMM
computes the conditional probability of the word
and tag sequence p(w0:M , t0:M ) as:

P (t0:M |w0:M ) =

M
∏

i=0

p(wi|ti)p(ti|ti−1, ti−2) (1)

The lexical model p(wi|ti) characterizes the dis-
tribution of words for a specific tag; the contex-
tual model p(ti|ti−1, ti−2) is trigram model over
the tag sequence. For notational simplicity, in
subsequent sections we will denote p(ti|ti−1, ti−2)
as p(ti|hi), where hi represents the tag history.
The HMM is trained to maximize the likelihood
of the training data. In supervised training, both
tag and word sequences are observed, so the max-
imum likelihood estimate is obtained by relative fre-
quency counting, and, possibly, smoothing. Dur-
ing unsupervised training, the tag sequences are
hidden, and the Expectation-Maximization Algo-
rithm is used to iteratively update probabilities based
on expected counts. Unsupervised tagging re-
quires a lexicon specifying the set of possible tags
for each word. Given a test sentence w′

0:M , the
Viterbi algorithm is used to find the tag sequence
maximizing the probability of tags given words:
t∗
0:M = argmaxt0:M p(t0:M |w′

0:M ). Our taggers
are implemented using the Graphical Models Toolkit
(GMTK) (Bilmes and Zweig, 2002), which allows
training a wide range of probabilistic models with
both hidden and observed variables.

As a first step, we compare the performance of
four different baseline systems on our ECA dev set.
First, we trained a supervised tagger on the MSA
treebank corpus (System I), in order to gauge how a
standard system trained on written Arabic performs
on dialectal speech. The second system (System II)
is a supervised tagger trained on the manual ECA
POS annotations. System III is an unsupervised tag-
ger on the ECA training set. The lexicon for this
system is derived from the reference annotations of
the training set – thus, the correct tag is not known
during training, but the lexicon is constrained by

expert information. The difference in accuracy be-
tween Systems II and III indicates the loss due to the
unsupervised training method. Finally, we trained a
system using only the unannotated ECA data and a
lexicon generated by applying the MSA analyzer to
the training corpus and collecting all resulting tags
for each word. In this case, the lexicon is much less
constrained; moreover, many words do not receive
an output from the stemmer at all. This is the train-
ing method with the least amount of supervision and
therefore the method we are interested in most.

Table 5 shows the accuracies of the four systems
on the ECA development set. Also included is a
breakdown of accuracy by analyzable (AW), unana-
lyzable (UW), and out-of-vocabulary (OOV) words.
Analyzable words are those for which the stemmer
outputs possible analyses; unanalyzable words can-
not be processed by the stemmer. The percent-
age of unanalyzable word tokens in the dev set is
18.8%. The MSA-trained tagger (System I) achieves
an accuracy of 97% on a held-out set (117k words)
of MSA data, but performs poorly on ECA due to
a high OOV rate (43%). By contrast, the OOV
rate for taggers trained on ECA data is 9.5%. The
minimally-supervised tagger (System IV) achieves a
baseline accuracy of 62.76%. In the following sec-
tions, we present several methods to improve this
system, in order to approximate as closely as possi-
ble the performance of the supervised systems. 1

System Total AW UW OOV
I 39.84 55.98 21.05 19.21
II 92.53 98.64 99.09 32.20
III 84.88 90.17 99.11 32.64
IV 62.76 67.07 20.74 21.84

Table 5: Tagging accuracy (%) for the 4 baseline
systems. AW = analyzable words, UW unanalyzable
words, OOV = out-of-vocabulary words.

4 System Improvements

4.1 Adding Affix Features

The low accuracy of unanalyzable and OOV words
may significantly impact downstream applications.

1The accuracy of a naive tagger which labels all words with
the most likely tag (NN) achieves an accuracy of 20%. A tagger
which labels words with the most likely tag amongst its possible
tags achieves an accuracy of 52%.
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One common way to improve accuracy is to add
word features. In particular, we are interested in
features that can be derived automatically from the
script form, such as affixes. Affix features are
added in a Naive Bayes fashion to the basic HMM
model defined in Eq.1. In addition to the lexical
model p(wi|ti) we now have prefix and suffix mod-
els p(ai|ti) and p(bi|ti), where a and b are the prefix
and suffix variables, respectively. The affixes used
are: ��� -, � � -, �� -, ��� -, 	
� -, � ��
 -, � ���� -, �� -, -��� , -������ , -��� � ,

-��� , -��� � � . Affixes are derived for each word by simple
substring matching. More elaborate techniques are
not used due to the philosophy of staying within a
minimally supervised approach that does not require
dialect-specific knowledge.

