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Abstract

This paper investigates the application of co-
training and self-training to word sense disam-
biguation. Optimal and empirical parameter se-
lection methods for co-training and self-training
are investigated, with various degrees of error
reduction. A new method that combines co-
training with majority voting is introduced, with
the effect of smoothing the bootstrapping learn-
ing curves, and improving the average perfor-
mance.

1 Introduction

The task of word sense disambiguation consists in assign-
ing the most appropriate meaning to a polysemous word
within a given context. Most of the efforts in solving
this problem were concentrated so far towards supervised
learning, where each sense tagged occurrence of a par-
ticular word is transformed into a feature vector, which
is then used in an automatic learning process. While
these algorithms usually achieve the best performance, as
compared to their unsupervised or knowledge-based al-
ternatives, there is an important shortcoming associated
with these methods: their applicability is limited only to
those words for which sense tagged data is available, and
their accuracy is strongly connected to the amount of la-
beled data available at hand. In this paper, we investigate
methods for building sense classifiers when only relatively
few annotated examples are available. We explore boot-
strapping methods using co-training and self-training, and
evaluate their performance on the SENSEVAL-2 nouns.
We show that classifiers built for different words have dif-
ferent behavior during the bootstrapping process. If the
right parameters for co-training and self-training can be
identified (growth size, pool size, and number of itera-
tions, as explained later in the paper), an average error
reduction of 25.5% is achieved, with similar performance

observed for both co-training and self-training. However,
with empirical settings, the error reduction is significantly
smaller, with a 9.8% error rate reduction achieved for a
new method that combines co-training with majority vot-
ing.

We first overview the general approach of bootstrap-
ping for natural language learning using co-training and
self-training. We then introduce the problem of super-
vised word sense disambiguation, and define several local
and topical basic classifiers. We investigate the applica-
bility of co-training and self-training to supervised word
sense disambiguation, starting with these basic classifiers,
and perform comparative evaluations of optimal and em-
pirical bootstrapping parameter settings.

2 Co-training and Self-training for Natural
Language Learning

Co-training and self-training are bootstrapping methods
that aim to improve the performance of a supervised learn-
ing algorithm by incorporating large amounts of unlabeled
data into the training data set.

2.1 Co-training

Starting with a set of labeled data, co-training algorithms
(Blum and Mitchell, 1998) attempt to increase the amount
of annotated data using some (large) amounts of unlabeled
data. Shortly, co-training algorithms work by generating
several classifiers trained on the input labeled data, which
are then used to tag new unlabeled data. From this newly
annotated data, the most confident predictions are sought,
and subsequently added to the set of labeled data. The
process may continue for several iterations.

In natural language learning, co-training was applied
to statistical parsing (Sarkar, 2001), reference resolution
(Ng and Cardie, 2003), part of speech tagging (Clark et
al., 2003), and others, and was generally found to bring
improvement over the case when no additional unlabeled
data are used.



One important aspect of co-training consists in the re-
lation between the views used in learning. In the original
definition of co-training, (Blum and Mitchell, 1998) state
conditional independence of the views as a required cri-
terion for co-training to work. In recent work, (Abney,
2002) shows that the independence assumption can be re-
laxed, and co-training is still effective under a weaker in-
dependence assumption. He is proposing a greedy algo-
rithm to maximize agreement on unlabelled data, which
produces good results in a co-training experiment for
named entity classification. Moreover, (Clark et al., 2003)
show that a naive co-training process that does not explic-
itly seek to maximize agreement on unlabelled data can
lead to similar performance, at a much lower computa-
tional cost. In this work, we apply co-training by identify-
ing two different feature sets based on a “local versus topi-
cal” feature split, which represent potentially independent
views for word sense classification, as shown in Section 4.

2.2 Self-training

While there is a common agreement on the definition
of co-training, the literature provides several sometimes
conflicting definitions for self-training. (Ng and Cardie,
2003) define self-training as a “single-view weakly super-
vised algorithm”, build by training a committee of clas-
sifiers using bagging, combined with majority voting for
final label selection. (Clark et al., 2003) provide a differ-
ent definition: self-training is performed using “a tagger
that is retrained on its own labeled cache on each round”.
We adopt this second definition, which also agrees with
the definition given in (Nigam and Ghani, 2000).

