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A b s t r a c t  

An extension to memory-based learning is de- 
scribed in which automatically induced rules 
are used as binary features. These features 
have an "active" value when the left-hand side 
of the underlying rule applies to the instance. 
The RIPPER rule induction algorithm is adopted 
for the selection of the underlying rules. The 
similarity of a memory instance to a new in- 
stance is measured by taking the sum of the 
weights of the matching rules both instances 
share. We report on experiments that indicate 
that (i) the method works equally well or bet- 
ter than RIPPER on various language learning 
and other benchmark datasets; (ii) the method 
does not necessarily perform better than default 
memory-based learning, but (iii) when multi- 
valued features are combined with the rule- 
based features, some slight to significant im- 
provements are observed. 

1 R u l e s  as f e a t u r e s  

A common machine-learning solution to classi- 
fication problems is rule induction (Clark and 
Niblett, 1989; Quinlan, 1993; Cohen, 1995). 
The goal of rule induction is generally to induce 
a set of rules from data, that captures all gener- 
alisable knowledge within that data, and that is 
as small as possible at the same time. Classifica- 
tion in rule-induction classifiers is based on the 
firing of rules on a new instance, triggered by 
matching feature values to the left-hand side of 
the rule. Rules can be of various normal forms, 
and can furthermore be ordered. The appropri- 
ate content and ordering of rules can be hard 
to find, and at the heart of most rule induction 
systems are strong search algorithms that at- 
tempt to minimise search through the space of 
possible rule sets and orderings. 

Although rules appear quite different from in- 

stances as used in memory-based or instance- 
based learning (Aha et al., 1991; Daelemans and 
Van den Bosch, 1992; Daelemans et al., 1997b) 
there is a continuum between them. Rules can 
be seen as generalised instances; they represent 
the set of training instances with the same class 
that match on the conditions on the left-hand 
side of the rule. Therefore, classification strate- 
gies from memory-based learning can naturally 
be applied to rules. For example, (Domingos, 
1996) describes the RISE system, in which rules 
are (carefully) generalised from instances, and 
in which the k-NN classification rule searches 
for nearest neighbours within these rules when 
classifying new instances. 

Often, the sets of instances covered by rules 
overlap. In other words, seen from the instance 
perspective, a single instance can match more 
than one rule. Consider the schematic exam- 
ple displayed in Figure 1. Three instances with 
three multi-valued features match individually 
with one or two of the four rules; for example, 
the first instance matches with rule 1 (if f l  = A 
then c = Z) and with rule 3 (if f2  = C then 
c =  Z).  

Pursuing this reasoning, it is possible to in- 
dex instances by the rules that apply to them. 
For example, in Figure 1, the first instance can 
be indexed by the "active" rule identification 
numbers 1 and 3. When the left-hand sides of 
rules are seen as complex features (in which the 
presence of some combination of feature values 
is queried) that are strong predictors of a single 
class, indexing instances by the rules that apply 
to them is essentially the same as representing 
instances by a set of complex features. 

Note that when a rule matches an instance, 
this does not guarantee that the class of the 
instance is identical to the rule's predicted class 

- many rules will classify with some amount of 
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Figure 1: Schematic visualization of the encod- 
ing of multi-valued instances via matching rules 
to rule-indexed instances, characterlsed by the 
numbers of the rules that  match them. f l ,  f2,  
and f3  represent the three features, c represents 
the class label. 

error. In Figure 1, the third memory instance 
matches rules 3 and 4 which both predict a Z, 
while the instance itself has class X. 

Now when instances are represented this way, 
they can be used in k-NN classification. Each 
complex feature then becomes a binary feature, 
that  can also be assigned some weight (e.g., 
gain-ratio feature weights, chi-square, or equal 
weights (Daelemans et al., 2000)); when a mem- 
ory instance and a new test instance share com- 
plex features, their similarity becomes the sum 
of the weights of the matching features. In Fig- 
ure 1, a new instance (bottom) matches rules 2 
and 4, thereby (partially) matching the second 
and third memory instances. If, for example, 
rule 4 would have a higher overall weight than 
rule 2, the third memory instance would become 
the nearest neighbor. The k-NN rule then says 
that  the class of the nearest neighbour transfers 
to the new instance, which would mean that  
class X would be copied - which is a differ- 
ent class than those predicted either by rule 2 
or 4. This is a marked difference with classi- 
fication in RIPPER, where the class is assigned 
directly to the new instance by the rule that  
fires first. It can be expected that  many classi- 
fications in this approach would be identical to 

those made by RIPPER, but it is possible that  
the k-NN approach has some consistent advan- 
tage in the cases where classification diverges. 