4.2 Constraining the Lexicon

The quality of the lexicon has a major impact on
unsupervised HMM training. Banko et. al. (2004)
demonstrated that tagging accuracy improves when
the number of possible tags per word in a “noisy lex-
icon” can be restricted based on corpus frequency.
In the current setup, words that are not analyzable
by the MSA stemmer are initally assigned all pos-
sible tags, with the exception of obvious restricted
tags like the begin and end-of-sentence tags, NO-
TAG, etc. Our goal is to constrain the set of tags for
these unanalyzable words. To this end, we cluster
both analyzable and unanalyzable words, and reduce
the set of possible tags for unanalyzable words based
on its cluster membership. Several different clus-
tering algorithms could in principle be used; here
we utilize Brown’s clustering algorithm (Brown and
others, 1992), which iteratively merges word clus-
ters with high mutual information based on distribu-
tional criteria. The tagger lexicon is then derived as
follows:

1. Generate K clusters of words from data.
2. For each cluster C , calculate P (t|C) =

∑

w∈A,C P (t|w)P (w|C) where t and w are the
word and tag, and A is the set of analyzable
words.

3. The cluster’s tagset is determined by choosing
all tags t′ with P (t′|C) above a certain thresh-
old γ.

4. All unanalyzable words within this cluster are
given these possible tags.

The number of clusters K and the threshold γ are
variables that affect the final tagset for unanalyzable
words. Using K = 200 and γ = 0.05 for instance,
the number of tags per unanalyzable word reduces to
an average of four and ranges from one to eight tags.
There is a tradeoff regarding the degree of tagset re-
duction: choosing fewer tags results in less confus-
ability but may also involve the removal of the cor-
rect tag from a word’s lexicon entry. We did not
optimize for K and γ since an annotated develop-
ment set for calculating accuracy is not available in
a minimally supervised approach in practice. Never-
theless, we have observed that tagset reduction gen-
erally leads to improvements compared to the base-
line system with an unconstrained lexicon.

The improvements gained from adding affix fea-
tures to System IV and constraining the lexicon are
shown in Table 6. We notice that adding affix fea-
tures yields improvements in OOV accuracy. The
relationship between the constrained lexicon and un-
analyzable word accuracy is less straighforward. In
this case, the degradation of unanalyzable word ac-
curacy is due to the fact that the constrained lexicon
over-restricts the tagsets of some frequent unanalyz-
able words. However, the constrained lexicon gen-
erally improves the overall accuracy and is thus a
viable technique. Finally, the combination of affix
features and constrained lexicon results in a tagger
with 69.83% accuracy, which is a 7% absolute im-
provement over System IV.

System Total AW UW OOV
System IV 62.76 67.07 20.74 21.84
+affixes 67.48 71.30 22.82 29.82
+constrained lex 66.25 70.29 21.28 26.32
+both 69.83 74.10 24.65 27.68

Table 6: Improvements in tagging accuracy from
adding affix features and constraining lexicon.

5 Cross-Dialectal Data Sharing

Next we examine whether unannotated corpora in
other dialects (LCA) can be used to further improve
the ECA tagger. The problem of data sparseness for
Arabic dialects would be less severe if we were able
to exploit the commonalities between similar di-
alects. In natural language processing, Kim & Khu-
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danpur (2004) have explored techniques for using
parallel Chinese/English corpora for language mod-
eling. Parallel corpora have also been used to in-
fer morphological analyzers, POS taggers, and noun
phrase bracketers by projections via word align-
ments (Yarowsky et al., 2001). In (Hana et al.,
2004), Czech data is used to develop a morphologi-
cal analyzer for Russian.

In contrast to these works, we do not require par-
allel/comparable corpora or a bilingual dictionary,
which may be difficult to obtain. Our goal is to
develop general algorithms for utilizing the com-
monalities across dialects for developing a tool for
a specific dialect. Although dialects can differ very
strongly, they are similar in that they exhibit mor-
phological simplifications and a different word or-
der compared to MSA (e.g. SVO rather than VSO
order), and close dialects share some vocabulary.

