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Abstract

Active learning (AL) promises to reduce
the cost of annotating labeled datasets for
trainable human language technologies.
Contrary to expectations, when creating
labeled training material for HPSG parse
selection and laterreusing it with other
models, gains from AL may be negligible
or even negative. This has serious impli-
cations for using AL, showing that addi-
tional cost-saving strategies may need to
be adopted. We explore one such strategy:
using a model during annotation to auto-
mate some of the decisions. Our best re-
sults show an 80% reduction in annotation
cost compared with labeling randomly se-
lected data with a single model.

1 Introduction

AL methods such as uncertainty sampling (Cohn
et al., 1995) or query by committee (Seung et al.,
1992) have all been shown to dramatically reduce
the cost of creating highly informative labeled sets
for speech and language technologies. However, ex-
periments using AL assume a model that is fixed
ahead of time: the model used in AL is the same
one we are currently developing training material
for. For many complex tasks, we are unlikely to have
a clear idea how best to model the task at the time of
annotation; thus, in practice, we will need toreuse
the labeled training material withothermodels.

In this paper, we show that AL can be brittle: un-
der a variety of natural reuse scenarios (for example,

allowing the later model to improve in quality, or
else reusing the labeled training material using a dif-
ferent machine learning algorithm) performance of
later models can be significantly undermined when
training upon material created using AL. The key
to knowing how well one model will be able to use
material selected by another is their relatedness – yet
there may be no means to determine this prior to an-
notation, leading to a chicken-and-egg problem.

Our reusability results thus demonstrate that, ad-
ditionally, other strategies must be adopted to en-
sure we reduce the total cost of annotation. In Os-
borne and Baldridge (2004), we showed that ensem-
ble models can increase model performance and also
produce annotation savings when incorporated into
the AL process. An obvious next step is automating
some decisions. Here, we consider a simple automa-
tion strategy that reduces annotation costsindepen-
dentlyof AL and examine its effect on reusability.
We find that using both semi-automation and AL
with high-quality models can eliminate the perfor-
mance gap found in many reuse scenarios. However,
for weak models, we show that semi-automation
with random sampling ismoreeffective for improv-
ing reusability than using it with AL – demonstrat-
ing further cause for caution with AL.

Finally, we show that under the standard assump-
tion of reuse by the selecting model, using a strat-
egy which combines AL, ensembling, and semi-
automated annotation, we are able to achieve our
highest annotation savings to date on the complex
task of parse selection for HPSG: an 80% reduction
in annotation cost compared with labeling randomly
selected data with our best single model.



2 Parse selection for Redwoods

We now briefly describe the Redwoods treebanking
environment (Oepen et al., 2002), our parse selec-
tion models and their performance.

2.1 The Redwoods Treebank

The Redwoods treebank project provides tools and
annotated training material for creating parse se-
lection models for the English Resource Grammar
(ERG, Flickinger (2000)). The ERG is a hand-built
broad-coverage HPSG grammar that provides an ex-
plicit grammar for the treebank. Using this approach
has the advantage that analyses for within-coverage
sentences convey more information than just phrase
structure: they also contain derivations, semantic in-
terpretations, and basic dependencies.

For each sentence, Redwoods records all analyses
licensed by the ERG and indicates which of them,
if any, the annotators selected as being contextually
correct. When selecting such distinguished parses,
rather than simply enumerating all parses and pre-
senting them to the annotator, annotators make use
of discriminantswhich disambiguate the parse for-
est more rapidly, as described in section 3.

In this paper, we report results using the third
growth of Redwoods, which contains English sen-
tences from appointment scheduling and travel plan-
ning domains of Verbmobil. In all, there are 5302
sentences for which there are at least two parses and
a unique preferred parse is identified. These sen-
tences have 9.3 words and 58.0 parses on average.

2.2 Modeling parse selection

As is now standard for feature-based grammars, we
mainly use log-linear models for parse selection
(Johnson et al., 1999). For log-linear models, the
conditional probability of an analysisti given a sen-
tence with a set of analysesτ = {t . . .} is given as:

P (ti|s,Mk) =
exp(

∑m
j=1 fj(ti)wj)
Z(s)

(1)

where fj(ti) returns the number of times feature
j occurs in analysist, wj is a weight from model
Mk, andZ(s) is a normalization factor for the sen-
tence. The parse with the highest probability is taken
as the preferred parse for the model. We use the

limited memory variable metric algorithm to deter-
mine the weights. We do not regularize our log-
linear models since labeled data -necessary to set
hyperparameters- is in short supply in AL.