Self-training starts with a set of labeled data, and builds
a classifier, which is then applied on the set of unlabeled
data. Only those instances with a labeling confidence ex-
ceeding a certain threshold are added to the labeled set.
The classifier is then retrained on the new set of labeled
examples, and the process continues for several iterations.
Notice that only one classifier is required, with no split of
features.

Figure 1 illustrates the general bootstrapping process.
Starting with a set of labeled and unlabeled data, the boot-
strapping algorithm aims to improve the classification
performance, by integrating examples from the unlabeled
data into the labeled data set. At each iteration, the class
distribution in the labeled data is maintained, by keeping
a constant ratio across classes between already labeled
examples and newly added examples; the role of this step
is to avoid introducing imbalance in the training data
set. For co-training, the algorithm requires two different
views (two different classifiers

���
and

���
) that interact

in the bootstrapping process. By limiting the number of
views to one (one general classifier

���
), co-training is

transformed into a self-training process, where one single
classifier learns from its own output.

0. Given:
- A set L of labeled training examples
- A set U of unlabeled examples
- Classifiers ���

1. Create a pool U’ of examples by choosing P random ex-
amples from U

2. Loop for I iterations:

2.1 Use L to individually train the classifiers � � , and la-
bel the examples in U’

2.2 For each classifier ��� select G most confidently ex-
amples and add them to L, while maintaining the
class distribution in L

2.3 Refill U’ with examples from U, to keep U’ at a con-
stant size of P examples

Figure 1: General bootstrapping process using labeled and
unlabeled data

Co-training and self-training parameters
Three different parameters can be set in the bootstrapping
process, and usually the performance achieved through
bootstrapping depends on the value chosen for these pa-
rameters.

� Iterations (I) Number of iterations.� Pool size (P) Number of examples selected from the
unlabeled set U for annotation at each iteration.� Growth size (G) Number of most confidently labeled
examples that are added at each iteration to the set of
labeled data L.

As previously noticed (Ng and Cardie, 2003), there
is no principled method for selecting optimal values for
these parameters, which is an important disadvantage of
these algorithms. In the following, we show that there is
a big gap between the performance achieved for some op-
timal parameter settings, selected through measurements
performed on the test data, and the performance level
when these parameters are set empirically, suggesting that
more research is required to narrow this gap, and make
these bootstrapping algorithms useful for practical appli-
cations.

First, we describe the general framework of supervised
word sense disambiguation, and introduce several basic
sense classifiers that are used in co-training and self-
training experiments. Next, through several experiments,
(1) we determine the optimal parameter settings for co-
training and self-training, and (2) explore various algo-
rithms for empirical selection of these three parameters
for best performance.

3 Supervised Word Sense Disambiguation

Supervised word sense disambiguation systems work un-
der the assumption that several annotated examples are



available for a target ambiguous word. These examples
are used to build a classifier that automatically learns clues
useful for the disambiguation of the given polysemous
word, and then applies these clues to the classification of
new unlabeled instances.

First, the examples are pre-processed and annotated
with morphological or syntactic tags. Next, each sense-
tagged example is transformed into a feature vector, suit-
able for an automatic learning process. There are two
main decisions that one takes in the construction of such
a classifier: (1) What features to extract from the exam-
ples provided, to best model the behavior of the given am-
biguous word; (2) What learning algorithm to use for best
performance.

3.1 Preprocessing

During preprocessing, SGML tags are eliminated, the text
is tokenized and annotated with parts of speech. Collo-
cations are identified using a sliding window approach,
where a collocation is considered to be a sequence of
words that forms a compound concept defined in Word-
Net. During this process, all collocations that include the
target word are identified, and the examples that use a
collocation are removed from the training/test data. For
instance, examples referring to short circuit are removed
from the data set for circuit, so that a separate learning
process is performed for each lexical unit.

Feat. Description

CW (L) The word ��� itself
CP (L) The part of speech of the word ���
CF (L) Word forms and their part of speech for a window of K words

surrounding ���
COL (L) Collocations formed with maximum K words surrounding ���
HNP (L) The head of the noun phrase to which ��� belongs, if any
SK (T) Maximum of M keywords occurring at least N times are

determined for each sense of the ambiguous word. The value
of this feature is either 0 or 1, depending if the current
example contains one of the determined keywords or not.

