
Dynamic User Level and Utility Measurement for Adaptive
Dialog in a Help-Desk System

Preetam Maloor
Department of Computer Science,

Texas A & M University,
College Station, TX 77843, USA

preetam@csdl.tamu.edu

Joyee Chai
Conversational Machines

IBM T. J. Watson Research Center,
Hawthorne, NY 10532, USA

jchai@us.ibm.com

Abstract

The learning and self-adaptive capability in
dialog systems has become increasingly
important with the advances in a wide range of
applications. For any application, particularly
the one dealing with a technical domain, the
system should pay attention to not only the user
experience level and dialog goals, but more
importantly, the mechanism to adapt the system
behavior to the evolving state of the user. This
paper describes a methodology that first
identifies the user experience level and utility
metrics of the goal and sub-goals, then
automatically adjusts those parameters based on
discourse history and thus directs adaptive
dialog management.

Introduction

A new generation of dialog systems should be
viewed as learning systems rather than static
models (Jokinen, 2000). Close-world and
static approaches have tremendous limitations
and often fail when the task becomes complex
and the application environment and
knowledge changes. Thus, the learning
capability of a dialog system has become an
important issue. It has been addressed in many
different aspects including dynamic
construction of mutual knowledge (Andersen
et al, 1999), learning of speech acts (Stolcker
et al, 1998), learning optimal strategies
(Litman et al, 1998; Litman et al, 1999;
Walker et al, 1998), collaborative agent in plan
recognition (Lesh et al, 1999), etc. This paper
addresses the dynamic user modeling and
dialog-goal utility measurement to facilitate
adaptive dialog behavior.

For any dialog system dealing with a technical
domain, such as repair support (Weis, 1997),
help-desk support, etc, it is crucial for the
system not only to pay attention to the user
knowledge and experience level and dialog
goals, but more important, to have certain
mechanisms that adapt the system behavior in
terms of action planning, content selection,
and content realization to user cognitive
limitations. Dialog strategies and management
should be adjusted to the evolving state of the
user. Thus a better understanding and
modeling of user cognitive process and human
perception is desirable.

In this paper, we propose a methodology that
automatically learns user experience levels
based on sub-goal utilities and characteristics
observed during the interaction. Those user
levels will further feedback to update utility
metrics and direct different dialog strategies at
each level of dialog management: action
planning, content selection and content
realization. The Help-Desk is our application
domain. This is a work in progress. We have
built a prototype system and are currently in
the process of evaluation of our methodology
and hypotheses.

1 System Overview

The system components, shown in figure 1,
consist of a problem space representation and
a set of modules and agents that utilize this
representation. The architecture supports a
dynamic updating process for user level and
sub-goal utility measurement, and thus allows
the system to adapt its dialog behavior to the
updated environment.

94

~(~o r~nt ,~decdoll Iloa Lq4 -

1 1
r I

i i

Figure 1. System Components

The problem space is modeled by an Acyclic
Problem Graph structure, which represents the
dialog goal (i.e., final goal) and different paths
(solutions) to the final goal. The Level
Adjusting Agent controls the initial detection
and dynamic shifting of user expertise level
based on the interactions with the user. The
Action Planner identifies the problem node
(i.e., dialog goal) in the Acyclic Problem
Graph and locates the optimal path to it. The
Content Selection component uses the Level
Adjusting Agent and the Action Planner to
select the content for the dialog. The Content
Realization module deals with the final
presentation of the dialog content to the user.
The Utility Updating Agent automatically
updates the utility metrics of the sub-goals in
the Acyclic Problem Graph based on the single
and group user models that are created during
interactions. Different strategies are applied in
different modules, which will be described
later.

2 Problem Space Modeling

The problem space is modeled by an aeyclic
graph named Acyclic Problem Graph. It can
also be considered as a forest containing joint
trees that have overlapped root nodes and
internal nodes. Internal nodes correspond to
sub-goals. A path traversed from a root to a
particular node contains a potential solution to
a goal or sub-goal related to that node. Given a
root node, the ffurffier away from the root, the
greater is the complexity of the goal (or sub-
goal) represented by a node. Since multiple

paths can lead to a node, there could be
multiple solutions to a goal.

