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Abstract
Given a probabilistic parsing model and an evaluation metric for scoring the match between parse-trees,

e.g., PARSEVAL [Black et al., 1991], this paper addresses the problem ofhow to select the on average best
scoring parse-tree for an input sentence. Common wisdom dictates that it is optimal to select the parse with
the highest probability, regardless of the evaluation metric. In contrast, the Maximizing Metrics (MM) method
[Goodman, 1998, Stolcke et al., 1997] proposes that an algorithm that optimizes the evaluation metric itself
constitutes the optimal choice. We study the MM method within parsing. We observe that the MM doesnot
always hold for tree-bank models, and that optimizing weak metrics is not interesting for semantic processing.
Subsequently, we state an alternative proposition: the optimal algorithm must maximize the metric that scores
parse-trees according to linguistically relevant features. We present new algorithms that optimize metrics that
take into account increasingly more linguistic features, and exhibit experiments in support of our claim.

1 Introduction

A probabilistic grammar associates a probabilityP (T |U) with every parse-treeT and sentenceU . These

conditional probabilities enable the selection of a single preferred parse-tree for the input sentence. The

majority of existing work is based on the paradigm of selecting a parseT ∗ that has the Maximum A

Posteriori (MAP) probability, i.e.,T ∗ = arg maxT P (T |U). The latter approach is known as the Most

Probable Parse (MPP) algorithm, and has been used in various models, e.g., [Collins, 1997].

Goodman [Goodman, 1996] proposes that it is better to employ a disambiguation algorithm thatop-

timizes the evaluation metric directly, than use the general MPP approach. For instance, when a parser

will be evaluated under the PARSEVAL [Black et al., 1991] measures of Labeled Recall (and Precision),

Goodman proposes that the parser can better employ a disambiguation algorithm that Maximizes the ex-

pected Labeled constituent Recall rate (also called theMLR algorithm). We refer here to Goodman’s

proposition with the name theMaximizing (Evaluation) Metrics hypothesis. The same hypothesis under-

lies the work in [Stolcke et al., 1997], who develop new algorithms for speech-recognition to improve

over MAP algorithms. Besides the desire to improve the accuracy, there are other reasons for exploring

alternatives for the MPP/MAP algorithms. For instance, computing the MPP under the DOP model

[Bod, 1998] is NP-Complete [Sima’an, 2002]. Analogously, computing the MAP word-sequence from

an input word-graph under a Hidden Markov Model (HMM) is also NP-Complete [Goodman, 1998].
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The present paper addresses the question which disambiguation algorithm scores best under a given

evaluation scheme and under what conditions? After providing some preliminaries (section 2), we

specify the Maximizing Metrics hypothesis and algorithms (section 3). Subsequently, we address the

question whether the Maximizing Metrics hypothesis holds with respect topracticalprobabilistic mod-

els acquired from tree-banks (section 4). In particular, we concentrate on a study of theMLR and the

MPP algorithms. We specify the conditions on the probability models under which theMLR consti-

tutes a suitable alternative to the MPP, and provide evidence that these conditions are not always met

by existing models obtained from tree-banks. Subsequently we present new algorithms that optimize

tree-matching metrics that take increasingly more linguistically relevant features of trees into account

(section 5). These algorithms are more interesting than the LR algorithm because they provide bet-

ter results than the LR on a range of more interesting metrics (from a linguistic point of view). We

show empirically that the new algorithms often improve on both the MPP and theMLR algorithms

(section 6). Finally, in section 7 we discuss the conclusions from this paper.

2 Preliminaries

For reasons of exposition, throughout this paper we assume Probabilistic Context-Free Grammars

(PCFGs) as the formal model. The results apply to various other models (see [Goodman, 1998]), and

in particular they are interesting for the Data Oriented Parsing (DOP) model [Bod, 1998], where the

general disambiguation approach is NP-Complete [Sima’an, 2002].

The notationwj
i stands for the ordered sequencewi, · · · , wj . The notationΥ[A], whereA is a propo-

sition, stands for the indicator function:if (A == true) Υ[A]= 1, and otherwiseΥ[A]= 0.