B (T) Maximum of M bigrams occurring at least N times are deter-
mined for all training examples. The value of this feature is
either 0 or 1, depending if the current example contains one
of the determined bigrams or not. Bigrams are ordered using the
Dice coefficient

VB (L) The first verb before ��� .
VA (L) The first verb after ��� .
NB (L) The first noun before ��� .
NA (L) The first noun after ��� .
VO (L) Verb-object relation involving ���
SV (L) Subject-verb relation involving ���

Table 1: Commonly used features for word sense disam-
biguation.

���
denotes the current (ambiguous) word.

Feature type is indicated as local (L) or topical (T).

3.2 Features that are good indicators of word sense

Previous work on word sense disambiguation has ac-
knowledged several local and topical features as good in-
dicators of word sense. These include surrounding words
and their part of speech tags, collocations, keywords in

contexts. More recently, other possible features have been
investigated: bigrams, named entities, syntactic features,
semantic relations with other words in context. Table 1
lists commonly used features in word sense disambigua-
tion (list drawn from a larger set of features compiled by
(Mihalcea, 2002)).

3.3 Supervised learning for word sense
disambiguation

Related work in supervised word sense disambigua-
tions includes experiments with a variety of learning
algorithms, with varying degrees of success, including
Bayesian learning, decision trees, decision lists, memory
based learning, and others. (Yarowsky and Florian, 2002)
give a comprehensive examination of learning methods
and their combination.

3.4 Basic Classifiers for Word Sense Disambiguation

Several basic word sense disambiguation classifiers can
be implemented using feature combinations from Table 1,
and feature vectors can be plugged into any learning algo-
rithm. We use Naive Bayes, since it was previously shown
that in combination with the features we consider, can lead
to a state-of-the-art disambiguation system (Lee and Ng,
2002). Moreover, Naive Bayes is particularly suitable for
co-training and self-training, since it provides confidence
scores and is efficient in terms of training and testing time.
The two separate views required for co-training are de-
fined using a local versus topical feature split. For self-
training, a global classifier with no feature split is defined.
A local classifier
A local classifier was implemented using all local features
listed in Table 1.
A topical classifier
The topical classifier relies on features extracted from a
large context, in particular keywords specific to each indi-
vidual sense. We use the SK feature, and extract at most
ten keywords for each word sense, each occurring for at
least three times in the annotated corpus.
A global classifier
Finally, the global classifier integrates all local and topical
features, also in a Naive Bayes classifier. This classifier
is basically a combination of the previous two local and
topical classifiers.

4 Co-training and Self-training for Word
Sense Disambiguation

We investigate the application of co-training and self-
training to the problem of supervised word sense disam-
biguation, and explore methods for selecting values for
the bootstrapping parameters.

The data set used in this study consists in training and
test data made available during the English lexical sample
task in the SENSEVAL-2 evaluation exercise. In addition



to these data sets, a large raw corpus of unlabeled exam-
ples is constructed for each word, with text snippets con-
sisting of three consecutive sentences extracted from the
British National Corpus. Given the large number of runs
performed for each word, the experiments focus on nouns
only. Similar observations are however expected to hold
for other parts of speech.

For co-training, we use the local and topical classifiers
described in Section 3.4, which represent two different
views for this problem, generated by a “local versus top-
ical” feature split. Self-training requires only one basic
classifier, and we use a global classifier, which combines
the features from both local and topical views for a com-
plete global “view”.

Unlike previous applications of co-training and self-
training to natural language learning, where one general
classifier is build to cover the entire problem space, su-
pervised word sense disambiguation implies a different
classifier for each individual word, resulting eventually
in thousands of different classifiers, each with its own
characteristics (learning rate, sensitivity to new examples,
etc.). Given this heterogeneous space of classifiers, our
hypothesis is that co-training and self-training will them-
selves have a heterogeneous behavior, and therefore best
co-training and self-training parameters are different for
each classifier.

To explore this hypothesis, a range of experiments is
performed. First, for all the words in the experimental
data set, an optimal parameter setting is determined. This
can be considered as an upper bound for improvements
achieved with co-training and self-training, since the se-
lection of parameters is performed through measurements
that are collected directly on test data. Second, we explore
several algorithms to select the bootstrapping parameters,
independent of the test set: (1) Best overall parameter set-
ting; (2) Best individual parameter settings; (3) Best per-
word parameter selection; (4) A new method consisting in
an improved bootstrapping scheme using majority voting
across several bootstrapping iterations.