In this paper we investigate some effects of 
recoding instances by complex features induced 
by an external rule-induction algorithm, and 
show that the approach is promising for lan- 
guage learning tasks. We find that  the method 
works equally well or better than RIPPER on 
various language learning and other benchmark 
datasets. However, the method does not nec- 
essarily perform better than default memory- 
based learning. Only when the rule-indexing 
features are added to the original multi-valued 
features, improvements are observed. 

2 R u l e - B a s e d  M e m o r y :  a l g o r i t h m  

A new memory-based learning variant RBM, 

which stands for Rule-Based Memory, imple- 
ments the ideas described in the previous sec- 
tion using the following procedure: given a 
training set and a test set of a certain classifi- 
cation task, (1) apply RIPPER (Cohen, 1995) to 
the training set, and collect the set of induced 
rules; (2) recode the instances in the training 
and test set according to these rules; (3) ap- 
ply the basic memory-based learning algorithm 
IBi-IG to the recoded training set, and k-NN- 
classify the recoded test set. We describe each 
of these steps briefly here. 

RIPPER (Cohen, 1995) is a fast rule induction 
algorithm that  splits the training set in two. 
On the basis of one part  it induces rules in a 
straightforward way, with potential overfitting. 
When the induced rules classify instances in the 
other part  of the split training set below some 
classification accuracy threshold, they are not 
stored. Rules are induced per class, in a certain 
class ordering. By default, the ordering is from 
low-frequency classes to high frequency classes, 
leaving the most frequent class as the default 
rule, which is generally beneficial for the total 
description length of the rule set. In our experi- 
ments, we let RIPPER order the rules from high- 
frequent to low-frequent, the idea being that  
this method would yield more complex features. 

Then, the rule set was taken as the basis 
for recoding both the training and test set, as 
schematically visualised in Figure 1. As with 
the training material, each test set was recoded 
in batch, but  this could have been done on- 
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line during classification without much compu- 
tational overhead. For each language task we 
experimented on, we performed 10-fold cross 
validation tests, so ten different train-test par- 
titions were produced (Weiss and Kulikowski, 
1991) that  were recoded, and then tested on. 
Tests were performed with the TiMBL software 
package (Daelemans et al., 2000), using the soft- 
ware's dedicated routines for handling binary 
features. The default IBi-IG algorithm was used 
(for details, consult (Aha et al., 1991; Daele- 
mans and Van den Bosch, 1992; Daelemans et 
al., 1997b), with gain ratio selected as feature 
weighting metric. 

3 R e s u l t s  

We performed experiments on the following five 
language data sets - More details on numbers of 
features, values per features, number of classes 
and number of instances are displayed in Ta- 
ble 1: 

D i m i n u t i v e  f o r m a t i o n  (henceforth DIM): 
choosing the correct diminutive inflection 
to Dutch nouns out of five possible: je, tje, 
pie, kje, and etje, on the basis of phonemic 
word transcriptions, segmented at the 
level of syllable onset, nucei and coda 
of the final three syllables of the word. 
The data stems from a study described in 
(Daelemans et al., 1997a). 

G r a p h e m e - p h o n e m e  c o n v e r s i o n  (GPSM): 
the conversion of a window of nine letters 
to the phonemic transcription of the 
middle letter. From the original data set 
described in (Van den Bosch, 1997) a 10% 
subset was drawn. 

B a s e - N P  c h u n k i n g  (NPSM): the segmenta- 
tion of sentences into non-recursive NPs. 
(Veenstra, 1998) used the Base-NP tag set 
as presented in (Ramshaw and Marcus, 
1995): I for inside a Base-NP, O for out- 
side a Base-NP, and B for the first word 
in a Base-NP following another Base-NP. 
See (Veenstra, 1998) for more details, and 
(Daelemans et al., 1999) for a series of ex- 
periments on the original data set from 
which we have used a randomly-extracted 
10%. 