Throughout the paperVN andVT stand for the finite sets of nonterminal and terminal symbols re-

spectively. Also the setT stands for the set of all finite branching parse-trees overVN andVT . To

descriminate between nonterminal and terminal symbols, we useA,B, C, · · · for nonterminal symbols,

anda, b, c, · · · for terminals. We also useα, β, · · · for sequences of symbols from(VN ∪ VT )+.

Probabilistic Context-Free Grammars: As usual, a PCFG is a five-tuple (VN , VT , S,R, P ), with

S ∈ VN being the start symbol andR ∈ VN × (VN ∪ VT )+ is the set of productions. We denote

production using the arrow e.g.A → α, and use the notationA
+⇒ α for all derivations leading fromA

to α by at least one application of a production. We write{A +⇒ α} to stressthe fact that this notation

specifies a set of derivations.

The functionP : R → (0, 1] is a probability mass function such that∀A ∈ VN :
∑

A→α∈VN
P (A →

α) = 1. The latter implies that the probability of a derivation involving a sequence of productions

is estimated as the product of the probabilities of these productions (thereby assuming independence

between the productions).

We will use the notationL(G) andT (G) to denote respectively the string and tree languages of the



PCFGG. We overload this notation sometimes by writingT (u), whereu is an utterance, to denote the

set of parses that the grammar (which is kept implicit) generates for sentenceu.

Parse-tree representation (C(T )): Let there be given a parse-treeT such that the non-leaf nodes are

labeled with non-terminal symbols (VN ) and the leaf nodes are labeled with terminal symbols (VT ).

Also let wn
1 be the yield ofT , i.e. the sequence of labels of the leaf-nodes (from left to right). It is

common to represent the parse-treeT as a set of constituentsC(T ) as follows: each non-terminal node

µ (i.e. constituent) inT is represented by a tuple〈i, X, j〉, whereX is the label ofµ andwj−1
i is the

yield of the subtree ofT that is rooted atµ. For simplifying the notation, however, and unless stated

otherwise, we will ommitC() and writeT instead, under the understanding that thisset of constituents

representation is assumed implicitly.

Evaluation metrics: Current parser evaluation practice is based on the PARSEVAL

[Black et al., 1991] measures of Labeled Recall and Precision, which we define next together with the

Exact Tree Match Rate. Let there be given a gold-standard test-set (a multiset)〈U1, T
1
C〉, · · · , 〈Un, Tn

C〉,

wherebyUi stands for thei-th sentence andT i
C for the tree-bank parse-tree for that sentence. Also let

the parser output1 for the same sequence of sentences beT 1
g , · · · , Tn

g (i.e. T i
g is the parser’s “guessed”

parse-trees for sentenceUi). Let us denote the multisets of parses as follows{T i
C} = {T 1

C , · · · , Tn
C},

and{T i
g} = {T 1

g , · · · , Tn
g }. The labeled Constituent Recall and Precision Rates (LR/ LP) and Exact

Tree Match Rate (EM) are defined as follows:

Labeled Recall LR({T i
g}, {T i

C})
def=

∑
i |T

i
C∩T i

g |∑
i |T i

C |
=

∑
i

∑
{i,X,j}∈Tg

Υ[{i,X,j}∈TC ]∑
i |T i

C |

Labeled Precision LP ({T i
g}, {T i

C})
def=

∑
i |T

i
C∩T i

g |∑
i |T i

g |
=

∑
i

∑
{i,X,j}∈Tg

Υ[{i,X,j}∈TC ]∑
i |T i

g |

Exact Match EM({T i
g}, {T i

C})
def=

∑
i Υ[T i

C==T i
g ]

n

where|T | denotes the cardinality of the set of constituents that representsT .

3 Maximizing Metrics

We start out by formalizing the Maximizing Metrics hypothesis in order to facilitate accurate discussion.