4.1 Optimal settings

Optimal parameter settings are determined through mea-
surements performed directly on the test set. For the
growth size G, a value is chosen from the set: � 1, 10, 20,
30, 40, 50, 100, 150, 200 � . The pool size P takes one of
these values: � 1, 100, 500, 1000, 1500, 2000, 5000 � . For
each setting, 40 iterations are performed. This results in
an average of 2,120 classification runs per word. At each
run, a pool of P raw examples is annotated, and G most
confidently labeled examples are added to the training set
from the previous iteration. The performance of the clas-
sifier using the augmented training set is evaluated on the
test data, and the precision is recorded.

Separate experiments are performed for both co-

training and self-training, for all the nouns in the
SENSEVAL-2 data set (for a total of about 120,000 runs).
For each word, the parameter setting (growth size G / pool
size P / iterations I) leading to the highest improvement is
determined. Table 21 lists, for each word: size of train-
ing, test, raw data2; precision of the basic classifier (the
global classifier is used as a baseline); maximum preci-
sion obtained with co-training and self-training, and the
parameters for which this maximum is achieved. When
several parameter settings lead to the same performance,
the first setting is recorded.
Discussion
Surprisingly, under optimal settings, both co-training and
self-training perform about the same, leading to an aver-
age error reduction of 25.5%. Self-training leads to the
highest precision for nine words, while co-training is win-
ning for eight words; there is a tie with equal performance
for both co-training and self-training for the remaining
twelve words.

There are three words (chair, holiday, spade) for which
no improvement could be obtained with either co-training
or self-training, and therefore no optimal setting is indi-
cated. These are among the four words with the best per-
forming basic classifier (baseline higher than 75%). The
fact that no improvement was obtained agrees with previ-
ous observations that classifiers that are too accurate can-
not be improved with bootstrapping (Pierce and Cardie,
2001). Note that even very weak classifiers, with preci-
sions below 40%, can still be improved, sometimes with
as much as 45% error reduction (e.g. the classifier for
feeling).

There are no clear commonalities between the param-
eters leading to maximum precision for different classi-
fiers. Some classifiers benefit more from an “aggressive”
augmentation of the training data with new examples –
for instance the self-trained classifier for nature achieves
its highest peak for a growth size of 200 from a pool of
500 examples. Others instead work better by taking “short
steps” – for instance self-training for the word dyke works
better for a growth size of 1 from a pool of 1.

1The numbers listed in Table 2 for training/test data size and
basic classifier precision refer to data sets obtained after remov-
ing examples with collocations that include the target word. This
explains why the numbers do not always match figures previ-
ously reported in SENSEVAL-2 literature. If collocations are
added back to the data sets, the precision of the basic classifier
is measured at 60.2% – comparable to figures obtained by other
systems participating in SENSEVAL-2

2The raw corpus for each word is formed with all examples
retrieved from the British National Corpus. While this ensures
a natural distribution for each word (in terms of number of ex-
amples occurring in a balanced corpus), it also leads to discrep-
ancies in terms of raw data size. For words with less than 5000
raw examples, the pool size recorded in the “optimal setting”’
column represents a round-up to the nearest number from the set
of allowed pool values.



Size Basic Self-training Co-training
Word train test raw classifier Max.prec. Optimal setting Max.prec. Optimal setting