Each of the tagger components (i.e. contextual
model p(ti|hi), lexical model p(wi|ti), and affix
model p(ai|ti)p(bi|ti)) can be shared during train-
ing. In the following, we present two approaches
for sharing data between dialects, each derived from
following different assumptions about the underly-
ing data generation process.

5.1 Contextual Model Interpolation

Contextual model interpolation is a widely-used
data-sharing technique which assumes that mod-
els trained on data from different sources can be
“mixed” in order to provide the most appropriate
probability distribution for the target data. In our
case, we have LCA as an out-of-domain data source,
and ECA as the in-domain data source, with the
former being about 4 times larger than the latter.
If properly combined, the larger amount of out-of-
domain data might improve the robustness of the
in-domain tagger. We therefore use a linear inter-
polation of in-domain and out-of-domain contextual
models. The joint probability p(w0:M , t0:M ) be-
comes:

M
∏

i=0

pE(wi|ti)(λpE(ti|hi) + (1− λ)pL(ti|hi)) (2)

Here λ defines the interpolation weights for the ECA
contextual model pE(ti|hi) and the LCA contex-
tual model pL(ti|hi). pE(wn|tn) is the ECA lexi-

cal model. The interpolation weight λ is estimated
by maximizing the likelihood of a held-out data set
given the combined model. As an extension, we al-
low the interpolation weights to be a function of the
current tag: λ(ti), since class-dependent interpola-
tion has shown improvements over basic interpola-
tion in applications such as language modeling (Bu-
lyko et al., 2003).

5.2 Joint Training of Contextual Model

As an alternative to model interpolation, we consider
training a single model jointly from the two different
data sets. The underlying assumption of this tech-
nique is that tag sequences in LCA and ECA are
generated by the same process, whereas the obser-
vations (the words) are generated from the tag by
two different processes in the two different dialects.
The HMM model for joint training is expressed as:

M
∏

i=0

(αipE(wi|ti) + (1− αi)pL(wi|ti))pE+L(ti|hi)

(3)
where αi=

{

1 if word wi is ECA
0 otherwise

A single conditional probability table is used for
the contextual model, whereas the lexical model
switches between two different parameter tables,
one for LCA observations and another for ECA ob-
servations. During training, the contextual model is
trained jointly from both ECA and LCA data; how-
ever, the data is divided into ECA and LCA portions
when updating the lexical models. Both the contex-
tual and lexical models are trained within the same
training pass. A graphical model representation of
this system is shown in Figure 1. This model can
be implemented using the functionality of switching
parents (Bilmes, 2000) provided by GMTK.

During decoding, the tagger can in principle
switch its lexical model to ECA or LCA, depending
on the input; this system thus is essentially a multi-
dialect tagger. In the experiments reported below,
however, we exclusively test on ECA, and the LCA
lexical model is not used. Due to the larger amount
of data available for contextual model, joint train-
ing can be expected to improve the performance on
the target dialect. The affix models can be trained
jointly in a similar fashion.
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5.3 Data sharing results

The results for data sharing are shown in Table 7.
The systems Interpolate-λ and Interpolate-λ(ti) are
taggers built by interpolation and class-dependent
interpolation, respectively. For joint training, we
present results for two systems: JointTrain(1:4) is
trained on the existing collection ECA and LCA
data, which has a 1:4 ratio in terms of corpus size;
JointTrain(2:1) weights the ECA data twice, in or-
der to bias the training process more towards ECA’s
distribution. We also provide results for two more
taggers: the first (CombineData) is trained “naively”
on the pooled data from both ECA and LCA, with-
out any weighting, interpolation, or changes to the
probabilistic model. The second (CombineLex) uses
a contextual model trained on ECA and a lexical
model estimated from both ECA and LCA data. The
latter was trained in order to assess the potential for
improvement due to the reduction in OOV rate on
the dev set when adding the LCA data (cf. Table 4).
All the above systems utilize the constrained lexi-
con, as it consistently gives improvements.

