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Abstract

We evaluate the use of Deep Belief Net-
works as classifiers in a text categorisa-
tion task (assigning category labels to doc-
uments) in the biomedical domain. Our
preliminary results indicate that compared
to Support Vector Machines, Deep Belief
Networks are superior when a large set of
training examples is available, showing an
F-score increase of up to 5%. In addition,
the training times for DBNs can be pro-
hibitive. DBNs show promise for certain
types of biomedical text categorisation.

1 Introduction

Text categorisation is the task of automatically as-
signing pre-defined labels to text. In the biomedical
domain, research in automatic text categorisation
has mostly taken place in the context of indexing
MEDLINE R© citations with Medical Subject Head-
ings (MeSH R©).

MEDLINE is the largest collection of biomed-
ical abstracts and contains over 23M citations
with over 800k new citations every year, making
it difficult to keep up-to-date with new discover-
ies. To help cataloging and searching biomedical
documents, the US National Library of Medicine
(NLM) R© has produced the MeSH controlled vo-
cabulary with over 26k headings. At NLM, each
MEDLINE citation is manually assigned a number
of relevant medical subject headings enumerating
the topics of the paper. Machine learning for text
categorisation in this context is appealing due to the
large number of citations available to train machine
learning algorithms.

In text categorisation, the most frequently used
feature representation is bag-of-words, where text
is converted into a feature vector in which each
dimension corresponds to a word or phrase and
stores either a binary value indicating its presence

in the document or a numerical value indicating its
frequency (Apte et al., 1994; Dumais et al., 1998;
Sebastiani, 2002). This relatively simple approach
has proven to be robust enough (Jimeno-Yepes et
al., 2011) that it is difficult to improve on its perfor-
mance with more sophisticated representations. In
this work, we explore the use of Deep Belief Net-
works (DBN) to automatically generate a new rep-
resentation in biomedical text categorisation. Since
DBNs have a richer internal representation than
SVMs, we wished to evaluate whether this would
lead to improved classification performance com-
pared to bag-of-words.

2 Related work

There are several approaches being used for text
categorisation in the biomedical domain trying to
reproduce the manual MeSH indexing. NLM has
developed the Medical Text Indexer (MTI) (Aron-
son et al., 2004; Mork et al., 2013), which is used
to suggest MeSH headings for new citations to
indexers. MTI combines MetaMap (Aronson and
Lang, 2010) annotation and recommendations from
similar citations recovered using the PubMed Re-
lated Citations (Lin and Wilbur, 2007) tool that
are post-processed to comply with NLM indexing
rules. Results for the most frequent categories, as
used in this work, indicate that machine learning
methods can produce better results than MTI (Ji-
meno Yepes et al., 2013). Recently, there has been
interest in comparing MeSH indexing approaches
in the BioASQ challenge.1 It has been found that
bag-of-word representations without feature selec-
tion already provide competitive performance.

Recently, several studies have utilised different
deep learning methods to build multiple layers of
feature representation for documents, such as a
Stacked De-noising Autoencoder (SDA) (Vincent
et al., 2010; Glorot et al., 2011) and a DBN (Hinton

1http://www.bioasq.org/workshop/schedule
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and Salakhutdinov, 2006) for tasks including spam
filtering (Tzortzis and Likas, 2007). In this work,
we apply DBN as our deep learning algorithm for
biomedical text categorisation, trying to reproduce
MeSH indexing for the 10 top most frequent MeSH
headings.

3 Methods

3.1 Deep Belief Networks

Restricted Boltzmann Machines (RBM) A (re-
stricted) Boltzmann Machine (RBM) (Salakhut-
dinov et al., 2007) is a parameterised generative
model representing a joint probability distribution.
Given some training data, learning an RBM means
adjusting the RBM parameters to maximise the
likelihood of the training data under the model. Re-
stricted Boltzmann machines consist of two layers
containing visible and hidden neurons.

