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Abstract 

A scalable natural language generation (NLG) 
system called HYPERBUG

1  embedded in an 
agent-based, multimodal dialog system is pre-
sented. To motivate this presentation, several 
scenarios (including a domain shift) are iden-
tified where scalability in dialog systems is 
really needed, and NLG is argued to be one 
way of easing this desired scalability. There-
fore the novel approach to hybrid NLG in the 
HYPERBUG system is described and the scal-
ability of its parts and resources is investi-
gated. Concluding with a few remarks to 
discourse generation, we argue that NLG can 
both contribute to and benefit from scalability 
in dialog systems. 

1 Introduction 

Scalability in dialog systems is, of course, not only a 
matter of the natural language understanding (NLU) 
component, but also of the NLG part of the system.2 We 
nevertheless see a lot of the effort spent in designing 
and implementing spoken dialog systems go into analy-
sis of speech and language; generation is often left aside 
or squeezed in afterwards. Therefore an NLG compo-
nent must fit into the existing dialog system framework 
and answer to the preset priorities in dialog system de-
velopment. 
We present a scalable NLG system embedded in an 
agent-based, multimodal dialog system. To this end, we 

                                                           
1 The acronym stands for hybrid, pragmatically embedded 
realization with bottom-up generation. 
2 In fact, for a working spoken dialog system even more 
components have to be scalable, including the speech recog-
nizer, the speech synthesizer and, most important of all, the 
dialog manager. But for now we concentrate on the opposi-
tion of NLU and NLG. 

first address common scenarios for scalability in dialog 
systems and describe the role of NLG in such systems 
before focusing on a classification of NLG systems in 
general and our hybrid linguistic realization approach in 
particular. After giving an overview of our NLG system 
we will be able to show how our notion of reversibility 
with respect to internal and external resources and the 
interaction and combination of shallow and deep NLG 
in HYPERBUG work towards and profit from scalability 
in our dialog system. 

2 Scalability in Dialog Systems 

Scalability for spoken dialog systems is needed in sev-
eral situations, including the following scenarios: 
1. Enlarging the domain content modifies and extends 

the thematic orientation of the domain. 
2. Refining the domain language extends the linguis-

tic coverage and expressibility of the domain. 
3. Changing the application domain refers to usually 

both of the first two and can lead to completely new 
requirements for a dialog system and its parts. 

4. Changing the discourse domain alters the dis-
course type within the same domain. 

The common consequence of these four scenarios is 
their impact on both NLU and NLG: If scalability is not 
biased between these two parts, one cannot expect the 
system to be scalable as a whole. Especially in the situa-
tion of a domain shift, the degree of automated knowl-
edge acquisition is an important issue to minimize 
costly (both in terms of time and money) manual efforts. 
If these are unavoidable for the NLU component, as it 
will often be the case in a real-world scenario, at least 
the NLG module must automatically benefit from them.  

3 NLG in Dialog Systems 

NLG itself and for its own can be seen as a way to im-
prove the scalability of a dialog system. (Reiter, 1995) 
analyze the costs and benefits of NLG in comparison to 
other technologies and approaches, such as graphics, 
mail merging and human authoring, and argue for a hy-



brid approach of combining NLG and templates in the 
IDAS system. Generally speaking, the application of 
NLG techniques in a real-world system must be justified 
with respect to linguistic and economic requirements. 
If templates are used, a smart approach is needed in all 
scenarios mentioned in section 2 to avoid being forced 
to completely redesign at least the data part of the sys-
tem output component. Nevertheless, fielded dialog 
systems often settle for a shallow generation module 
which relies on canned text and templates because of 
limited financial means and linguistic knowledge. 

3.1 NLG and Dialog Management 

In our spoken dialog system (Bücher et al., 2001), the 
dialog manager (DM) is responsible for the integration 
of user utterances into the discourse context. Moreover, 
the DM initiates system answers to user’s questions and 
system error messages if a user’s goal is unsatisfiable or 
a system task cannot be fulfilled. But these system ut-
terances must be verbalized as well, i.e. translated from 
abstract semantic representations to natural language 
sentences. This task is not placed within the DM, but 
“outsourced” to a component with adequate linguistic 
competence, the NLG module. This way, the DM can be 
designed completely amodal, i.e. it does not need to 
have any linguistic knowledge. Moreover, we can see 
that scenario 4 in section 2 can be separated into a lin-
guistic and a dialog part. The first part corresponds to 
scenario 2, the second is covered by the DM in our sys-
tem; hence we may skip scenario 4 for the remainder of 
this paper.  