Let there be given a conditional probability mass functionP (T |wn
1 ), whereT ∈ T andwn

1 ∈VT
+, and

an evaluation metricMatch : T × T → [0, 1]. Now letT (wn
1 ) represent the finite set of parse-trees

that have a yield equal to the sentencewn
1 = w1, · · · , wn, from which we want to select the preferred

parse-tree forwn
1 .

The Maximizing Metrics hypothesis states that the following parse-treeT ∗ performs optimally under

1The parser output is not allowed to be empty.



the evaluation metricMatch:

T ∗ = arg max
Tg∈T (wn

1 )
EP (Match(Tg, TC)) = arg max

Tg∈T (wn
1 )

∑
TC∈T

P (TC |wn
1 )×Match(Tg, TC)

whereEP is the expectation value underP (TC |wn
1 ). In fact, this also means that an algorithm that

maximizes the expectation value of the metricMatch will perform at least as good as algorithms that

maximize other, possibly more stringent, metrics. Next we derive two example algorithms, the MPP

and theMLR algorithms, and review this hypothesis by inspecting how these algorithms relate to one

another.

3.1 Most Probable Parse (MPP)

The Most Probable Parse (MPP) can be derived as follows:

Tmpp = arg max
Tg∈T (wn

1 )
EP (EM(Tg, TC))(1)

= arg max
Tg∈T (wn

1 )

∑
TC

P (TC |wn
1 ) Υ[Tg==TC ] ≈ arg max

Tg∈T (wn
1 )

P (Tg|wn
1 )(2)

In the first equation we use the definition of expectation and of the EM rate. The last step is an approxi-

mation because instead of comupting no parse at all when (∀Tg ∈ T (wn
1 ) : (Tg 6= TC)), the algorithm

computes the most probable available parse.

It is common to assume thatP (Tg|wn
1 ) is computed by a language model, e.g., a PCFG. Formula 2

can be implemented in a polynomial time algorithm under PCFGs, e.g. [Manning and Schutze, 1999],

but is known to be NP-Complete under the DOP model.

3.2 Maximum Labeled Recall rate Parse (MLR )

TheMLR algorithm (cf. [Goodman, 1998], pp. 104) is derived from the following optimization for-

mula:

Tmlr = arg max
Tg∈T (wn

1 )
EP (

|TC ∩ Tg|
|TC |

)(3)

Like Goodman, we assume binary branching trees in order to keep the discussion simple. For any two

binary parse-treesT 1
C andT 2

C of the same input sentence:|T 1
C | = |T 2

C |. Therefore, we may substitute

for |TC | a new functionN(wn
1 ), which denotes the number of constituents in any binary tree ofwn

1 .

Using the definition of|Tg ∩ TC |, and by rearranging the summations, equation 3 can be rewritten in

steps as follows

Tmlr = arg max
Tg∈T (wn

1 )

∑
TC

P (TC |wn
1 )

|Tg ∩ TC |
N(wn

1 )
= arg max

Tg

∑
TC

P (TC |wn
1 )

∑
〈i,X,j〉∈Tg

Υ[〈i,X,j〉∈TC ]

N(wn
1 )

= arg max
Tg

∑
〈i,X,j〉∈Tg

∑
TC

P (TC |wn
1 ) Υ[〈i,X,j〉∈TC ]

N(wn
1 )



For convineince, we defineg(i, X, j) def=
∑

TC
P (TC |wn

1 ) Υ[〈i,X,j〉∈TC ]). Furthermore, we define the

Expected Labeled Recall rate (ERLR):

ERLR(Tg|wn
1 ) def=

∑
〈i,X,j〉∈Tg

g(i, X, j)
N(wn

1 )
(4)

Given a PCFGµ with a start symbolS, Goodman observes that, under a common assumption2,

g(i, X, j) is approximately equal to the probability of the set of all PCFG derivations ofwn
1 that pass

through constituent〈i, X, j〉, i.e.Pµ({S +⇒ wi−1
1 Xwn

j }|wn
1 ). Therefore:

g(i, X, j) ≈ Pµ({S +⇒ wi−1
1 Xwn

j }|wn
1 )