Figure 2 is a fragment of an acyclic graph for
solving problems pertaining to a Windows
based PC. In this example, three paths
correspond to three potential solutions to the
problem about how to set the display
resolution of a monitor.

A C

Concept:. Desklop Set t ings
Remedy: (set of remedies for
generation purpose)
Reward: +15
Plmishment: -45
Timeout:
Best.case: 10 sees (reward: +10)
Worst-ease: 30 sees (pua i s lma~t :
-2O)

Figure 2. Acyclie Problem Graph

Each node in the graph has the following
fields: Concept Name, Remedy, and Utility
Metrics that include Reward, Punishment,
Best-case timeout and Worst-case firneout.

Concept Name represents an instruction
corresponding to a particular goal or sub-goal
during the problem solving. For example, the
concept of "Display Properties" node deals
with manipulating the display of the monitor.

Remedy is the template that is used to generate
natural language responses and explanations
corresponding to a particular goal. It also
contains phrases and key terms used for
language generation.

Reward and Punishment are the utility metrics
corresponding to each sub-goal (Winlder,

95

1972) depending upon the]hypothesis of
uncertainty of understanding and the level of
importance. Uncertainty of understanding
implies the difficulty in following certain
instructions or understanding certain concepts.
For example, some technical terms require
users to possess greater expertise in order to
comprehend them. Some potential ways of
initializing uncertainty of unders.tanding are by
observation, analysis of previously logged
data, or surveys. The level of importance
indicates the importance of the sub-goal for
understanding an instruction or a concept
towards the realization of the overall goal of
solving the problem. One good indication of
such importance, for example, in the Acyclic
Problem Graph, is the branch factor of each
node. A more difficult concept has a greater
level of uncertainty and hence would lead to
less punishment if the user does not
understand it. On the other hand, if a user
correctly understands a concept that has a high
degree of uncertainty, he would be rewarded
highly. Reward and punishment can be pre-
determined and then re-adjusted later when the
user and the group modeling progresses.

Timeout metrics are used to indicate whether
the user understands the instruction or the
concept associated With the sub-goal within
the expected period of time. The hypothesis is
that when a user has no problem of
understanding a system instruction, the user is
very likely to respond to the system rapidly.
However, when the user has difficulties,
he/she tends to spend more time on thinking
and asking for help. There are two timeouts:
best-case and worst-case. Each timeout has a

reward and a punishment. Best-case time is the
time expected by the system, in the best ease,
that a user would take to understaud the
instruction. The user is rewarded when actual
time spent is less than the best-case time.
Similarly, the worst-case time is the system
expectation for the worst ease. If the user still
doesn't get the instruction after the worst-ease
time period, he is punished for it. Again, these
values are pre-set and will be dynamically ree-
adjusted.

3 Dialog Management

The Dialog Manager can be broadly classified
into two main modules: Content Selection and
Content Realization.

3.1 Content Selection Module

The Content Selection Module consists of four
components: Level-Adjusting Agent, Utility-
Updating Agent, Action Planner and Content
Selector.

& L1 The Level-Adjusting Agent

There are three levels of user expertise that the
dialog manager takes into consideration:
Expert, Moderate and Novice. The agent
controls the initial detection and dynamic
shifting of user expertise level based on
interactions with the user.

If a user is using the system for the first time, a
good indication of the initial user expertise
level is the level of detail and technical
complexity of the initial query. As user's
interaction with the system continues, a profile
of the user is constructed gradually. This
profile could be re-used to set the initial user
expertise when the user uses the system again.

The dynamic shifting of user expertise level is
of two kinds: local (i.e., temporary) shifting
between local expertise levels and
accumulated (i.e., long term) shifting between
accumulated expertise levels. Local shifting
adjusts the expertise level temporarily - by
observing the user confirmation (currently an
explicit user confirmation is expected) which
indicates whether he/she understands a certain
instruction. The reason for temporary
adjustment is because we assume that the user
is having trouble understanding only this
particular instruction and not the overall
solution.