We also make use of simpler perceptron models
for parse selection, which assign scores rather than
probabilities. Scores are computed by taking the in-
ner product of the analysis’ feature vector with the
parameter vector:

score(ti, s, Mk) =
m∑

j=1

fj(ti)wj (2)

The preferred parse is that with the highest score out
of all analyses. We do not use voted perceptrons
here (which indeed have better performance) as for
the reuse experiments described later in section 6 we
really do wish to use a model that is (potentially)
worse than a log-linear model.

Later for AL , it will be useful to map perceptron
scores into probabilities, which we do by exponenti-
ating and renormalizing the score:

Pp(ti | s,Mk) =
exp(score(ti, s, Mk))

Z(s)
(3)

Z(s) is again a normalizing constant.
The previous parse selection models (equations

1 and 3) use a single model (feature set). It is
possible to improve performance using anensem-
ble parse selection model. We create our ensemble
model (called aproduct model) using theproduct-
of-expertsformulation (Hinton, 1999):

P (ti|s,M1 . . .Mn) =
∏n

j=1 P (ti|s,Mj)
Z(s)

(4)

Note that each individual modelMi is a well-defined
distribution usually taken from a fixed set of mod-
els. Z(s) is a constant to ensure the product distri-
bution sums to one over the set of possible parses. A
product model effectively averages the contributions
made by each of the individual models. Though sim-
ple, this model is sufficient to show enhanced perfor-
mance when using multiple models.



2.3 Parse selection performance

Osborne and Baldridge (2004) describe three dis-
tinct feature sets –configurational, ngram, and
conglomerate – which utilize the various struc-
tures made available in Redwoods: derivation trees,
phrase structures, semantic interpretations, and ele-
mentary dependency graphs. They incorporate dif-
ferent aspects of the parse selection task; this is
crucial for creating diverse models for use in prod-
uct parse selection models as well as for ensemble-
based AL methods. Here, we also use models cre-
ated from a subset of the conglomerate feature set:
themrs feature set. This only has features from the
semantic interpretations.

The three main feature sets are used to train three
log-linear models –LL -CONFIG, LL -NGRAM, and
LL -CONGLOM— and a product ensemble of those
three feature sets,LL -PROD, using equation 4. Addi-
tionally, we use a perceptron with the conglomerate
feature set,P-CONGLOM. Finally, we include a log-
linear model that uses the mrs feature set,LL -MRS,
and a perceptron,P-MRS.

Parse selection accuracy is measured using exact
match. A model is awarded a point if it picks some
parse for a sentence and that parse is the correct anal-
ysis indicated by the corpus. To deal with ties, the
accuracy is given as1/m when a model ranksm
parses highest and the best parse is one of them.

The results for a chance baseline (selecting a
parse at random), the base models and the product
model are given in Table 1. These are 10-fold cross-
validation results, using all the training data for esti-
mation and the test split for evaluation. See section
5 for more details.

Model Perf. Model Perf.
LL -CONFIG 75.05 LL -PROD 77.78
LL -NGRAM 74.01 LL -MRS 64.98
LL -CONGLOM 74.85 P-CONGLOM 73.00
Chance 22.70 P-MRS 62.11

Table 1: Parse selection accuracy.

3 Measuring annotation cost

To aid identification of the best parse out of all those
licensed by the ERG, the Redwoods annotation envi-
ronment provides localdiscriminantswhich the an-

notator can mark as true or false properties for the
analysis of a sentence in order to disambiguate large
portions of the parse forest. As such, the annotator
does not need to inspect all parses and so parses are
narrowed down quickly (usually exponentially so)
even for sentences with a large number of parses.
More interestingly, it means that the labeling burden
is relative to the number of possible parses (rather
than the number of constituents in a parse).

Data about how many discriminants were needed
to annotate each sentence is recorded in Redwoods.
Typically, more ambiguous sentences require more
discriminant values to be set, reflecting the extra ef-
fort put into identifying the best parse. We showed
in Osborne and Baldridge (2004) that discriminant
cost does provide a more accurate approximation of
annotation cost than assigning a fixed unit cost for
each sentence. We thus use discriminants as the ba-
sis of calculating annotation cost to evaluate the ef-
fectiveness of different experiment AL conditions.