=
Pµ({S +⇒ wi−1

1 Xwn
j }) Pµ({X +⇒ wj−1

i })
Pµ(wn

1 )
=

Iµ(i,X, j)×Oµ(i,X, j)
Iµ(1, S, n + 1)

where:Iµ(i,X, j) def= Pµ(S +⇒ wi−1
1 Xwn

j ) andOµ(i,X, j) def= Pµ(X +⇒ wj−1
i ). For calculating the

Iµ andOµ values, there exist well-known algorithms, usually used together as the machinary underlying

the Inside-Outside algorithm for parameter estimation [Lari and Young, 1991, Goodman, 1998]. The

MLR algorithm exploits the Inside and Outside probabilities for disambiguation3. Using a dynamic

programming algorithm over a chart, these calculations can be done in time cubic in sentence length.

4 Which algorithm for which metric?

It is known that an algorithm that selects the MPP under the given model for every input sentence,

necessarily minimizes the expected percentage of parses containing any errors at all [Duda et al., 2001].

The latter holds when the model is a good approximation of the true distribution over parse-trees and

sentences. As [Goodman, 1998] observes, however, the MPP is not guaranteed to achieve optimal

expectedLR rate. The main question now concerns the Maximizing Metrics (MM) hypothesis: does

maximizing the expectedERLR guarantee minimal error in terms of LR? We are interested here in

actual models of natural language parsing; these models often tend to beonly weak approximationsof

the true distributions, e.g. the models acquired from large tree-banks. Does the MM hypothesis hold

under these circumstances? We show here that the MM hypothesis need not always hold and that the

empirically optimal algorithm (in terms of some evaluation metric) is one that strikes a balance between

the amount of available data and the amout of linguistic knowledge that it employs for disambiguation.

Furthermore, we argue that for actual applications it might be more beneficial to employ algorithms that

achieve good scores on a range of different evaluation metrics than on a single metric such as LR.

4.1 Conditions for theMLR to perform

It is known that linguistic parse-trees express dependencies between different parts and constituents. A

suitable model captures these dependencies through the probability of co-occurence of constituents. In
2That the tree-bank is a sample from the given PCFG.
3We stress that theInside-Outside calculations in theMLR algorithm do not concern parameter estimation but the calac-

ulation of the LR metric during parsing.



contrast, theMLR algorithm, as we show next, might relax these dependencies to any extent, because

it optimizes an evaluation metric that does so too.

Define the set of derivations that pass through constituentA = 〈i, X, j〉 of sentencewn
1 by the

notationDA def= {S +⇒ wi−1
1 Xwn

j }. Given a parse-tree (represented as a set of constituents)C(T ) =

{Am | 1 ≤ m ≤ n}, whereAm = 〈im, Xm, jm〉 for all m, we know that

P (T |wn
1 ) = P (

n⋂
m=1

DAm | wn
1 )(5)

In words this simply says that the probability of a parse-treeT given the sentencewn
1 is equal to the

probability of the intersection between all sets of derivationsDA1 , . . . ,DAn (which results in the case

of a PCFG in a single derivation that generatesT ).

In contrast, according to equation 4, theMLR algorithm compares trees using

ERLR(T |wn
1 ) =

∑n
m=1 P (DAm |wn

1 )
n

(6)

Note thatERLR(T |wn
1 ) is the average probability of the cooccurence of any of the constituents ofT

with wn
1 . TheERLR, being an average over many nodes, will often be robust to data sparseness. As an

approximation of tree probability, however,ERLR(T |wn
1 ) might not be suitable for PCFGs of natural

language. This is because theMLR algorithm makes the assumption

P (
n⋂

m=1

DAm |wn
1 ) ≈

∑n
m=1 P (DAm |wn

1 )
n

This assumption need not always hold (asP (A ∩B) = P (A) + P (B)− P (A ∪B)). For example, the

dependency between two constituents, one on the right-hand side and the other on the left-hand side of

a production, is not necessarily captured by theERLR. Nevertheless, for disambiguation it is sufficient

that the rank order of parse trees using theERLR is approximately the same as the actual rank order.