art 123 52 8012 48.07% 59.61% 100/1500/5 59.61% 200/1000/20
authority 157 80 11034 50.00% 58.75% 50/1500/3 62.50% 20/1000/3
bar 205 124 5526 31.45% 35.48% 10/1000/3 34.67% 1/1500/20
bum 79 43 361 37.20% 58.13% 100/100/13 46.51% 1/1/26
chair 121 63 5889 80.95% 80.95% - 80.95% -
channel 78 44 1744 43.18% 45.45% 1/1/1 47.72% 1/2000/1
child 117 60 14192 63.33% 68.33% 1/500/3 68.33% 1/100/30
church 81 36 7775 52.77% 72.22% 1/500/2 69.44% 1/500/2
circuit 108 57 1891 40.35% 52.63% 30/2000/10 47.36% 1/100/8
day 245 123 50883 45.52% 60.16% 100/5000/20 62.60% 50/5000/2
detention 46 24 638 79.16% 91.66% 30/500/22 91.66% 100/500/10
dyke 52 26 116 38.61% 42.30% 1/1/23 50.00% 50/500/1
facility 110 55 1959 67.27% 78.18% 10/100/3 78.18% 1/1500/11
fatigue 69 42 437 73.80% 76.19% 10/500/1 76.19% 10/500/1
feeling 100 51 11214 39.21% 66.66% 1/2000/6 60.78% 1/2000/11
grip 72 39 1718 53.46% 64.10% 50/500/12 66.66% 150/500/1
hearth 60 29 334 44.82% 55.17% 1/100/21 65.51% 50/500/3
holiday 55 26 5604 84.61% 84.61% - 84.61% -
lady 75 39 4677 61.53% 84.61% 20/100/39 82.05% 1/1000/3
material 120 59 10663 37.28% 59.32% 50/5000/6 59.32% 100/5000/24
mouth 109 56 8044 50.00% 62.5% 150/1000/3 64.28% 150/1000/3
nation 60 26 4073 65.38% 76.92% 40/1000/21 76.92% 30/1500/14
nature 70 38 14218 39.47% 57.89% 200/500/4 57.89% 30/1000/3
post 105 58 10611 37.93% 48.27% 20/1000/3 48.27% 20/500/1
restraint 87 43 881 60.46% 67.44% 1/500/5 72.09% 10/500/1
sense 83 36 19048 50.00% 63.88% 1/100/37 61.11% 1/100/3
spade 48 28 235 78.57% 78.57% - 78.57% -
stress 77 38 3549 36.84% 52.63% 1/500/7 57.89% 20/1500/4
yew 50 20 167 70.00% 100.00% 20/500/2 95.00% 1/100/11

AVERAGE 95 48 7085 53.84% 65.61% - 65.75% -

Table 2: Size of training, test, and raw data, precision of basic classifiers, and maximum precision obtained for optimal
parameter settings for self-training and co-training. The optimal settings column lists the values for the three parameters
(growth size G / pool size P / iteration I) for which the maximum precision was observed.

The improvements obtained under these optimal set-
tings can be considered as an upper bound for self-training
and co-training. Under some ideal conditions, where the
optimal parameters can be identified, this is the highest
improvement that can be achieved for the given labeled
set. However, most of the times, it may not be possible
to find these optimal parameter values. In the following,
we explore empirical solutions for finding values for these
parameters, independent of the test data.

4.2 Empirical Settings

The methods described in this section make use of the data
collected during self-training and co-training runs, for dif-
ferent parameter settings. Evaluations are performed on a
validation set consisting of about 20% of the training data
– which was set apart for this purpose. For each run, infor-
mation is collected about: initial size of labeled data set,
growth size, pool size, iteration number, precision of basic
classifier, precision of boosted classifier. With the range
of values for growth size, pool size, and number of itera-
tions specified in Section 4.1, about 60,000 such records
are collected for both co-training and self-training.

4.2.1 Best overall parameter setting

One simple method to select a parameter setting is to
determine a global setting that leads to the highest overall
boost in precision. Starting with the information collected
for the 60,000 runs, for each possible parameter setting,
the total relative growth in performance is determined, by
adding up the relative improvements for all the runs for
that particular setting. For co-training, the best global set-
ting identified in this way is growth size of 50, pool size
of 5000, iteration 2. For self-training, the best setting is
growth size of 1, pool size of 1500, iteration 2. The pre-
cision obtained for these settings is listed in Table 3 un-
der the global settings column. On average, using this
scheme for parameter selection, co-training brings 4% er-
ror reduction, while self-training has only a small error
reduction of 1%.