Specifically, we set the cost of annotating a given
sentence as the number of discriminants whose
value were set by the human annotator plus one to
indicate a final ‘eyeball’ step where the annotator se-
lects the best parse of the few remaining ones.1 The
discriminant costof the examples we use averages
3.34 and ranges from 1 to 14.

4 Active learning

Suppose we have a set of examples and labelsDn =
{〈x1, y1〉, 〈x2, y2〉, . . .}which is to be extended with
a new labeled example{〈xi, yi〉}. The information
gain for some model is maximized after selecting,
labeling, and adding a new examplexi to Dn such
that the noise level ofxi is low and both the bias and
variance of some model usingDn ∪ {〈xi, yi〉} are
minimized (Cohn et al., 1995).

In practice, selecting data points for labeling such
that a model’s variance and/or bias is maximally
minimized is computationally intractable, so ap-
proximations are typically used instead. One such
approximation isuncertainty sampling. Uncertainty
sampling (also calledtree entropyby Hwa (2000)),
measures the uncertainty of a model over the set of
parses of a given sentence, based on the conditional

1This eyeball step is not always taken, but Redwoods does
not contain information about when this occurred, so we apply
the cost for the step uniformly for all examples.



distribution it assigns to them. Following Hwa, we
use the following measure to quantify uncertainty:

fus(s, τ,Mk) = −
∑
t∈τ

P (t|s,Mk) log P (t|s,Mk) (5)

τ denotes the set of analyses produced by the ERG
for the sentence andMk is some model. Higher val-
ues offus(s, τ,Mk) indicate examples on which the
learner is most uncertain . Calculatingfus is triv-
ial with the conditional log-linear and perceptrons
models described in section 2.2.

Uncertainty sampling as defined above is a single-
model approach. It can be improved by simply re-
placing the probability of a single log-linear (or per-
ceptron) model with a product probability:

fen
us (s, τ,M) = −

∑
t∈τ

P (t|s,M) log P (t|s,M) (6)

M is the set of modelsM1 . . .Mn. As we men-
tioned earlier, AL for parse selection is potentially
problematic as sentences vary both in length and the
number of parses they have. Nonetheless, the above
measures do not use any extra normalization as we
have found no major differences after experimenting
with a variety of normalization strategies.

We use random sampling as a baseline and un-
certainty sampling for AL. Osborne and Baldridge
(2004) show that uncertainty sampling produces
good results compared with other AL methods.

5 Experimental framework

For all experiments, we used a 20-fold cross-
validation strategy by randomly selecting10%
(roughly 500 sentences) for the test set and select-
ing samples from the remaining90% (roughly4500
sentences) as training material. Each run of AL be-
gins with a single randomly chosen annotated seed
sentence. At each round, new examples are selected
for annotation from a randomly chosen, fixed sized
500 sentence subset according to random selection
or uncertainty sampling until models reach certain
desired accuracies. We select20 examples for anno-
tation at each round, and exclude all examples that
have more than 500 parses.2

2Other parameter settings (such as how many examples to
label at each stage) did not produce substantially different re-
sults to those reported here.

AL results are usually presented in terms of the
amount of labeling necessary to achieve given per-
formance levels. We say that one method is bet-
ter than another method if, for a given performance
level, less annotation is required. The performance
metric used here is parse selection accuracy as de-
scribed in section 2.3.

6 Reusing training material

AL can be considered as selecting some labeled
training set which is ‘tuned’ to the needs of a particu-
lar model. Typically, we might wish to reuse labeled
training material, so a natural question to ask is how
general are training sets created using AL. So, if we
later improved upon our feature set, or else improved
upon our learner, would the previously created train-
ing set still be useful? If AL selects highly idiosyn-
cratic datasets then we would not be able to reuse our
datasets and thus it might, for example, actually be
better to label datasets using random sampling. This
is a realistic situation since models typically change
and evolve over time — it would be very problem-
atic if the training set itself inherently limits the ben-
efit of later attempts to improve the model.

We use two baselines to evaluate how well a
model is able to reuse data selected for labeling by
another model: (1)Selecting the data randomly.
This provides the essential baseline; if AL in reuse
situations is going to be useful, it ought to outper-
form this model-free approach. (2)Reuse by the
AL model itself. This is the standard AL scenario;
against this, we can determine if reused data can be
as good as when a model selects data for itself.