The accumulated shifting permauently adjusts
the user expertise level depending upon two
threshold values: EXPERTLEVEL and
NOVICELEVEL. The user is considered an
expert when his accumulated expertise level is
above the EXPERTLEVEL and is considered

96

novice when that is below the
NOVICE_LEVEL. The user is assumed to
have moderate expertise if he lies between
these two thresholds. An accumulated value
(ACCUM_VALUE) is calculated based on the
whole dialog history. If the ACCUiVLVALUE
of a user crosses a threshold, the accumulated
user expertise level changes long term as it is
assumed that there is a change in the user's
overall understanding of the solution.

At any point of the interaction, the system
maintains ACCUM VALUE for the user. This
value is used to adjust the user expertise level.
The ACCUM V A L U E is calculated based on
the following set of features associated with
utility metrics in each node in the discourse
history (Wies, 1997; Jameson et al, 1999):

Sub-goal Complexity: More complex sub-
goals have a greater level of importance and
uncertainty of understanding, and thus have a
high reward and a low punishment. Similarly,
comparably simple sub-goals have a low
reward and a high punishment.

Accomplishing Time: this is perhaps the
trickiest parameter as the chance of making an
incorrect assumption is much higher. The user
response time could be a good indication of
user understanding. The longer the resolving
of the user's problems lasts, the more
unfavorable the evaluation is. Also if the user
responds quickly, he is rewarded for it. To
detect whether the user is distracted or not, if a
series of timeouts occur continuously, the user
is not paying attention to the system.

Response Complexity: There is a reward and a
punishment associated with each system
response that reflects the complexity of the
content and realization of the system
responses. First of all, the content for response
generation varies with different expertise
levels. For novice users, all the content on the
solution path will be generated as several turns
of responses based on the number of sub-goals
in the path. For expert users, only 40% content
on the solution path (toward the final goal) is
used for the generation as one response.
Furthermore, for users with different expertise
level, the Content Realization Module will

generate system responses (in the prototype
system, the system responses are mainly
instructions that guide users to solve a help-
desk problem) with different levels of
syntactic complexity and technical details. For
example, for novice users, the system tends to
generate responses with single instruction
corresponding to one sub-goal, while for
expert users, the system tends to generate
responses with single instruction
corresponding to multiple sub-goals on the
solution path. The response with multiple
instructions will have higher reward and lower
punishment than those are associated with
single instruction. Thus the user who gives a
positive confirmation to a more complex
system response will be rewarded higher than
those who understand a simple system
response.

Based on the above factors, the
ACCUM VALUE can be calculated
depending upon the conditions using the
following formulae:

ACCUM VALUE = ACCUlvLVALUE +
f/response -complexity (reward, punishment), sub-goal(reward,
punishmen0, timeout(reward, punishment)]

In the prototype system, we have used the
following:

If a goal is accomplished by the user(indicated
by positive user confirmation),
ACCUM_VALUE = ACCUM...VALUE + [response-
complexity(reward) * sub-goal(reward)]

If a goal is not accomplished(indicated by
negative user confirmation),
ACCUM_VALUE = ACCUM. VALUE [response-
complexity(punishment) * sub-goal(punishment)]
If a goal is accomplished before best-time
timeout value,
ACCUM_VALUE = ACCUM_VALUE + [response-

complexity(reward) * sub-goal(best-case timeout reward)].

If a goal is not accomplished before worst-time
timeout value,
ACCUMVALUE = ACCUM.VALUE - [response-
complexity(punishment) * sub-goal(worst-ease timeout punis-
lament)].

Other variations of the formula are expected to
be explored in the future.

97

3.L 2 Action Planner and Content Selector

The Action Planner identifies the final
goal node in the Acyclic Problem Graph
and finds the optimal path to it. The
optimal path is selected based on the path
utility function. The utility of a path in the
graph is the summation of the
reward/punishment ratio of all the nodes (sub-
goals) in that path.

Path utility (start-node, goal) = E (r i / Pi)

n

where i is a concept node in the path from the
start node to the goal node, ri is the reward and
pl is the punishment of the corresponding node
i. The number of nodes n in the path acts as
the normalizing factor.