4.2 A counter example
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Figure 1: A corpus with 4 trees for the sentencex x x x x x x x: the left most tree and the one directly
to its right are supposed to be right linear and left linear respectively, but some of the internal nodes
labeledS (7 in total in each of them) are omitted for space reasons.

In figure 1, we exhibit a toy corpus of correct parse-trees, whereS andA are the non-terminals and

x the terminal symbol. Table 1 shows the rules (and their respective probabilities) of the PCFG obained

from this corpus (referred to as “tree-bank grammar” [Charniak, 1996]).



S → x x 2/20 S → S x 6/20 S → A A 2/10
S → x S 6/20 S → S S 2/20 A → x x 8/8

Table 1: PCFG rules with their probabilities

xx

(0.168)A (0.407)A (0.407)A (0.168)A

xxxxxx

S(0.168) S(0.168)

S(0.201)

xx

(0.168)A (0.407)A (0.407)A (0.168)A

xxxxxx

S(0.168) S(0.168)

S(0.201)

A(0.407)

S(0.180)

A(0.407)

S(0.136)

S(0.238)

S(0.170)

S(0.399)

x x x x

x

x

x

x

Figure 2:(Left) the MPP,(Right) the LRR

Let us consider the input sentencex8 = x x x x x x x x for which the PCFG generates 500 different

parse-trees. Naturally, there is a clear preference in the corpus for the balanced structures shown at the

right in figure 1. According to our PCFG, the MPP, the left tree in figure 2, has probability:P (S →

S S|S) × P (S → A A|S)2 × P (A → x x|A)4, i.e. 1/10 × 1/52 × 14 = 1/250. In contrast, the

probability of the tree to the right of figure 2 is:3/102 × 3/102 × 1/5 = 81/5000. Remarkably, the

latter parse-tree is preferred by theMLR algorithm. Figure 2 shows both trees with the nodes decorated

with the respectiveg(i, X, j) rates4. The MPP has a labeled recall rate of≈ 1.69, and the LR parse has

a higher rate of≈ 1.94.

What happened in this example? TheMLR algorithm tends to compute theERLR as the aver-

age probability of an individual constituent to co-coccur with the utterance. The co-occurence of the

different constituents that constitute a parse is not taken into account directly. As the grammar over-

generates badly, the average over individual constituents becomes a bad estimate of the probability of

co-occurence of the multiple consituents together with the utterance.

Intermediate summary: When the language model is too weak, theMLR algorithm is not

guaranteed to be optimal with respect to the LR metric. Furthermore, it has often been observed

[Carroll et al., 2002] that the LR evaluation metric does not capture qualities of trees that might be

linguistically relevant. The LR metric takes only superficial aspects of parse-trees into account. There-

fore, we propose here that inpractical situations, i.e. tree-bank grammars, optimizing metrics that are

suitable for expressing some linguistically relevant features of parse-trees might deliver better results

than theMLR , both in terms of LR and in terms ofother, more interesting metrics. In the remainder

of this paper we explore this hypothesis. We present various algorithms and empirical comparisons to

support the preceding study.

4The calculations are space demanding to repeat here: one proceeds by looking up for every constituent all parse-trees in which
it appears, sum up the probabilities of these parse-trees and devide this by the sentence probability (4.539801e-02) to obtain the
g(i, X, j) for that constituent. Alternatively, we use here a computer program implementing the Inside and Outside algorithms to
do this.



5 New algorithms

We present alternatives for theMLR : algorithms that constitute a middle way between the MPP

and theMLR algorithms because they take into account more of the linguistically relevant features

of trees. These algorithms, we claim, are more interesting from a practical point of view than the

MLR algorithm for two reasons: (1) they are less prone to the weakness of the model than theMLR

because they are slightly stricter, and (2) they deliver more interesting parse-trees because they take into

consideration more linguistic aspects than theMLR . For example, the new algorithms might be more

suitable than theMLR for applications where the parser-output is used for computing compositional

semantics. We concentrate on two kinds of linguistic dependencies in parse-trees, to exemplify our

point:

...... W

CB

A

jwwi l
W

k
......