We evaluate a variety of reuse scenarios. We re-
fer to the model used with AL as theselectorand
the model that is reusing that labeled data as the
reuser. Models can differ in the machine learning al-
gorithm and/or the feature set they use. To measure
relatedness, we use Spearman’s rank correlation on
the rankings that two models assign to the parses of
a sentence. The overall relatedness of two models
is calculated as the average rank correlation on all
examples tested in a 10-fold parse selection experi-
ment using all available training material.

Figure 1 shows complete learning curves forLL -
CONFIG when it reuses material selected by itself,
LL -CONGLOM, P-MRS, and random sampling. The



graph shows that self-reuse is the most effective of
all strategies – this is the idealized situation com-
monly assumed in active learning studies. However,
the graph reveals that random sampling is actually
more effective than selection both byLL -CONGLOM

until nearly 70% accuracy is reached and byP-MRS

until about 73%. Finally, we see that the material
selected byLL -CONGLOM is always more effective
for LL -CONFIG than that selected byP-MRS. The
reason for this can be explained by the relatedness
of each of these selector models toLL -CONFIG: LL -
CONGLOM and LL -CONFIG have an average rank
correlation of0.84 whereasP-MRS andLL -CONFIG

have a correlation of0.65.
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Figure 1: Learning curves forLL -CONFIG when
reusing material by different selectors.

Table 2 fleshes out the relationship between relat-
edness and reusability more fully. It shows the anno-
tation cost incurred by various reusers to reach 65%,
70%, and 73% accuracy when material is selected
by various models. The list is ordered from top to
bottom according to the rank correlation of the two
models. The first three lines provide the baselines of
whenLL -PROD, LL -CONGLOM, andLL -CONFIG se-
lect material for themselves. The last three show the
amount of material needed by these models when
random sampling is used. The rest gives the results
for when the selector differs from the reuser.

For each performance level, the percent increase
in annotation cost over self-reuse is given. For
example, a cost of 2300 discriminants is required
for LL -PROD to reach the 73% performance level
when it reuses material selected byLL -CONGLOM;

this is a 10% increase over the 2100 discriminants
needed whenLL -PROD selects for itself. Similarly,
the 5500 discriminants needed byLL -CONGLOM to
reach 73% when reusing material selected byLL -
CONFIG is a 31% increase over the 4200 discrimi-
nantsLL -CONGLOM needs with its own selection.

As can be seen from Table 2, reuse always leads
to an increase in cost over self-reuse to reach a given
level of performance. How much that increase will
be is in general inversely related to the rank corre-
lation of the two models. Furthermore, considering
each reusing model individually, this relationship is
almost entirely inversely related at all performance
levels, with the exception ofP-CONGLOM and LL -
MRS selecting forLL -CONFIG at the 73% level.

The reason for some models being more related
to others is generally easy to see. For example,LL -
CONFIGandLL -CONGLOM are highly related toLL -
PROD, of which they are both components. In both
of these cases, using AL for use byLL -PROD beats
random sampling by a large amount.

That LL -MRS is more related toLL -CONGLOM

than toLL -CONFIG is explained by the fact themrs
feature set is actually a subset of theconglom set.
The former contains 15% of the latter’s features.
Accordingly, material selected byLL -MRS is also
generally more reusable byLL -CONGLOM than to
LL -CONFIG. This is encouraging since the case of
LL -CONGLOM reusing material selected byLL -MRS

represents the common situation in which an initial
model – that was used to develop the corpus – is
continually improved upon.

A particularly striking aspect revealed by Figure 1
and Table 2 is that random sampling is overwhelm-
ingly a better strategy when there is still little la-
beled material. AL tends to select examples which
are more ambiguous and hence have a higher dis-
criminant cost. So, while these examples may be
highly informative for the selector model, they are
not cheap — and are far less effective when reused
by another model.