Thusfor a given path, higher its path utility,
greater is the difficulty to understand the
concepts it contains and thus higher is the
level of expertise required.

The following co-operative strategies are used:
for an expert user, select the path that has the
maximum path utility. For a novice, select the
one with the minimum path utility since this is
the one containing concepts easiest to
understand and with more steps of
instructions. For a moderate-experience user,
select a path in between. (We are currently
more focused on the experienced and novice
users.) Content Selector is applied to select the
appropriate nodes on the path to form the
content of dialog.

3.L3 Utility Updating Agent

A set of users having very similar expertise
levels can be classified as a group. A Utility
Updating Agent dynamically updates utility
metrics of sub-goals in the Acyclic Problem
Graph based on the group interactions with the
system. For example, Group A has a reward of
+50 and a punishment o f - 1 0 assigned to the
sub-goal with associated concept of Display
Properties. However the agent notices that the
majority of the group understand the
corresponding instruction very quickly without
going into the sub-goal resolution, then the
agent decreases the reward to +35 and
increases the punishment to -25. This
dynamic re-training of utility metrics in sub-
goals would reflect the evolving user
experience level as a whole and would
improve the robustness of the dialog manager.

3.2 Content Realization Module

This module deals with the final presentation
of the dialog content to the user. The dialog
manager adopts different response strategies
for each of the three expertise levels. It has
been observed that an expert user appreciates a
response, which is precise, to the point, and
short. For a novice user, it has been observed
that such a user likes system instructions that
are step-wise, higher level of detail and
minimum technical jargon. For a moderate-
experience user, the strategy lies somewhere in
between which we haven't given a full
consideration. The response strategy followed
for each type of user is given in the table 1.

Response [I.~ve~ of d ~ l of system Teclmical t~'ms in system SyntacTic Conccisencss of the
[inKa'uctions and e:(planation in.~ru~ows and ~planation explanation Expertise i

Expert / Low High High
Moderate I Moderate Moderate Moderate
Novice High Low Low

Table 1. User expertise level and corresponding dialog strategies

98

3.3 Algorithm

The proposed algorithm for action planning,
content selection and content realization is
given in Figure 3. This algorithm recursively
applies a divide and conquer mechanism to
accomplish the final goal by resolving sub-
goals. Two variables (i,e., local expertise level
and accumulated expertise level) are
maintained by the Level-Adjusting Agent for
the automated level updating. The Action
Planner identifies the goal node and the
solution path to it depending on the expertise
level of the user. Based on this level, the
Content Realization Module will first select
the content on the path to be presented and
then use various response strategies to

generate and display system instructions to the
user. For novice users, all the content on
solution path will be used; for moderate and
expert users, only partial content on the path
(toward the goal) will be used. In terms of
generation, for novice and moderate expertise
users, the system generates responses with
single instruction corresponding to one sub-
goal, while for expert users, the system tends
to generate responses with single instruction
corresponding to multiple sub-goals on the
solution path. The syntax of the response
becomes more complex as the expertise level
increases. Depending on the response of the
user, the Level-Adjusting Agent updates the
user expertise level and adapts the response
strategies accordingly.

1) Level-Adjnsting Agent detects the initial expertise level and assigns it to both local expertise level and accumulated
expertise level.

2) Action Planner identifies the start node and goal node in the Acyclic Problem Graph and locates the appropriate path
between the start node and the goal node.

a~ For novice user, the path with minimum path utility is selected
b. For expert user, the path with maximum path utility is selected
c. For moderate user, a path in between is selected

3) Content Realization Module generates system instructions based on the selected path by using the following response
SU'~tegles"

a. For an expert, the instruction is generated by using the nodes that fall within a distance of X% from the goal
node to the root node.

b. For a moderate-experienced user, nodes within a distance of Y% (where Y > X) are used,
e. For a novice, all nodes from the root to the goal are used to generate the instruction

(X and Y could be experimentally determined later)
4) Content Realization Module displays generated insmactions to the user.
5) Level-Adjusting Agent receives the user confirmation and updates user expertise level.