A

B C

jwwi

Figure 3: Two kinds of relations

Parent-child: These are abstractions of bilexical-dependencies [Collins, 1997]. Let〈i, A, j〉 ∈ C(T )

be a constituent inT and let〈k, B, l〉 ∈ C(T ), for i ≤ k < l ≤ j, be its left/right child con-

stituent (e.g. left tree in figure 5). Let us denote this relation between a parent and its child by

〈i, AO
B , j〉 ∈ T , whereO ∈ {left, right}. To measure the amount of match between parse-

trees at the level of parent-child dependencies we have to adapt their representation as follows:

PC(T ) def= {〈i, AO
B , j〉 | ∀〈i, AO

B , j〉 ∈ T}. We now define a new measure of tree-match called

the Parent-Child match as follows:PC(Tg, TC) def= E( |PC(TC)∩PC(Tg)|
|PC(TC)| ).

Frames: As proxi for sub-categorization frames, the notion of a frame in Phrase-Structure coincides

with a context-free production. Often it is assumed that frames constitute the syntactic units over

which semantic interpretation can take place. Let〈i, A, j〉 ∈ C(T ) and let〈k + 1, C, j〉, 〈i, B, k〉 ∈

C(T ) be its child nodes, wherei < k < j (right tree in figure 5). We will write this relation (a

Context-Free production) as follows:〈i, A → B C, j〉 ∈ T . Another representation ofT is given

by CF(T ) def= {〈i, A → B C, j〉 | ∀〈i, A → B C, j〉 ∈ T}. A correspoding tree-match metric

CF (Tg, TC) def= E( |CF(TC)∩CF(Tg)|
|CF(TC)| ).

From these definitions we can derive two new algorithms, respectively theMPCh and theMCFP al-

gorithms, by optimizing the respective metrics, just like theMLR algorithm was derived in section 3.2

by optimizing the LR metric. Formally speaking, we may reuse theMLR algorithm if we modify

the PCFG such that the non-terminal set consists of new non-terminals each representing a parent-child

dependency or a PCFG production, respectively. Hence, similar to theERLR(Tg|wn
1 ) (see equation 4),



we will have two terms to optimize

ERPC(Tg|wn
1 ) =

∑
〈i,XO

Y ,j〉∈Tg

∑
TC

P (TC |wn
1 ) Υ[〈i,XO

Y ,j〉∈PC(TC)]

|PC(TC)|

ERCF (Tg|wn
1 ) =

∑
〈i,X→Y,j〉∈Tg

∑
TC

P (TC |wn
1 ) Υ[〈i,X→Y,j〉∈CF(TC)]

|CF(TC)|

6 Empirical experiments
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Figure 4: (From left to right) originaln-ary rule, its right linearization, head-driven linearization when
C is head-child, and head-driven linearization whenB is head-child.

Our experiments deviate only slightly from Goodman’s experiments in that here the disambiguation

algorithms select the preferred parse from the space of trees that are generated by the PCFG at hand

(i.e. we do not allow theMLR to assemble extra parse-trees). This is because we are concerned with

the disambiguation capabilityof each of the algorithms over thesame set of parse-trees, rather than

its other capabilities. Moreover, the LR results improve only by a marginal amount by allowing new

combinations of constituents (Goodman p.c.).

We use the Penn Wall Street Journal (WSJ) tree-bank [Marcus et al., 1993] sections 02-21 for train-

ing and the first 1000 trees of section 23 for testing. It is noteworthy that our experiments with the MM

method are the first on a large tree-bank (Goodman’s concerned the small ATIS). We conducted experi-

ments with two different kinds of linguistic structure by transforming the training set in two alternative

ways:

1)MRL parser like Goodman [Goodman, 1998] we right linearize (henceMRL parser) alln-ary rules

(whenn > 2) in the training tree-bank using the method shown in figure 4,

2)MH parser we remove the unary productions and (1) extend the label of each node, except for the

pre-terminal level, with the label of the mother node and also with the label of the pre-terminal of

the head-word5 (henceMH parser), (2) linearize then-ary rules around the head-child as shown

in figure 4, and (3) encode the left/right subcat frames (Collins style) in the labels of the left/right

linearization nodes.