Considering unit cost (i.e., each sentence costs the
same) instead of discriminant cost (which assigns a
variable cost per sentence), AL is generally more
effective than random sampling for reuse through-
out all accuracy levels – but not always. For exam-
ple, even using unit cost, random sampling is bet-
ter than selection byLL -MRS or P-MRS for reuse by



Rank 65% 70% 73%
Selector Reuser Corr. DC Incr DC Incr DC Incr
LL -PROD LL -PROD 1.00 690 0.0% 1200 0.0% 2050 0.0%
LL -CONGLOM LL -CONGLOM 1.00 1190 0.0% 2330 0.0% 4160 0.0%
LL -CONFIG LL -CONFIG 1.00 1160 0.0% 2530 0.0% 4780 0.0%
LL -CONFIG LL -PROD .92 850 23.2% 1470 22.5% 2430 18.5%
LL -CONGLOM LL -PROD .92 840 21.7% 1560 30.0% 2630 28.3%
LL -CONFIG LL -CONGLOM .84 1340 12.6% 2610 12.0% 4720 13.5%
LL -CONGLOM LL -CONFIG .84 1660 43.1% 3760 48.6% 6840 43.1%
P-CONGLOM LL -CONFIG .79 1960 69.0% 3910 54.5% 7940 66.1%
LL -MRS LL -CONGLOM .77 1600 34.5% 3400 45.9% 6420 54.3%
LL -MRS LL -PROD .76 1080 56.5% 2040 70.0% 3700 80.5%
LL -MRS LL -CONFIG .71 2100 81.0% 4270 68.8% 6870 43.7%
P-MRS LL -CONFIG .65 2650 128.4% 4870 92.5% 8260 72.8%
RAND LL -PROD - 820 18.8% 1950 62.5% 3680 79.5%
RAND LL -CONGLOM - 1400 17.6% 3470 48.9% 7150 71.9%
RAND LL -CONFIG - 1160 0.0% 3890 53.8% 8560 79.1%

Table 2: Comparison of various selection and reuse conditions. Values are given for discriminant cost (DC)
and the percent increase (Incr) in cost over use of material selected by the reuser.

LL -CONFIG until 67% accuracy. Thus,LL -MRS and
P-MRS are so divergent fromLL -CONFIG that their
selections are truly sub-optimal forLL -CONFIG, par-
ticularly in the initial stages.

Together, these results shows that AL cannot be
used blindly and always be expected to reduce the
total cost of annotation. The data is tuned to the
models used during AL and how useful that data
will be for other models depends on the degree of
relatedness of the models under consideration.

Given that AL may or may not provide cost reduc-
tions, we consider the effect that semi-automating
annotation has on reducing the total cost of annota-
tion when used with and without AL.

7 Semi-automated labeling

Corpus building, with or without AL, is generally
viewed as selecting examples and thenfrom scratch
labeling such examples. This can be inefficient, es-
pecially when dealing with labels that have complex
internal structures, as a model may be able to rule-
out some of the labeling possibilities.

For our domain, we exploit the fact that we may
already have partial information about an example’s
label by presenting only the topn-best parses to
the annotator, who then navigates to the best parse

within that set using those discriminants relevant to
that set of parses. Rather than using a value forn
that is fixed or proportional to the ambiguity of the
sentence, we simply select all parses for which the
model assigns a probability higher than chance. This
has the advantage of reducing the number of parses
presented to the annotator as the model uses more
training material and reduces its uncertainty.

When the true best parse is within the topn pre-
sented to the annotator, the cost we record is the
number of discriminants needed to identify it from
that subset, plus one – the same calculation as when
all parses are presented, with the advantage that
fewer discriminants and parses need to be inspected.

When the best parse isnot present in then-best
subset, there is a question as to how to record the
annotation cost. The discriminant decisions made
in reducing the subset are still valid and useful in
identifying the best parse from the entire set, but we
must incur some penalty for the fact that the anno-
tator must confirm that this is the case. To deter-
mine the cost for such situations, we add one to the
usual full cost of annotating the sentence. This en-
codes what we feel is a reasonable reflection of the
penalty since decisions taken in then-best phase are



still valid in the context of all parses.3

Performance level
65% 70% 73%

1. RAND 820 1950 3680
2. LL -PROD 690 1200 2050
3. RAND (NB) 670 1350 2430
4. LL -PROD(NB) 680 1120 1760

Table 3: Cost forLL -PROD to reach given perfor-
mance levels when usingn-best automation (NB).

Table 3 shows the effects of using semi-automated
labeling with LL -PROD. As can be seen, random
selection costs reduce dramatically withn-best au-
tomation (compare rows 1 and 3). It is also an early
winner over basic uncertainty sampling (row 2),
though the latter eventually reaches the higher ac-
curacies more quickly. Nonetheless, the mixture of
AL and semi-automation provides the biggest over-
all gains: to reach 73% accuracy,n-best uncertainty
sampling (row 4) reduces the cost by 17% overn-
best random sampling (row 3) and by 15% over ba-
sic uncertainty sampling (row 2). Similar patterns
hold forn-best automation withLL -CONFIG.