a. If the confirmation is positive, the Level Adjusting Agent does the following:
i. Update ACCUM_VALUE=ACCUM VALUE + [response--complexity(reward) * sub-goal(reward)]

i i . If ACCUM VALUE crosses above an expertise level threshold, upgrade accumulated expertise
level

iii. If the goal node is the final node, exit. Otherwise, continue to the next node.
b. If the confirmation is negative

i. If current local expertise level is greater than novice, temporarily reduce local expertise level; else
suspend system at current state (so that the user can take his own time in understand/rig the
instruction or seek outside help).

i i . Update ACCUM_VALUE= ACCUM VALUE - [response.complexity(punishment) * sub-
goal(punishmen0].

iii. If ACCCUIvLVALUE crosses below a level threshold, reduce accumulated experience level.
iv. Record the current node and the current path
v. Make current node as the goal node; Go to step 2. Repeat until all sub-goal nodes of this goal node

are understood.
6) Re-initialize local expertise level to current value of accumulated expertise level. Restore path to value stored in step

5.b.iv. Go to step 2. Reset the start node. Continue till the final goal is reached.

(A timer that is running on a separate thread also modifies the ACCUM_VALUE variable. On occurrence ofa tirneout, the
following steps are followed:
If the time spent is less than the best-case time

ACCUM._VALUE=ACCUM_.VALUE + [response-complexity(reward) * sub-goal(best-case timeout reward)].
Go to step 5.a.ii.

If the time spent is more than the worst-case time
ACCUM_VALUE=ACCUM_VALUE - [response-complexity(punishment) * sub-goal(worst.ease timeout
punishrnent)l.
Go to step 5.b.iii.)

Figure 3. Algorithm

99

4 A n e x a m p l e o f interact ion

A scenar io appl ica t ion for the sys tem us ing the

p r o b l e m tree o f F i g u r e 2 is g iven in F igure 4.

This set o f in terac t ions is b e t w e e n the sys t em
and a u se r w h o is t ry ing to adjust the d i sp lay
set t ings o f his moni tor .

1. System: Hi, how may I help you?
2. User: I need to adjust the desktop resolution of my monitor

> Initial accumulated expertise level detected - Expert
Goal node-Desktop Setting (as it deals with adjusting the resolution)
Shortest part is nodes 1-2-6.7 (assuming that it has the maximum path utility value).
Nodes 6,7 (40% rounded to nearest whole number) are selected to generate response.

> Response generated with instruction corresponding to multiple sub-goals on the solution path.
3. System: Yon can do that by adjusting the desktop area in the desktop settings section of the display
properties window.
4. User: Where is desktop setting window?

Temporarily decreasing local expertise level to Moderate.
ACCUM VALUE=ACCUlVLVALUE- [response-complexity (punishment) * Desktop-

Setting(punishment)]
} Shortest path to Desktop Setting recalculated as 8-5-6-7 (assuming that it has the average path

utility value).
Nodes 5,6,7 (70% rounded to nearest whole number) are selected to generate response.
Response generated with single instruction corresponding to one sub-goal.

5. System: First, go to the Control Panel window.
...worst-case timeout occurred
> Temporarily decrease local expertise level to Novice.
> ACCUIVLVALUE=AC CU/VLVALUE [response-complexity(punishment) * control-

panel(worst-case timeout punishment)]
> ACCUM_VALUE falls below EXPERTLEVEL Make accumulated experience level moderate.
> Shortest path to Control Panel recalculated as nodes 3-.4-5 (assuming it has the minimum path

utility value).
> All nodes used to generate response.

Response generated with single instruction corresponding to one sub-goal.
6. System: 1. Click on "Start" icon on lower left corner of your screen.
7. User: Ok

> ACCUM VALUE = ACCUM LEVEL + [response-eomplexity (reward), Start(reward)]
8. System: 2. Click on "Settings" label.
9. User: Ok

> ACCUM_VALUE=ACCUM_LEVEL + [response-complexity(reward), Settings(reward)]
10. System: 3. Click on "Control Panel" label.