In a similar approach, the value for each parameter is
determined independent of the other parameters. Instead
of selecting the best value for all parameters at once, val-
ues are selected individually. Again, for each possible pa-
rameter value, the total relative growth in performance is
determined, and the value leading to the highest growth
is selected. Interestingly, for both co-training and self-
training, the best values identified in this way for the three



Basic Global setting Per-word setting
Word classifier co-train self-train co-train setting self-train setting

art 48.07% 53.85% 50.00% 44.23% 50/1500/32 34.67% 10/100/1
authority 50.00% 51.25% 50.00% 57.50% 150/2000/2 37.50% 30/2000/3
bar 31.45% 31.45% 31.45% 29.83% 10/1000/5 24.19% 150/1000/17
bum 37.20% 39.53% 41.86% 46.51% 1/1/40 46.51% 1/1/34
chair 80.95% 77.78% 77.78% 77.77% 1/1500/16 76.19% 30/100/1
channel 43.18% 34.09% 43.18% 43.18% 1/2000/2 43.18% 1/2000/3
child 63.33% 50.00% 60.00% 55.00% 10/1500/1 53.33% 50/1500/17
church 52.77% 55.56% 58.33% 47.22% 1/100/23 55.55% 1/100/10
circuit 40.35% 45.61% 40.35% 31.57% 100/100/3 42.10% 1/1000/18
day 45.52% 52.03% 39.84% 50.43% 150/1500/3 49.59% 10/200/40
detention 79.16% 83.33% 79.17% 79.16% - 79.16% -
dyke 38.61% 50.00% 38.46% 34.61% 1/2000/19 34.61% 1/2000/11
facility 67.27% 69.09% 72.73% 58.18% 150/1500/13 70.9% 100/100/7
fatigue 73.80% 71.43% 71.43% 71.43% 1/1000/1 71.43% 1/500/9
feeling 39.21% 39.21% 37.25% 50.98% 10/500/5 33.33% 1/500/25
grip 53.46% 43.59% 51.28% 41.02% 20/100/20 58.97% 40/100/40
hearth 44.82% 48.28% 44.82% 41.37% 1/1000/2 44.82% 1/2000/1
holiday 84.61% 84.61% 84.61% 84.61% - 84.61% -
lady 61.53% 74.36% 58.97% 33.07% 150/2000/10 69.23% 100/500/40
material 37.28% 45.76% 40.68% 45.76% 100/2000/6 30.50% 10/2000/9
mouth 50.00% 51.79% 50.00% 53.57% 1/1/40 50.00% 20/2000/17
nation 65.38% 69.23% 57.69% 69.23% 100/2000/23 61.53% 150/2000/16
nature 39.47% 50.00% 42.11% 44.73% 10/100/3 50.00% 200/2000/34
post 37.93% 44.82% 39.66% 44.82% 1/500/28 36.20% 10/100/2
restraint 60.46% 58.14% 58.14% 53.48% 1/1000/2 62.79% 1/1000/15
sense 50.00% 47.22% 50.00% 25.00% 150/500/40 47.22% 1/2000/12
spade 78.57% 75.00% 78.57% 78.57% - 78.57% -
stress 36.84% 52.63% 47.37% 47.36% 1/1500/7 36.84% 10/1000/1
yew 70.00% 65.00% 75.00% 70.00% - 70.00% -

AVERAGE 53.84% 55.67% 54.16% 51.73% - 52.88% -

Table 3: Precision obtained with co-training and self-training, for global and per-word parameter selection.

parameters are growth size of 1, pool size of 1, iteration
1 (i.e. the best classifier is the one “closest” to the basic
classifier). The average results are however worse than
the baseline – only 53.49% for co-training, and 53.67%
for self-training.

4.2.2 Best per-word parameter setting

In a second experiment, best parameter settings are
identified separately for each word. The setting yielding
to maximum precision on the validation set is selected as
the best setting for a given word, and evaluated on the test
data. If multiple settings are identified as leading to max-
imum precision, settings are prioritized based on (in this
order): smallest growth size; largest pool size; number of
iterations. Results for both co-training and self-training
are listed in Table 3 under the per-word settings column,
together with the setting identified as optimal on the val-
idation set. There are several words for which significant
improvement is observed over the baseline. However, on
the average, the performance of the boosted classifiers is
worse than the baseline.

4.2.3 Smoothed co-training and self-training with
majority voting

There is a common trend observed for learning curves
for co-training or self-training, consisting in an increase

in performance followed by a decline. Different classi-
fiers exhibit however a different point of raise or decline
in precision, depending on the number of iterations. For
instance, the classifier for circuit achieves its highest peak
at iteration 10 (see Table 2), while the classifier for nation
has the highest boost at iteration 21 – where the perfor-
mance for circuit is already below the baseline. Given this
heterogeneous behavior, it is difficult to identify a point of
maximum for each classifier, or at least a point where the
performance is not below the baseline. Ideally, we would
like the learning curves to have a more stable behavior –
without sharp raises or drops in precision, and with larger
intervals with constant performance, so that the chance of
selecting a good number of iterations for each classifier is
increased.