3.2 Reversibility in dialog systems 

Given a spoken dialog system in general and an NLG 
component in such a system in particular, we consider 
reversibility a central means to allow for scalability. 
Considering reversibility, we want to introduce two dis-
tinctions: We discriminate between reversibility of al-
gorithms and reversibility of data on the one hand and 
between static (at developing time or at compile time) 
and dynamic reversibility (at runtime) on the other 
hand. In this terminology, reversibility of data means re-
using existing system resources by the NLG component. 
We can classify NLG resources into two groups: The 
language analysis part contains the (syntactic and se-
mantic) lexicon, the morphology component, and the 
grammar, while the DM part comprises the discourse 
memory, the domain model, and the user model.3 

                                                           
3 For a different classification of knowledge resources for 
text planning, see (Maier, 1999). 

4 Scalability in tactical generation 

We focus on a special part of generation, the tactical 
generation or linguistic realization, according to the 
classification in (Reiter and Dale, 2000)4. We are able to 
do so mainly because, as mentioned in 3.1, the DM is 
responsible for content determination in our system. 
This leaves the realization task for the NLG component 
(besides some microplanning, which has to be per-
formed as well). 

4.1 A taxonomy of existing systems 

In this section we will classify existing tactical genera-
tion systems into three groups and address problems 
with scalability in each one of them. 
Shallow generation systems form the first group; e.g. 
COMRIS (Geldof, 2000). The approach taken there 
relies on canned text and templates, and the domain 
dependency of these constructs is inherent. Therefore, in 
scenario 3 of section Fehler! Verweisquelle konnte 
nicht gefunden werden., once a domain shift is pro-
jected, the whole data part of the NLG component must 
be redesigned from scratch. In scenarios 1 and 2 the 
existing resources must be extended only, but even this 
can become a hard task if the existing template database 
is large enough. 
Deep generation systems make up the second group, e. 
g. KPML (Bateman 1997); they often suffer from large 
overgenerating grammars and slow processing time.  
Also often well-founded linguistic knowledge is re-
quired to create and maintain the grammars needed. 
Their problems with scalability arise primarily in sce-
narios 1 and 2, when thematic or linguistic coverage 
must be increased. 
The third group, “modern” generation5  systems ide-
ally avoid the shortcomings of both of the above men-
tioned classical approaches. We distinguish between 
three types here: NLG with XSLT (Wilcock, 2003), 
which is basically template-based generation from XML 
input; stochastic approaches like (Oh and Rudnicky, 
2000), where the deep generation grammar is replaced 
by a stochastic language model, and hybrid generation 
approaches like D2S (Theune et al., 2000), which 
bridges the gap between NLG and speech synthesis by a 
prosody module. 

                                                           
4 Dale and Reiter distinguish between linguistic and struc-
ture realization, the former corresponding to the content and 
the latter to the structural part of tactical generation. We find 
this distinction somewhat artificial, because the content must 
be already determined for realization, but want to use it 
anyway to further clarify the task carried out by our system.  
5 For these systems, the term “hybrid” is normally used in 
the literature, but we want to spare it for hybridization be-
tween shallow and deep generation; see 4.2. 



4.2 Hybrid tactical generation 

In our terminology, hybrid generation means the combi-
nation of shallow and deep generation in a single sys-
tem; therefore, hybrid systems are a special case of the 
“modern” approaches, which were mentioned in the 
preceding section and do not necessarily contain any of 
the two “classical” approaches. For practical needs, we 
focus on how to combine deep (grammar-based) and 
shallow (template-based) generation techniques under 
the term hybrid NLG. We distinguish three types of 
such hybrid NLG systems: 
 Type I: Shallow NLG with deep elements 
 Type II: Deep NLG with shallow elements 
 Type III: Concurring deep and shallow NLG 

Here are two examples of existing systems to illustrate 
the classification just given: D2S fills slots in syntactic 
templates containing derivation trees and therefore can 
be classified as a type I system. (Wahlster, 2000) has 
separate shallow and deep generation modules resulting 
in a system of type III.6 

5 The HYPERBUG Approach 

5.1 System core functionality 

Our approach to realization is to combine all three types 
of hybrid tactical generation mentioned in section 4.2 in 
a single system called HYPERBUG. The goals for its de-
sign and implementation were: 

                                                           
6 Type II was, though theoretically sound and possible, dif-
ficult to find in existing systems. 

1. To re-use existing system resources originally de-
signed for parsing 

2. To generate templates at runtime rather than mere 
sentences 

3. To dynamically reduce the workload on deep gen-
eration and gradually let shallow generation take 
over 

4. To learn the domain-dependent part of the tactical 
generation task while the dialog is running and, ul-
timately, enable automatic adaptation to domain-
shifts 