5This is a simplification of the bilexical-dependency approach e.g. [Collins, 1997] in that we do not include the actual head-
words on the labels of the nodes.



Metrics MPP MLR MPCh MCFP
Lab.Rec. 60.06 60.36 61.10 61.69
Lab.Prec. 62.90 65.55 65.25 65.22

Fβ 61.44 62.84 63.10 63.40
Ex.Match 5.4 3.9 4.5 4.8
0-Cross 17.8 15.6 16.5 16.5

MPP MLR MPCh MCFP
80.07 81.97 80.70 81.58
80.04 81.73 80.65 81.47
80.05 81.85 80.67 81.52
23.0 23.4 22.6 23.4
47.0 48.2 48.0 48.0

Table 2:(Left) Results on right linearized tree-bank,(Right) Results on semi-head lex. tree-bank.

These transforms result in two training tree-banks from which we obtained two different PCFGs by

simple counting, i.e. relative frequency model without smoothing. Both resulting parsers parse word-

sequences and so we use the method described in [Collins, 1997] for dealing with unknown words.

We employ the same parser implementation for the various algorithms. We evaluate the parser’s

output against6 the gold standard set after the respective transformations are applied, i.e. for theMRL

parser we compare against binary branching trees, and forMH parser against the trees obtained after

removing the unary productions from the original WSJ trees. We use the programevalb for PARSEVAL

evaluation7.

Table 2 (left) shows the results of theMRL parser. TheMLR , MPCh andMCFP algorithms

improve over theMPP in all metrics, especially theMCFP algorithm improves on theMPP by

up to 2% in terms ofFβ = 2∗LRP∗LRR
LRP+LRR . This supports the intuition underlying the Maximizing Metrics

hypothesis. However, the results show that the newMCFP andMPCh improve over theMLR

algorithm in terms ofFβ (by 0.3-0.6%)! This experiment confirms our hypothesis, that optimizing

a metric that takes more linguistic features of trees into account is more beneficial than maximizing

the evaluation metric itself. Nevertheless, there seems to be a kind of balance between the amount of

linguistic features accounted for by the algorithm and the sparsity of the data (this explains why the

MPP is suboptimal). In this case there seems to be enough data to support a frames-based metric

(MCFP ) but not enough to support exact-match (MPP ).

In light of these results, the experiment using theMH parser becomes interesting. By design, the

MH parser employs complex non-terminals, each consisting of a concatenation of a tree-bank node-

label, the parent and pre-head labels of that node. Hence, aMH parser non-terminal label already

captures more information than the parent-child relations of theMRL parser, which theMPCh and

MCFP algorithms aimed at extracting. As table 2 (right) shows, theMLR algorithm improves over

all other algorithms, with theMPP being the least successfull onFβ . This result shows that the

complex non-terminals of theMH parser, that already encode parent-child relations, enable theMLR

to perform well.

In terms of exact-match, we see that theMPP scores as best in the first experiment, but as worst in

the second. In the first experiment there is a natural flow of improvement on exact-match fromMLR

, throughMPCh andMCFP up to theMPP . In the second experiment, in contrast, we see that

6Our evaluation against the original tree-bank shows that the relative differences in performance remain very much the same.
7http://www.research.att.com/ mcollins/



theMLR andMCFP score equivalently, and better than theMPP . This result clearly exposes the

Achilles’ heal of theMPP : sparse-data. Sparse-data is at its worst in the case of exact-match because

the exactly matching parse-tree is often not in the tree-language of the grammar. Hence, another parse

gets selected: the most probable available parse.

These experiments warrant two conclusions: (1) in practical situations it is worth considering different

algorithms as theMLR might be suboptimal even in terms of LR, and (2) algorithms that take more

linguistic aspects into account could be more interesting to consider for various applications than the

MLR as these algorithms tend to score better than theMLR in terms of more relevant evaluation

metrics (e.g. those that make semantic interpretation of the output parses much easier).