The energy function E(v,h) of an RBM is:

E(v,h) =−b′v− c′h−h′Wv; (1)

where W represents the weights connecting hid-
den and visible units and b, c are the offsets of
the visible and hidden layers respectively. The
joint probability distribution is then given by the
exponential family P(v,h) = 1

Z eE(v,h), where Z is a
normalisation factor. The likelihood of some data
X ⊂ Rn is thus L (X) := ∏v∈X ∑h P(v,h) and b, c,
and W are chosen to maximise this likelihood (or
equivalently minimise the negative log likelihood):

argb,c,W min− logL (X) =−∑
v∈X

log∑
h

P(v,h).

We used the Contrastive Divergence method (Hin-
ton, 2002) to find an approximate solution.

Deep Belief Network A DBN normally is the
stack of many layers of RBM model. Hinton and
Salakhutdinov (2006) showed that RBMs can be
stacked and trained in a greedy manner to form so-
called Deep Belief Networks (DBN). DBNs are
graphical models which learn to extract a deep
hierarchical representation of the training data.

The hidden neurons extract relevant features
from the observations, and these features can serve
as input to another RBM. By stacking RBMs in
this way, we can learn a higher level representation.

Practical training strategies In practice, the
DBN training often consists of two steps: greedy
layer-wise pretraining and fine tuning. Layer-wise
pretraining involves training the model parameters

layer by layer via unsupervised training. Fine tun-
ing is achieved by supervised gradient descent of
the negative log-likelihood cost function.

Figure 1: Deep Neural Network (left) and
RBM (right)

The DBN implementation used in this work has
been obtained from http://www.deeplearning.

net/tutorial built on Theano2. Text data is very
sparse with only a few dimensions having non-zero
values. We modified the DBN code to deal with
sparse matrices.

3.2 Support Vector Machine

We used a Support Vector Machine (SVM) with
a linear kernel as our baseline method. SVM
has shown good performance on text categorisa-
tion (Joachims, 1998) as well as in MeSH index-
ing (Jimeno Yepes et al., 2013) and within BioASQ.
In this work, we have used the implementation
from the MTI ML package3 that follows the work
of (Zhang, 2004) and uses Hinge loss with stochas-
tic gradient descent.

3.3 Data set

Training and test sets have been obtained from the
MTI ML site. There are 24,727 training citations
and 12,363 test citations. From these data sets,
we have selected the top 10 most frequent MeSH
headings available from Table 1.

We have also used a larger set since we realised
in the earlier stages of experimentation that more
data was needed to train the DBN. This larger
set has been obtained from the NLM Indexing Ini-
tiative4 and is split into 94,942 training citations
and 48,911 test citations. Results on both sets are
reported for the same categories.

We processed the citations to extract the text
from the title and the abstract. From the text, we

2http://deeplearning.net/software/theano
3http://ii.nlm.nih.gov/MTI ML
4http://ii.nlm.nih.gov/DataSets/index.shtml#2013 MTI ML
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extracted tokens using a regular expression looking
for white spaces and punctuation marks. Tokens
were lowercased and filtered using a standard stop-
word list. Binary values for the features (present
or absent) are considered. Only tokens that appear
in at least two citations in the training set were
considered, considerably reducing the number of
features.

4 Results

The SVM and the DBN were trained and tested
on the data sets. Binary classifiers predicting each
individual category were trained for each one of the
selected MeSH headings. For DBN, we used 2/3 of
the training data for unsupervised pretraining and
1/3 for fine tuning the model due to DBN training
cost, while for SVM we used all the training data.

Configuring the DBN requires specifying the
number of hidden layers and the number of units
per layer. We used one hidden layer to give three
layers in total. We used two different configura-
tion of training units, set empirically (and semi-
arbitrarily) from data samples – DBN 250 with 250
units in each of the three layers and DBN 500, with
500 units per layer.

Tables 1 and 2 show results for the small set with
16000 for DBN pretraining and 8727 for fine tuning
and the large set with 63294 for DBN pretraining
and 31647 for fine tuning.

As shown in Table 1, with the smaller datasets,
SVM performance is superior to DBN, however
DBN substantially outperforms SVM on the six
most frequent categories. DBN results are much
lower when the categories are less frequent and for
Adolescent, DBN simply classified all citations as
negative. DBN 500 performs better than DBN 250
in the top six most frequent categories.