Figure 1 shows the system core of HYPERBUG. As a 
shallow generation component, we implemented a pow-
erful template engine with recursion and embedded 
deep generation parts, including a lexicon, a morphol-
ogy component, inflection, and constituent aggregation, 
resulting in a system of type I in our classification. 
For the deep generation branch, we decided to settle for 
a combination of a microplanning and a realization 
component: The first module, a “sentence planner”, in 
essence converts the input discourse representation 
structure (DRS, Kamp and Reyle, 1993) which is pro-
vided by the DM into a different semantic representa-
tion, the extended logical form (ELF) 7 . This ELF 
structure serves as input for the second module, a modi-
fied and improved version of bottom-up generation 
(BUG, van Noord, 1990) in Java, using a unification-
based grammar with feature structures. We also incor-
porated elements of shallow generation in our version of 
BUG: Surface text parts, e.g. proper nouns, may occur 
in the semantic input structure, the ELF. The precom-
                                                           

7  The extensions allowed (as compared to a conventional 
LF) include syntactic functions like tense and mode, topical-
ization information and subordination clause type. 

Figure 1: System core of HYPERBUG 
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piled exception lexicon is searched first, whenever a 
proper noun occurs in the LF8. Thus, we get a type II 
system. 
Links between shallow and deep generation are pro-
vided in two ways: At first, a decision module analyzes 
the input and invokes the appropriate realization branch, 
making HYPERBUG a system of type III. Stage 1 of this 
decision module is to use shallow generation as default 
and deep generation only as a fallback strategy. Stage 2 
uses keyword spotting techniques in the input XML 
structure with XPATH and a lookup in an index table 
containing references to available canned text and tem-
plates. For stage 3, a planning procedure makes use of 
the speech act, the discourse situation and the user 
model to ensure that the most appropriate processing 
branch is selected; in extension of the approach for text 

                                                           
8 Proper nouns are indicated simply by capitalizing them. 

planning presented in (Stent, 2001), we have applied 
Conversation Acts Theory (Poesio, 1994) to linguistic 
realization here. 
Not only do we combine all three types of hybrid reali-
zation in our system, but we also interleave shallow and 
deep generation in another way:  At last, after the com-
plete utterance has been generated, a “bridge” between 
shallow and deep generation implements a feedback 
loop from BUG to the template system. This type of 
“bootstrapping” 9  is mainly responsible for the novel 
approach taken in HYPERBUG. 
Figure 1 depicts, besides the system core, also the first 
two parts of the “bootstrapping” procedure developed in 
HYPERBUG. 

                                                           
9 We use the term “bootstrapping” mainly as an analogy to 
classical bootstrapping procedures, hence the quotation 
marks. 
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(I) BUG passes the generated derivation tree to the 
bridge, where it is converted into a template. 
(II) The bridge sends the template to the template sys-
tem where it is stored for further use and to the decision 
module where a reference is saved in the index table. 
This way, the next dialog turn with similar semantic 
input can be realized faster using a template without 
having to invoke the deep generation branch again. 

5.2 Resources and reversibility 

Extending our description from the core functionality 
explained in the previous section, we now turn our at-
tention to the resources used in HYPERBUG. Figure 2 
gives an overview of the internal and external resources 
of HYPERBUG and their usage. 
The linguistic knowledge is contained in the system 
lexicon and the morphology component. The former can 
be distinguished further into a valency lexicon contain-
ing case frames and a lemmata lexicon for domain ex-
ceptions10. These exceptions are compiled into the NLG 
lexicon used by both the shallow and deep generation 
branch, resulting in a static reversibility of data. The 
morphology component is separated from the core lexi-
con and implemented as a server which can both ana-
lyze and generate and is consequently used for parsing 
and generation. As a server with a uniform query inter-
face, from the outside it looks like it were algorithmi-
cally reversible, but internally the algorithms for parsing 
and generation are implemented differently, resulting in 
a dynamic reversibility of data, because identical data 
are used and the processing direction is decided at run-
time in the query sent to the server. 
A separated module called context manager (CM) is 
responsible for sentence-spanning processing: It per-
forms macro-aggregation11 and completion of underspe-
cified utterances from the DM. For this task, access to 
the dialog memory is required, which is performed indi-
rectly via a DM request12. 
The templates are stored in a database which corre-
sponds to the grammar in the deep generation branch. 
Unfortunately, the chunk grammar used for analysis is 
insufficient for generation13, resulting in a lack of even 
static reversibility: In this case, the requirements for 
robust parsing differ too much from the ones for vari-
able NLG. 