We introduce a new bootstrapping scheme that com-
bines co-training or self-training with majority voting.
During the bootstrapping process, the classifier at each it-
eration is replaced with a majority voting scheme applied
to all classifiers constructed at previous iterations. This
change has the effect of “smoothing” the learning curves:
it slows down the learning rate, but also yields a larger
interval with constant high performance3.

3Notice that in smoothed co-training, majority voting is ap-
plied on classifiers consisting of iterations of the co-training pro-
cess itself, and therefore voting is applied on bootstrapped clas-
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Figure 2: Learning curves for the classifier for the noun
authority: baseline, simple co-training, and co-training
smoothed with majority voting.

To some extent, smoothed co-training is related to
boosting, since both algorithms rely on a growing ensem-
ble of classifiers trained on resamples of the data. How-
ever, boosting assumes labeled data and is error-driven,
whereas smoothed co-training combines both labeled and
unlabeled data and is confidence-driven4.

Figure 2 shows the learning curves for simple co-
training, and co-training “smoothed” with majority vot-
ing, for the word authority (for a growth size of 1 and
pool size of 1). Notice that the trend for the smoothed
curve is still the same – a raise, followed by a decline – but
at a significantly lower pace. With smoothed co-training,
any number of iterations selected in the interval 5-40 still
leads to significant improvement over the baseline, unlike
the simple unsmoothed curve, where only iterations in the
range 3-10 bring improvement over the baseline (followed
by two other iterations at random intervals).

The methods for global parameter settings and per-
word parameter settings are evaluated again, this time us-
ing smoothed co-training or self-training. Table 4 lists
the results obtained with basic and smoothed co-training
for the same global/per-word setting. Since the major-
ity voting scheme requires an odd number of classifiers,

sifiers across co-training iterations, with the effect of improv-
ing the performance of basic co-training. This is fundamen-
tally different from the approach proposed in (Ng and Cardie,
2003), where they also apply majority voting in a bootstrapping
framework, but in a different setting. They use a majority voting
scheme applied to classifiers build on subsets of the labeled data
(bagging) to induce several views for the co-training process. In
their approach, majority voting is used at each co-training itera-
tion to enable co-training by predicting labels on unlabeled data.

4Thanks to one of the anonymous reviewers for suggesting
this analogy.

Global setting Per-word setting
Basic Co-training Co-training

Word classifier basic smoothed basic smoothed

art 48.07% 53.85% 53.85% 44.23% 53.85%
authority 50.00% 51.25% 57.50% 57.50% 58.75%
bar 31.45% 31.45% 31.45% 29.83% 35.48%
bum 37.20% 39.53% 44.18% 46.51% 44.18%
chair 80.95% 77.78% 79.36% 77.78% 80.95%
channel 43.18% 34.09% 43.18% 43.18% 45.45%
child 63.33% 50.00% 51.66% 55.00% 65.00%
church 52.77% 55.56% 58.33% 47.22% 58.33%
circuit 40.35% 45.61% 49.12% 31.57% 42.10%
day 45.52% 52.03% 53.65% 50.43% 55.28%
detention 79.16% 83.33% 83.33% 79.16% 79.16%
dyke 38.61% 50.00% 46.15% 34.61% 38.46%
facility 67.27% 69.09% 69.09% 58.18% 58.18%
fatigue 73.80% 71.43% 71.43% 71.43% 71.43%
feeling 39.21% 39.22% 50.98% 50.98% 35.29%
grip 53.46% 43.59% 48.71% 41.02% 60.00%
hearth 44.82% 48.28% 44.82% 41.37% 44.82%
holiday 84.61% 84.61% 84.61% 84.61% 84.61%
lady 61.53% 74.36% 76.92% 33.07% 66.66%
material 37.28% 45.76% 42.37% 45.76% 49.15%
mouth 50.00% 51.79% 57.14% 53.57% 50.00%
nation 65.38% 69.23% 69.23% 69.23% 73.07%
nature 39.47% 50.00% 47.36% 44.73% 47.36%
post 37.93% 44.83% 48.27% 44.82% 41.37%
restraint 60.46% 58.14% 60.46% 53.48% 60.46%
sense 50.00% 47.22% 58.34% 25.00% 33.33%
spade 78.57% 75.00% 78.57% 78.57% 78.57%
stress 36.84% 52.63% 55.26% 47.36% 52.63%
yew 70.00% 65.00% 75.00% 70.00% 70.00%