P a r t - o f - s p e e c h  t a g g i n g  (POSSM): the disam- 
biguation of syntactic classes of words in 

P P  

particular contexts. We assume a tagger 
architecture that  processes a sentence from 
a disambiguated left to an ambiguous right 
context ,  as described in (Daelemans et al., 
1996). The original data set for the part- 
of-speech tagging task, extracted from the 
LOB corpus, contains 1,046,151 instances; 
we have used a randomly-extracted 10% of 
this data. 

a t t a c h m e n t  (PP): the at tachment o fa  PP 
in the sequence VP hip PP (VP = verb 
phrase, 51P = noun phrase, PP = prepo- 
sitional phrase). The data  consists of four- 
tuples of words, extracted from the Wall 
Street Journal Treebank. From the origi- 
nal data set, used by (Ratnaparkhi et al., 
1994), (Collins and Brooks, 1995), and (Za- 
vrel et al., 1997), (Daelemans et al., 1999) 
took the train and test set together to form 
the particular data also used here. 

Table 2 lists the average (10-fold cross- 
validation) accuracies, measured in percentages 
of correctly classified test instances, of IBI-IG, 
RIPPER, and RBM on these five tasks. The clear- 
est overall pat tern  in this table is the high accu- 
racy of IBi-IG, surpassed only twice by RBM on 
the DIM and NPSM tasks (significantly, accord- 
ing to one-tailed t-tests, with p < 0.05). On 
the other three tasks, IBI-IG outperforms RBM. 
RIPPER performs significantly more accurately 
than IBi-IG only on the DIM task. Once again, 
evidence is collected for the global finding that 
forgetting parts of the training material, as ob- 
viously happens in rule induction, tends to be 
harmful to generalisation accuracy in language 
learning (Daelemans et al., 1999). 

A surprising result apparent in Table 2 is that  
RBM never performs worse than RIPPER; in fact, 
it performs significantly more accurately than 
RIPPER with the GPSM, NPSM, and POSSM tasks. 
There appears to be an advantage in the k- 
NN approach to rule matching and voting, over 
the RIPPER strategy of ordered rule firing, with 
these tasks. 

Another advantage, now of RBM as opposed 
to IBi-IG, is the reduced memory requirements 
and resulting speed enhancements. As listed in 
Table 3, the average number of rules in the rule 
sets induced by RIPPER range between 29 and 
971. Averaged over all tasks, the rules have on 
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Data set 
DIM 

GPSM 
POS 
NP 
PP 

#l  
Feat. 

111 
9 
5 

11 
4 

# Values of ~ature 
1 2 3 4 5 6 7 8 9 10 11 12 
3 51 19 40 3 61 20 79 2 64 18 

42 42 42 42 41 42 42 42 42 
155 157 414 395 384 

5961 5911 5895 5908 51 50 55 49 3 3 3 
3474 4612 68 5780 

43 

# # Data set 

Cla~ instances 3950 

6i  I 67,575 15 104,617 
25 114 
23,898 

Table 1: Specifications of the five investigated language learning tasks: numbers of features, values 
per feature, classes, and instances. The rightmost column gives the total  number  of values times 
the number  of classes. 

Task 
DIM 
GPSM 
NPSM 
POSSM 
PP 

% Correct test instances 
IBi-IG RIPPER RBM 
96.2±0.6  9 6 . 9 ± 0 . 7 .  9 6 . 9 ± 0 . 7 .  
88 .9±0.6  80.4±0.5  8 3 . 3 ± 0 . 5 +  x/ 
97.2±0.3  96.9±0.4  9 7 . 5 ± 0 . 4 .  
96.6±0.2  94.3±0.2  9 5 . 0 ± 0 . 2 + x /  
82.0 :t= 0.5 77.0 ± 0.7 77.0 ± 0.6 + 

Table 2: Average generalisation accuracies of 
I B i - I G ,  RIPPER,  and RBM o n  f ive  language learn- 
ing tasks. '*' denotes significantly bet ter  accu- 
racy of RBM or RIPPER over IBi-IG with p 
0.05. '+ '  denotes significance in the reverse di- 
rection, x /denotes  significantly bet ter  accuracy 
of RBM over RIPPER with p < 0.05. 

average about two to four conditions (feature- 
value tests). More importantly,  as the third 
column of Table 3 shows, the average number 
of active rules in instances is below two for all 
tasks. This means that  in most instances of any 
of the five tasks, only one complex feature (bit) 
is active. 