7 Discussion

When the probabilistic model is a weak approximation of the data, it is wise to employ algorithms

that optimize other, more linguistically relevant evaluation metrics. We conjecture that our result also

applies to [Stolcke et al., 1997], who suggest that it is better to optimize the word-error rate of a speech-

recognition model, instead of selecting the most probable sequence of words under that model (i.e.

Maximum A Posteriori - MAP - solution).

We have shown that the empirically optimal algorithm is one that strikes a balance between data-

sparseness and the amount of linguistic knowledge taken into account by that algorithm. We exemplified

this through various algorithms that optimize new, tree evaluation metrics that match trees with respect

to an increasing amount of linguistic evidence in these trees.

We believe that there are computational as well as empirical benefits to be gained by employing the

algorithms discussed in the present paper. For some kinds of models, e.g. the Data Oriented Parsing

(DOP) model and Hidden Markov Models (HMMs), the MAP approach can be NP-Complete, and

efficient approximations via sampling do not alleviate this. In a larger number of cases, sparse-data

often imply that the MAP solution is not among those that are available to the model, and only a less

optimal solution exists. By optimizing the suitable metric, which might or might not coincide with the

final evaluation metric, it is possible to obtain more optimal disambiguators.

References

[Black et al., 1991] Black et al., E. (1991). A procedure for Quantitatively Comparing the Syntactic

Coverage of English Grammars. InProceedings of the February 1991 DARPA Speech and Natural

Language Workshop, pages 306–311, San Mateo, CA. Morgan Kaufman.

[Bod, 1998] Bod, R. (1998).Beyond Grammar: An Experience-Based Theory of Language. CSLI

Publications, California.



[Carroll et al., 2002] Carroll, J., Frank, A., Lin, D., Prescher, D., and Uszkoreit, H., editors (2002).

Beyond PARSEVAL: Towards Improved Evaluation Measures for Parsing Systems, Proceedings of

Workshop of the Third LREC Conference 2002. LREC, Las Palmas, Canary Islands, Spain.

[Charniak, 1996] Charniak, E. (1996). Tree-bank Grammars. InProceedingsAAAI’96, Portland,

Oregon.

[Collins, 1997] Collins, M. (1997). Three generative, lexicalized models for statistical parsing. In

Proceedings of the 35th Annual Meeting of the Association for Computational Linguistics (ACL)

and the 8th Conference of the European Chapter of the Association for Computational Linguistics

(EACL), pages 16–23, Madrid, Spain.

[Duda et al., 2001] Duda, R., Hart, P., and Stork, D. (2001).Pattern Classification. John Wiley & Sons,

NY, USA.

[Goodman, 1998] Goodman, J. (1998).Parsing Inside-Out. PhD thesis, Department of Computer

Science, Harvard University, Cambridge, Massachusetts.

[Goodman, 1996] Goodman, J. T. (1996). Parsing algorithms and metrics. In Joshi, A. and Palmer, M.,

editors,Proceedings of the 34th Annual Meeting of the Association for Computational Linguistics

(ACL’96), pages 177–183, San Francisco. Morgan Kaufmann Publishers.

[Lari and Young, 1991] Lari, K. and Young, S. (1991). Applications of stochastic context-free gram-

mars using the inside-outside algorithm.Computer, Speech and Language, 5:237–257.

[Manning and Schutze, 1999] Manning, C. and Schutze, H. (1999).Foundations of Statistical Natural

Language Processing. The MIT Press, Cambridge, MA.

[Marcus et al., 1993] Marcus, M., Santorini, B., and Marcinkiewicz, M. (1993). Building a large anno-

tated corpus of English: The Penn treebank.Computational Linguistics, 19:313–330.

[Sima’an, 2002] Sima’an, K. (2002). Computational complexity of probabilistic disambiguation.

Grammars, 5(2):125–151.

[Stolcke et al., 1997] Stolcke, A., K̈onig, Y., and Weintraub, M. (1997). Explicit word error minimiza-

tion in N-best list rescoring. InProc. Eurospeech ’97, pages 163–166, Rhodes, Greece.