AVERAGE 53.84% 55.67% 58.35% 51.73% 56.68%

Table 4: Basic and smoothed co-training, with global and
per-word parameter settings (same settings as listed in Ta-
ble 3)

the number of iterations is rounded up to the next even
number (the first iteration is iteration 0, representing the
basic classifier, which is also considered during voting).
The same type of experiments were also performed for
self-training, but the majority voting scheme did not bring
any significant improvements. We believe that the learn-
ing curves for self-training are less steep, and therefore
majority voting applied to classifiers across various itera-
tions does not have the same strong smoothing effect as
with co-training.

Discussion
For parameter selection using global settings (Table 3) co-
training improves over the basic classifiers, and outper-
forms self-training. As previously noticed (Nigam and
Ghani, 2000), it is hard to identify conditionally inde-
pendent views for real-data problems. Even though we
use a “local versus topical” feature split, which divides
the features into two separate views on sense classifica-
tion, there might be some natural dependencies between
the features, since they are extracted from the same con-
text, which may weaken the independence condition, and
may sometime make the behavior of co-training similar to
a self-training process. However, as theoretically shown



in (Abney, 2002), and then empirically in (Clark et al.,
2003), co-training still works under a weaker indepen-
dence assumption, and the results we obtain concur with
these previous observations.

Despite the fact that parameters observed for optimal
settings (Table 2) are different for each classifier, in em-
pirical settings, one unique set of parameters for all clas-
sifiers seems to perform better than an individual set of
parameters customized to each word. The bootstrapping
scheme is improved even more when coupled with ma-
jority voting across various iterations. Overall, the high-
est error reduction is achieved with smoothed co-training
using global parameter settings, where an average error
reduction of 9.8% is observed with respect to the basic
classifier.

A comparative analysis of words that benefit from ba-
sic/smoothed co-training with global parameter settings,
versus words with little or no improvement obtained
through bootstrapping reveals several observations:
(1) Words with accurate basic classifiers cannot be im-
proved through co-training, which agrees with previous
observations (Pierce and Cardie, 2001). For instance, no
improvement was obtained for chair, holiday, or spade,
which have the basic classifier performing above 75%.
(2) Words with high number of senses (e.g. bar – 10
senses, channel – 7 senses, grip – 11 senses) achieve min-
imal improvements through co-training. This is probably
explained by the fact that the classifiers are misled by the
large number of classes (senses), and a large number of
errors is introduced since the early stages of co-training.
(3) Words that have a large number of senses not belong-
ing to well-defined topical domains show little or no ben-
efit from a bootstrapping procedure. Using the domains
attached to word senses, as introduced in (Magnini et al.,
2002), we observed that words that have a large subset of
their senses not belonging to a specific domain (e.g. re-
straint, facility) achieve little or no improvement through
co-training, which is perhaps explained again by the noisy
automatic annotation that introduces errors since the early
iterations of co-training.

Even though not all words show benefit from co-
training, smoothed co-training with global parameter set-
tings does bring an overall error reduction of 9.8% with
respect to the basic classifier, which proves that bootstrap-
ping through co-training is a potentially useful technique
for word sense disambiguation.

5 Conclusion

This paper investigated the application of co-training and
self-training to supervised word sense disambiguation. If
the right parameters for co-training and self-training can
be identified for each individual classifier, an average error
reduction of 25.5% is achieved, with similar performance
observed for both co-training and self-training. Given

that these optimal settings cannot always be identified in
practical applications, several algorithms for empirical pa-
rameter selection were investigated: global settings de-
termined as the best set of parameters across all classi-
fiers, and per-word settings, identified separately for each
classifier, both using a validation set. An improved co-
training method was also introduced, that combines co-
training with majority voting, with the effect of smooth-
ing the learning curves, and improving the average perfor-
mance. This improved co-training algorithm, applied with
a global parameter selection scheme, brought a significant
error reduction of 9.8% with respect to the basic classi-
fier, which shows that co-training can be successfully em-
ployed in practice for bootstrapping sense classifiers.
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