Figure 2 provides an overall view on the accumu-
lative effects of ensembling,n-best automation, and
uncertainty sampling in the ideal situation of reuse
by the AL model itself. Ensemble models andn-best
automation show that massive improvements can be
made without AL. Nonetheless, we see the largest
reductions by using AL,n-best automation, and en-
semble models together:LL -PRODusing uncertainty
sampling andn-best automation (row 4 of Table 3)
reaches 73% accuracy with a cost of 1760 compared
to 8560 needed byLL -CONFIG using random sam-
pling without automation. This is our best annota-
tion saving: a cost reduction of 80%.

8 Closing the reuse gap

The previous section’s semi-automated labeling ex-
periments did not involve reuse. If models are ex-
pected to evolve, couldn-best automation fill in the
cost gap created by reuse? To test this, we con-
sidered reusing examples with our best model (LL -

3When we do not allow ourselves to benefit from such la-
beling decisions, our annotation savings naturally decrease, but
not below when we do not usen-best labeling.
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Figure 2: Learning curves for accumulative im-
provements to the annotation scenario starting from
random sampling withLL -CONFIG: ensembling,n-
best automation, and uncertainty sampling.

PROD), as selected by different models using both
AL and n-best automation as a combined strategy.
For LL -CONFIG andLL -CONGLOM as selectors, the
gap is entirely closed: costs for reuse were virtually
equal to whenLL -PROD selects examples for itself
withoutn-best (Table 3, row 2).

The gap also closes whenn-best automation and
AL are used with the weakerLL -MRS model. Per-
formance (Table 4, row 1) still falls far short ofLL -
PROD selecting for itselfwithout n-best (Table 3,
row 2). However, the gap closes even more whenn-
best automation and random sampling are used with
LL -MRS (Table 4, line 2).

Performance level
65% 70% 73%

1. NB & US 1040 1920 3320
2. NB & RAND 680 1450 2890

Table 4: Cost forLL -PROD to reach given perfor-
mance levels in reuse situations wheren-best au-
tomation (NB) was used withLL -MRS with uncer-
tainty sampling (US) or random sampling (RAND).

Interestingly, when using a weak selector (LL -
MRS), n-best automation combined with random
sampling wasmore effective than when combined
with uncertainty sampling. The reason for this is
clear. Since AL typically selects more ambiguous
examples, a weak model has more difficulty getting



the best parse within then-best when AL is used.
Thus, the gains from the more informative examples
selected by AL are surpassed by the gains that come
with the easier labeling with random sampling.

For most situations,n-best automation is benefi-
cial: the gap introduced by reuse can be reduced.n-
best automation never results in an increase in cost.
This is still true even if we do not allow ourselves to
reuse those discriminants which were used to select
the best parse from then-best subset and the best
parse was not actually present in that subset.

9 Related work

There is a large body of AL work in the machine
learning literature, but less so within natural lan-
guage processing (NLP). Most work in NLP has
primarily focused upon uncertainty sampling (Hwa,
2000; Tang et al., 2002). Hwa (2001) considered
reuse of examples selected for one parser by an-
other with uncertainty sampling. This performed
better than sequential sampling but was only half as
effective as self-selection. Here, we have consid-
ered reuse with respect to many models and their
co-relatedness. Also, we compare reuse perfor-
mance against against random sampling, which we
showed previously to be a much stronger baseline
than sequential sampling for the Redwoods corpus
(Osborne and Baldridge, 2004). Hwa et al. (2003)
showed that for parsers, AL outperforms the closely
related co-training, and that some of the labeling
could be automated. However, their approach re-
quires strict independence assumptions.

10 Discussion

AL should only be considered for creating labeled
data when the the task is either well-understood or
else the model is unlikely to substantially change.
Otherwise, it would be prudent to consider improv-
ing either the model itself (using, for example, en-
semble techniques) or else semi-automating the la-
beling task. Naturally, there is a cost associated with
creating the model itself, and this in turn will need
to be factored into the total cost. When there is gen-
uine uncertainty about the model, or else how the
labeled data is going to be eventually used, then the
best strategy may well be to use random selection
rather than AL – especially when using some form

of automated annotation.
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