Especially with the smaller rule sets (DIM, 

NPSM, and PP - which all have few classes, cf. 
Table 1), RBM's classification is very speedy. It 
reduces, for example, classification of the NPSM 

test set from 19 seconds to 1 second 1. Large 
rule sets (GPSM), however, can have adverse ef- 
fects - from 8 seconds in ml-IG to 17 seconds 
in RBM. 

In sum, we observe two cases  (DIM and NPSM) 

in which RBM attains a significant general±sa- 
t±on accuracy improvement over IBi-IG as well 
as some interesting classification speedup, but  
for the other tasks, for now unpredictably, geE- 

1 Timings are measured on one partition, using a dual- 
Pentium II 200 Mhz machine running Linux 2.2. 

Task 
DIM 
GPSM 
NPSM 
POSSM 
PP 

RIPPER / RBM 
#ru l e s  c/r  f/i 

61 2.5 1.3 
971 3.9 1.5 

72 2.8 1.8 
628 2.7 1.0 

29 3.0 0.3 

Classif. time (s) 
IBi-IG RBM 

1 1 
8 17 

19 1 
32 13 
19 1 

Table 3: Average number  of RIPPER rules, con- 
ditions per rule (c/r),  and coded features per 
instance (f/i); and one-part i t ion timings (s) of 
classification of test material  in IBI-IG and RBM, 
for five language tasks. 

eralisation accuracy losses and even a slowdown 
are observed. The lat ter  occurs with GPSM, 

which has been analysed earlier as being ex- 
t remely disjunct in class space, and therefore 
highly sensitive to the "forgetting exceptions 
is harmful" syndrome (Daelemans et al., 1999; 
Van den Bosch, 1999a). 

The complex features used in RBM are taken 
as the only information available; the original 
information (the feature values) are discarded. 
This need not be the case; it is possible that  the 
recoded instances are merged with their orig- 
inal feature-value vectors. We performed ex- 
periments in which we made this fusion; the 
results are listed in Table 4. Comparing the 
column labeled "IBi-IG+RBM, denoting the fu- 
sion variant, with the IBi-IG column, it can be 
seen that  it reaches some modest  error reduc- 
tion percentages (rightmost column in Table 4). 
In fact, with NPSM and POSSM, it performs sig- 
nificantly bet ter  (again, according to one-tailed 
t-tests, with p < 0.05) than  IBI-IG. On the 
other hand, adding the (average) 971 complex 
features to the nine multi-valued features in the 
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Task 
DIM 
GPSM 
NPSM 
POSSM 
PP 

% Correct test  instances 
IBi-IG IBI-IG-bRBM 
96.2 ± 0.6 96.2 ± 0.7 
88.9 ± 0.6 88.6 ± 0.4 
97.2±0.3 97 .6±0 .4 .  
96.6±0.2 96 .8±0 .2 .  
82.0 ± 0.5 82.1 ± 0.5 

% Error 
reduct. 

0.0 
-2.3 
6.0 
4.6 
1.0 

Table 4: Average general±sat±on accuracies of 
IBI - IG a n d  I B i - I G  + RBM, and the percentage of 
error reduction, on five language learning tasks. 
' . '  denotes significantly better accuracy of IB1- 
IG--~-RBM over IBi-IG with p < 0.05. 

GPSM causes a slight drop in performance - and 
a slowdown. 

4 D i s c u s s i o n  

Representing instances by complex features 
that have been induced by a rule induction al- 
gorithm appears, in view of the measured ac- 
curacies, a viable alternative approach to us- 
ing rules, as compared to standard rule induc- 
tion. This result is in line with results reported 
by Domingos on the RISE algorithm (Domingos, 
1995; Domingos, 1996). A marked difference is 
that in RISE, the rules are the ins tances  in k- 
NN classification (and due to the careful gen- 
eral±sat±on strategy of RISE, they can be very 
instance-specific), while in RBM, the rules are 
the features  by which the original instances are 
indexed. When a nearest neighbor is found to a 
query instance in RBM, it is because the two in- 
stances share one or more  matching rules. The 
actual classification that is transferred from the 
memory instance to the new instance is just the 
classification that this memory item is stored 
with - it may well be another class than any of 
its matching rules predict. 