> No change in ACCUM VALUE as user has been punished earlier at this step.
local experience level goes back to moderate. Path reset to 8-5-6-7 selected in step 4.

11. System: Now click on the DLsplay Properties window.
12. User: OK

No change in ACCUlVLVALUE as user has been punished earlier at this step.
13. System: Select "Desktop settings" in this window.
14. User: Ok

No change in ACCUM_VALUE as user has been punished earlier at this step.
15. System: Finally, adjust "display area" by moving the slide-bar.
16. User: Ok. Thank yon

No change in ACC"UM_VALUE as user has been punished earlier at this step.
Profile of user stored.

Figure 4. An example

100

Notice that after step 9, the user level remains
at moderate and does not return to expert.
This is because a decrease in accumulated user
expertise level has taken place in step 5. Also,
the style of the dialog is different at each level
according to the expertise level of the user at
that time.

Conclusion

This paper describes hypotheses, strategies
and a methodology in building a dialog system
that adapts itself to the evolving level of user
expertise. Furthermore, the system allows
automated sub-goal utility adjusmaent based
on history of interactions with groups of users.
We have implemented the algorithm described
in this paper on a prototype system where the
utility metrics have been initialized manually
by a help-desk expert, based on his
experiences of interaction with users. We are
currently working on evaluation of hypotheses
and the system.

This work is still in its early stage. Our future
work includes conducting evaluation of the
hypotheses and the system and investigating
machine learning techniques for improving
utility adjustments.

Acknowledgement

This work was a summer project while the
first author was doing his summer internship at
the Conversational Machines Group at IBM T.
J. Watson Research Center. We would like to
thank all members in Conversational Machines
Group for their discussions and support.

References

Carl Andersen, David Traum, K. Purang Darsana
Purushothaman, Don Perlis (1999) Mixed
Initiative Dialogue and Intelligence via Active
Logic. In proceedings of the AAAI99 Workshop
on Mixed-Initiative Intelligence, pp. 60-67.

Anthony Jameson, Ralph Sch~fer, Thomas Weis,
Andr6 Berthold and Thomas Weyrath (1999)
MaMng Systems Sensitive to the User ~ Time and
Working Memory Constraints, Intelligent User
Interfaces.

Kristiina Jokinen (2000) Learning Dialog System.
LREC 2000 Second International Conference on

Language Resources and Evaluation, Athens,
Greece.

Neal Lesh, Charles Rich, Candace Sidner (1997)
Using plan recognition in human-computer
collaboration. In 7tn International Conf. On User
Modeling, Banff, Canada.

Diane J. Litman, Shirnei Pan, Marilyn A Walker,
(1998) Evaluating Response Strategies in a
Web-Based Spoken Dialogue Agent. In
Proceedings of the 36 th Annual Meeting of the
Association for Computational Linguistics and
the 17th International Conference on
Computational Linguistics (COLING-ACL'98),
Montreal, Canada, pp. 780-786.

Diane J. Litrnan, Shimei Pan (1999) Empirically
Evaluating an Adaptable Spoken Dialogue
System. In Proceedings of the 7th International
Conference on User Modeling (UM), Banff,
Canada, pp. 55-64.

Andros Stolcke, Elizabeth Shriberg, Rebecca Bates,
Noah Coccaro, Daniel Jurafsky, Rachel
Martin, Marie Meteer, Klaus Ries, Paul Taylor,
Carol Van Ess-Dykerna (1998) Dialog act
modeling for conversational speech. In Chu-
Carroll J., and Green N., (Eds), Applying
Machine Learning to Discourse Processing.
Papers fi'om the 1998 AAAI Spring Symposium.
Stanford, CA.

Marilyn Walker, Jeanne Fromer, Shrikanth
Narayanan (1998) Learning Optimal Dialog
Strategies: A Case Study of a Spoken Dialog
Agent for EmaiL In Proceedings of COLING-
ACL'98, University of Montreal, Canada.

Thomas Weis (1997) Resource-Adaptive Action
Planning in a Dialogue System for Repair
Support, KI.

Robert L Winlder (1972) Introduction to Bayesian
Inference and Decision. Holt, Rinehart and
Winston Inc.

101