                                                           
10 The domain independent lexicon entries are derived from 
WORDNET synsets. 
11 By this term we mean aggregation on the sentence level, 
as opposed to micro-aggregation which occurs between con-
stituents. 
12 In the current implementation of our system, the dialog 
memory is only accessible this way. 
13 The chunk grammar does, of course, not contain phrase 
rules up to the sentence level. 

The domain model is divided into a linguistic and an 
application-specific part. Only the linguistic part is used 
in HYPERBUG, mainly for substitution of synonyms, 
hyperonyms and hyponyms to enlarge variability in 
lexical choice, a part of microplanning also handled by 
our approach to NLG. 
The processing steps in the system are as follows: 
(1) The dialog manager sends to HYPERBUG a KQML14 
message with the semantic representation of the system 
utterance to be realized (a DRS encoded in an XML 
structure), enriched with pragmatic information such as 
sender, KQML speech act, and pragmatic dialog act. 
(2) The decision module determines, based on linguistic 
and pragmatic information (such as the speech act and 
the user model), whether shallow or deep generation is 
(more) appropriate to process the message and feeds it 
(a) to the template system or (b) to the deep generation 
branch (or to both of them, as a fall-back strategy). 
(3 a) The template system passes the generated surface 
structure with additional information 15  to the speech 
synthesis agent16, including wave files of utterance parts 
which were already synthesized before. 
(3 b) BUG passes the generated surface structure with 
additional information to the speech synthesizer. 
There is also a third bootstrapping aspect depicted in 
Figure 2: 
(III) The synthesizer agent returns the synthesized wave 
files to the template system to enhance the stored tem-
plates. This way, the synthesizer does not have to pro-
cess identical utterance parts more than once, thus 
increasing the efficiency in synthesis and the real-time-
capacity of the system. 17 

5.3 Scalability in HYPERBUG 

After giving an overview of our NLG system, we will 
now address scalability issues in its parts and resources. 
Template system. Templates in HYPERBUG are at least 
algorithmically unproblematic: The pattern matching 
algorithm is linear complex with the number of entries. 
But normally, template systems are poorly maintainable 
and need to be rewritten from scratch after a domain 
shift. We try to overcome this difficulty by isolating a 
considerably large domain-independent part, such as 
metadialog (ambiguity, coherence state, and plan/action 

                                                           
14 The language KQML is currently used for agent commu-
nication in our system, but we are in the process of transition 
to FIPA-ACL. 
15  sentence accent to influence prosody generation in the 
synthesizer and deixis to synchronize textual output with the 
avatar in our multimodal system 
16 in essence a wrapper agent around the open-source syn-
thesizer MBROLA 
17  System profiling has shown a considerable amount of 
processing time of the generation component going into syn-
thesis with MBROLA. 



state), greeting, and default messages18, avoiding much 
of the effort needed in scenario 3. Scenarios 1 and 2, on 
the other hand, are treated in our template system by 
using modularity via inclusion: The templates are recur-
sive so that we can easily extend and refine the existing 
database. All in all, we can state that relatively few new 
entries are required for our template system in all three 
scenarios 1-3. 
Lexicon and morphology component. The lexicon and 
the morphology component are also algorithmically 
unproblematic, as they are linear complex with the num-
ber of entries. Furthermore, we were able to re-use a 
large part of the existing system resources initially de-
signed for parsing (i.e. the exception lexicon and the 
morphology server). We can summarize that, for these 
two components, NLG automatically grows with NLU, 
and that no NLG-specific effort is required in the first 
three scenarios mentioned above. 
Grammar. For the deep generation branch, the gram-
mar can lead to algorithmic problems: The algorithm 
has exponential complexity, but only in the number of 
categories within the rules. However, this number is 
finite with a low upper bound. The algorithm has linear 
complexity in the number of words, just like the under-
lying lexicon does. Disjunctive unification can cause 
problems, but not if it is restricted to simple features, as 
it is in our system. Anyway, a large part of the rules can 
be re-used in all three scenarios19, but a proper grammar 
organization is required for the inevitable manual main-
tenance. 
Hybrid approach. The central argument for the scal-
ability of HYPERBUG, however, lies in its special hybrid 
design: The decision module before and the bridge after 
the two generation branches constitute the bootstrapping 
approach which continually improves the system per-
formance in terms of efficiency and linguistic coverage 
at runtime (useful for scenarios 1 and 2) and enables 
automatic adaptation to domain shifts (scenario 3). 
Speech synthesis. HYPERBUG has a built-in feature ena-
bling intrasentential multilingual speech synthesis 20 , 
rendering the system scalable in terms of language 
changes. The second aspect of scalability within speech 
synthesis is the other “bridge” between this external 
module and the template system which gradually im-
proves the system response time in all three scenarios. 
Pragmatic resources. The pragmatic resources com-
prise the dialog memory, the domain model and the user 
model. For the domain model, it is possible that new 
                                                           