Second, the method is a potent ial ly  helpful 
extension to memory-based learning of language 
processing tasks. When nothing is known about 
the characteristics of a language processing data 
set, it is advisable to add the induced complex 
features to the original features, and do k-NN 
classification on the combination; it is not ad- 
visable to base classification only on the induced 
complex features. On its own, the method basi- 
cally inherits a part of the detrimental "forget- 
ting exceptions is harmful" effect from its rule- 
induction source (this effect is stronger when 

% Correct test instances 
Task IBI-IG RBM IBi-IG-bRBM 
CAR 93.9 ± 2.1 98.9 ± 0.8 97.2 ± 1.3 
NURSERY 94.6 ± 0.6 98.6 ± 0.5 98.7 ± 0.2 
SPLICE 91.7 ± 1.1 89.0 ± 2.1 92.7 ± 1.7 

Table 5: Average generalisation accuracies of 
IB i - IG ,  RIPPER, and RBM o n  three machine- 
learning benchmark tasks. 

a data set is more disjunct (Daelemans et al., 
1999)). Although RBM performs equal to or bet- 
ter than RIPPER, it often does not regain the 
level of IBi-IG. 

High disjunctivity appears to be a typical fea- 
ture of language tasks (Van den Bosch, 1999b); 
other non-language tasks generally display less 
disjunctivity, which opens the possibility that 
the RBM approach may work well for some 
of these tasks. We performed pilot tests on 
three machine learning benchmark classification 
tasks (taken from the UCI benchmark repos- 
±tory (Blake and Merz, 1998)) with symbolic, 
multi-valued features. Table 5 displays the re- 
sults of these experiments. Although the data 
set selection is small, the results of RBM and es- 
pecially of IBi-IG--~-RBM are  promising; the lat- 
ter algorithm is consistently better than IBi-IG. 
More research and comparisons are needed to 
arrive at a broader picture. 

An immediate point of further research lies 
in the external rule induction algorithm. First, 
RIPPER has options that have not been used 
here, but that may be relevant for the current 
issue, e.g. RIPPER's ability to represent sets 
of values at left-hand side conditions, and its 
flexibility in producing larger or smaller num- 
bers of rules. Second, other rule induction algo- 
rithms exist that may play RIPPER'S role, such 
as C4.5RULES (Quinlan, 1993). 

More generally, further research should fo- 
cus on the scaling properties of the approach 
(including the scaling of the external rule- 
induction algorithm), should investigate more 
and larger language data sets, and should seek 
comparisons with other existing methods that 
claim to handle complex features efficiently 
(Brill, 1993; Ratnaparkhi, 1997; Roth, 1998; 
Brants, 2000). 

77 



Acknowledgements 
The author thanks the members  of the Tilburg 
ILK group and the Antwerp CNTS group for 
fruitful discussions. This research has been 
made possible by a fellowship of the Royal 
Netherlands Academy of Arts and Sciences 
(KNAW). 

R e f e r e n c e s  

D.W. Aha, D. Kibler, and M. Albert. 1991. 
Instance-based learning algorithms. Machine 
Learning, 6:37-66. 

C.L. Blake and C.J. Merz. 1998. UCI repository of 
machine learning databases. 

Thorsten Brants. 2000. TnT - a statistical part-of- 
speech tagger. In Proceedings of the Sixth Applied 
Natural Language Processing (ANLP-2000), Seat- 
tle, WA. 

E. Brill. 1993. A Corpus-Based Approach to Lan- 
guage Learning. Dissertation, Department of 
Computer and Information Science, University of 
Pennsylvania. 

P. Clark and T. Niblett. 1989. The CN2 rule induc- 
tion algorithm. Machine Learning, 3:261-284. 

W. W. Cohen. 1995. Fast effective rule induction. 
In Proceedings of the Twelfth International Con- 
ference on Machine Learning, Lake Tahoe, Cali- 
fornia. 