Table 7 shows that, as expected, the brute-force
combination of training data is not helpful and de-
grades performance. CombineLex results in higher
accuracy but does not outperform models in Table 6.
The same is true of the taggers using model interpo-
lation. The best performance is obtained by the sys-
tem using the joint contextual model with separate
lexical models, with 2:1 weighting of ECA vs. LCA
data. Finally, we added word affix information to
the best shared-data system, which resulted in an ac-
curacy of 70.88%. In contrast, adding affix to Com-
bineData achieves 61.78%, suggesting that improve-
ments in JointTrain comes from the joint training
technique rather than simple addition of new data.
This result is directly comparable to the best system
in Section 4 (last row of Table 6)2.

The analysis of tagging errors revealed that the
most frequent confusions are between VBD/NNS,

2We also experimented with joint training of ECA+MSA.
This gave good OOV accuracy, but overall it did not improve
over the best system in Section 4. Also, note that all accura-
cies are calculated by ignoring the scoring of ambiguous words,
which have several possible tags as the correct reference. If we
score the ambiguous words as correct when the hypothesized
tag is within this set, the accuracy of ECA+LCA+affix Joint-
Train rises to 77.18%, which is an optimistic upper-bound on
the total accuracy.

System Total AW UW OOV
CombineData 60.79 64.21 20.27 26.10
CombineLex 65.13 69.47 18.81 22.34
Interpolate-λ 62.82 67.42 16.98 17.44
Interpolate-λ(ti) 63.49 67.96 17.19 19.33
JointTrain(1:4) 62.53 66.18 27.78 26.52
JointTrain(2:1) 66.95 71.02 31.72 26.81

JointTrain(2:1)+affix
w/ ECA+LCA 70.88 75.20 28.17 34.06
w/ ECA+MSA 67.85 71.50 17.76 31.76

Table 7: Tagging accuracy for various data sharing
methods.

Figure 1: Graphical Model of Joint Training: switching be-

tween different lexical models while sharing the underlying

contextual model. The variable s represents the α term in Eq.

3 and chooses the lexical model depending on the origin of the

word.

VBP/VBD, and JJ/NN. Commonly mistagged words
include cases like � � ���� � � (“means”-3rd.sg), which is

labeled as a particle in the reference but is most often
tagged as a verb, which is also a reasonable tag.

6 Discussion and Future Work

Table 8 highlights the performance of the various
taggers on the ECA evaluation set. The accuracy
of the unsupervised HMM tagger (System IV) im-
proves from 58.47% to 66.61% via the affix fea-
tures and constrained lexicon, and to a 68.48% by
including joint training. These improvements are
statistical significant at the 0.005 level according to
a difference-of-proportions test.

Several of the methods proposed here deserve fur-
ther work: first, additional ways of constraining the
lexicon can be explored, which may include impos-
ing probability distributions on the possible tags for
unanalyzable words. Other clustering algorithms
(e.g. root-based clustering of Arabic (De Roeck and

61



Al-Fares, 2000)), may be used instead of, or in addi-
tion to, distribution-based clustering.

Cross-dialectal data sharing for tagging also de-
serves more research. For instance, the performance
of the contextual model interpolation might be in-
creased if one trains interpolation weights depen-
dent on the classes based on previous two tags.
Joint training of contextual model and data sharing
for lexical models can be combined; other dialec-
tal data may also be added into the same joint train-
ing framework. It would also be useful to extend
these methods to create a more fine-grained part-of-
speech tagger with case, person, number, etc. in-
formation. Stems, POS, and fine-grained POS can
be combined into a factorial hidden Markov model,
so that relationships between the stems and POS as
well as data sharing between dialects can be simul-
taneously exploited to build a better system.

In conclusion, we have presented the first steps
towards developing a dialectal Arabic tagger with
minimal supervision. We have shown that adding
affix features and constraining the lexicon for unan-
alyzable words are simple resource-light methods to
improve tagging accuracy. We also explore the pos-
sibility of improving an ECA tagger using LCA data
and present two data sharing methods. The combi-
nation of these techniques yield a 10% improvement
over the baseline.

System Total AW UW OOV
System IV 58.47 64.71 22.34 17.50
+affix+lexicon 66.61 72.87 20.17 25.49
Interpolate II 60.07 66.56 20.55 17.61
JointTr.+affix 68.48 76.20 48.44 17.76
CombineLex 61.35 68.12 16.02 16.87
Table 8: Tagging accuracy on ECA evaluation set
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