18 i.e. ok and error messages, the latter tending to be rather 
domain-specific, though 
19 This is, of course, the inherent advantage of deep over 
shallow NLG. 
20  Basically, lexical information about the language of a 
proper noun (e.g. a person’s name) is included in the output 
to the synthesizer which uses this information to switch be-
tween target languages, even within a single sentence. 

NLG-specific entries are required in the scenarios 
above. But these entries are not a critical factor in terms 
of scalability. The complexity of the discourse memory 
mainly depends on the dialog length. This is a largely 
domain-independent factor and not affected by our sce-
narios. All we can say about the user model is that as a 
primarily non-linguistic resource it is not in the focus of 
NLG. If it needs to be enriched or refined in scenario 1 
and 2 or even redefined in scenario 3, its usage in our 
NLG system retains its complexity. 
We conclude that the external pragmatic resources can 
be extended and re-used without any impact on 
HYPERBUG and do therefore not influence the scalability 
of our NLG component. 
Discourse generation. Finally, we want to briefly ad-
dress some aspects of discourse generation as a way of 
scalability in terms of linguistic expressibility. Deictic 
expressions are currently hard-coded in special tem-
plates, because they are highly domain-dependent. In 
our multimodal system, they must be synchronized with 
the other output modalities, such as the avatar perform-
ing deictic gestures. The expected place for anaphora 
generation in our system is the CM. As a pragmatic re-
source, the dialog memory is used for this task via the 
DM. Pronominal references are enabled by the CM 
which checks for appropriate discourse referents to be 
pronominalized; they are executed by the sentence 
planner which substitutes nouns by matching pronouns 
in the LF. The conditions for appropriate (i.e. unambi-
guous) anaphora and replacements of nouns by pro-
nouns are not easy to meet and check. Our current idea 
involves a generate-and-test approach, i.e. we want to 
tentatively generate an anaphor or a pronoun and use the 
analysis part of our dialog system to determine whether 
they are ambiguous or not. 

6 Related Work 

Generally, the method known as explanation-based gen-
eralization from machine learning is comparable to the 
bootstrapping approach described here; but normally 
learning is achieved by offline training. 
In (Neumann, 1997) a training phase with an appropri-
ate corpus is needed, while we perform generation at 
runtime without such a corpus. Furthermore, Neumann 
extracts complex subgrammars; we generate annotated 
surface sentences instead, which are less expressible, 
but faster to instantiate. And finally, Neumann performs 
a static template choice as opposed to our runtime deci-
sion module which can opt for deep generation based on 
pragmatic constraints, even if a semantically appropriate 
template is already available. 
(Corston-Oliver. 2002) has a machine learning approach 
for realization similar to (Neumann, 1997): Transforma-
tion rules are learned offline from examples in a corpus. 
Again, a separate training phase is needed beforehand. 



(Scott, 1998) can be seen as offline interface generation 
using a GUI and therefore as a manual version of the 
bootstrapping approach described here, but her system 
is used for content determination, not for realization. 

7 Conclusion and Further Work 

We have presented a hybrid NLG system that can both 
contribute to and benefit from the scalability in its em-
bedding multimodal dialog system. Various scenarios 
requiring a scalable NLG system where identified and 
applied to our system components and resources in or-
der to analyze their scalability. 
A prototype of the system is implemented and used in 
several different domains, namely home A/V and car 
audio management (Bücher, 2001), B2B e-procurement 
(Kießling, 2001), and model train controlling (Huber 
and Ludwig, 2002), but we need further evaluation of 
the requirements for a domain shift and of the user ac-
ceptance to improve the quality of our output language 
and speech. 
What remains to do on the implementation side? Tech-
nically, we still lack a fully implemented “sentence 
planner” with in-depth analysis of the semantic input 
structure (which is only processed in a shallow manner 
by now), and a separation of pure canned text from 
templates for efficiency. Also, the interface to the lin-
guistic part of the domain model which is represented in 
description logics must be implemented using an appro-
priate inference machine. Conceptually, we want to 
broaden the bridge between shallow and deep genera-
tion, refine the specification of stage 3 in the decision 
module, and work out a way to access the user model 
directly (currently, it is accessed indirectly via the DM, 
just like the discourse memory). 
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