M.J Collins and J. Brooks. 1995. Prepositional 
phrase attachment through a backed-off model. 
In Proc. of Third Workshop on Very Large Cor- 
pora, Cambridge. 

W. Daelemans and A. Van den Bosch. 1992. Gener- 
alisation performance of backpropagation learning 
on a syllabification task. In M. F. J. Drossaers and 
A. Nijholt, editors, Proc. of TWLT3: Connection- 
ism and Natural Language Processing, pages 27- 
37, Enschede. Twente University. 

W. Daelemans, J. Zavrel, P. Berck, and S. Gillis. 
1996. MBT: A memory-based part of speech tag- 
ger generator. In E. Ejerhed and I.Dagan, editors, 
Proc. of Fourth Workshop on Very Large Corpora, 
pages 14-27. ACL SIGDAT. 

W. Daelemans, P. Berck, and S. Gillis. 1997a. Data 
mining as a method for linguistic analysis: Dutch 
diminutives. Folia Linguistica, XXXI(1-2). 

W. Daelemans, A. Van den Bosch, and A. Weijters. 
1997b. IGTree: using trees for compression and 
classification in lazy learning algorithms. Artifi- 
cial Intelligence Review, 11:407-423. 

W. Daelemans, A. Van den Bosch, and J. Zavrel. 
1999. Forgetting exceptions is harmful in lan- 
guage learning. Machine Learning, 34(1-3):11- 
43. 

W. Daelemans, J. Zavrel, K. Van der Sloot, and 
A. Van den Bosch. 2000. TiMBL: Tilburg Mem- 

ory Based Learner, version 3.0, reference manual. 
Technical Report ILK-0001, ILK, Tilburg Univer- 
sity. 

P. Domingos. 1995. The rise 2.0 system: A case 
study in multistrategy learning. Technical Re- 
port 95-2, University of California at Irvine, De- 
partment of Information and Computer Science, 
Irvine, CA. 

P. Domingos. 1996. Unifying instance-based and 
rule-based induction. Machine Learning, 24:141- 
168. 

J.R. Quinlan. 1993. c4.5: Programs for Machine 
Learning. Morgan Kaufmann, San Mateo, CA. 

L.A. Ramshaw and M.P. Marcus. 1995. Text chunk- 
ing using transformation-based learning. In Proc. 
of Third Workshop on Very Large Corpora, pages 
82-94, June. 

A. Ratnaparkhi, J. Reynar, and S. Roukos. 1994. A 
maximum entropy model for prepositional phrase 
attachment. In Workshop on Human Language 
Technology, Plainsboro, N J, March. ARPA. 

A. Ratnaparkhi. 1997. A linear observed time sta- 
tistical parser based on maximum entropy models. 
Technical Report cmp-lg/9706014, Computation 
and Language, http://xxx.lanl.gov/list/cmp-lg/, 
June. 

D. Roth. 1998. Learning to resolve natural language 
ambiguities: A unified approach. In Proceedings 
of the National Conference on Artificial Intelli- 
gence, pages 898-904. 

A. Van den Bosch. 1997. Learning to pronounce 
written words: A study in inductive language 
learning. Ph.D. thesis, Universiteit Maastricht. 

A. Van den Bosch. 1999a. Careful abstraction from 
instance families in memory-based language learn- 
ing. Journal for Experimental and Theoretical Ar- 
tificial Intelligence, 11(3):339-368. 

A. Van den Bosch. 1999b. Instance-family ab- 
straction in memory-based language learning. In 
I. Bratko and S. Dzeroski, editors, Machine 
Learning: Proceedings of the Sixteenth Interna- 
tional Conference, pages 39-48, Bled, Slovenia. 

J. Veenstra. 1998. Fast NP chunking using memory- 
based learning techniques. In Proceedings of 
BENELEARN'98, Wageningen, The Netherlands. 

S. Weiss and C. Kulikowski. 1991. Computer sys- 
tems that learn. San Mateo, CA: Morgan Kauf- 
mann. 

J. Zavrel, W. Daelemans, and J. Veenstra. 1997. Re- 
solving PP attachment ambiguities with memory- 
based learning. In M. Ellison, editor, Proc. of the 
Workshop on Computational Language Learning 
(CoNLL'97), ACL, Madrid. 

78 