Figure 2 shows learning curves obtained by train-
ing the three methods on increasingly large sub-
sets of the small training set. SVM outperforms
DBN when there is limited training data, but as
the amount of training data is increased, for certain
categories DBN, especially DBN 500, surpasses
SVM (as expected from Table 1).

Results were obtained using the same subset and
it could be interesting to see the behavior if dif-
ferent subsets of the training data are used. DBN
results depend as well on the partition of the train-
ing data, using all the data for pretraining and fine
tuning the perfomance of DBN on the small set
improves (avg. F1: 0.7282).

Table 2 shows that when there is more train-
ing data available, the performance penalty for the
DBN methods versus SVM over the sparser cate-
gories disappears. In addition, there is also less of a
difference between results of 250 and 500 units per
layer. Overall all three methods are more similar
to one another over this larger data set, with better
results for DBN on average. Absolute results be-
tween Tables 1 and 2 are not comparable since two
different collections are used, e.g. some categories
have significantly different performance.

5 Discussion

In our experiments, DBN overall performance is
comparable to SVM with a linear kernel being bet-
ter in some of the categories when a large set of
training data is used. We also evaluated SVM with
Radial Basis Function kernel (not reported) but the
results were comparable to a linear kernel.

Compared to image processing, text categorisa-
tion has a larger dimensionality that varies with
the size of the data set since there is the chance
of finding new unique words, even though data is
sparse and few of the citation features have a value.
On the small set, with a batch size of 200 citations,
the number of unique features is 2,531 and with a
batch size of 8,000 it is 26,491, while in the larger
set, 53,784 unique features were found.

6 Conclusions and Future Work

DBN shows competitive performance compared
to SVM. We have tried a limited set of configura-
tions with only one hidden layer. Deeper config-
urations with a more varied number of units can
be explored but the pretraining phase is expensive.
We would like to explore different pretraining and
supervised tuning ratios to reduce training time.
In addition, identifying the best DBN configura-
tion can be expensive. (Rahimi and Recht, 2009)
suggest approaches to avoid an explosion of possi-
bilities which could be useful here.

Deep learning requires a significant amount of
time to train, e.g. SVM was trained in several min-
utes while the DBN pretraining in the large set took
five days. To alleviate this, we could consider meth-
ods to reduce dimensionality (Weinberger et al.,
2009; Bingham and Mannila, 2001). Nonetheless,
we believe that this work shows that DBNs show
promise for text categorisation, as they are able to
provide superior performance to SVM-based tech-
niques traditionally for such tasks.
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Figure 2: Training size vs F1 on the small set. There is one plot per category. Three methods are shown:
SVM (slashed blue line, square shaped point), DBN with three layers with 250 units each (continuous
red line, round shaped point) and DBN with three layers with 500 units each (dotted green line, triangle
shaped point).

Methods SVM (linear) DBN 250 DBN 500
Category Positives Pre Rec F1 Pre Rec F1 Pre Rec F1
Humans 7688 0.8983 0.9083 0.9032 0.9016 0.9273 0.9143 0.9032 0.9282 0.9155
Female 4616 0.7215 0.6950 0.7080 0.7001 0.7621 0.7298 0.6945 0.7821 0.7357
Male 4396 0.7034 0.6852 0.6942 0.4771 0.9627 0.6380 0.7138 0.7318 0.7227
Animals 4347 0.8585 0.8261 0.8420 0.8797 0.8042 0.8403 0.8476 0.8548 0.8512
Adult 2518 0.6092 0.5516 0.5790 0.6397 0.3737 0.4718 0.6098 0.6330 0.6212
Middle Aged 2108 0.5978 0.5337 0.5639 0.7108 0.4255 0.5323 0.7085 0.4900 0.5794
Aged 1467 0.5684 0.4731 0.5164 0.6806 0.3758 0.4842 0.6813 0.3599 0.4710
Mice 1304 0.8588 0.7745 0.8145 0.8102 0.7891 0.7995 0.8890 0.7063 0.7872
Adolescent 1066 0.4059 0.3340 0.3664 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Rats 938 0.9118 0.8262 0.8669 0.8633 0.7878 0.8239 0.8702 0.7431 0.8016
Average 3045 0.7134 0.6608 0.6861 0.6663 0.6208 0.6428 0.6918 0.6229 0.6556

Table 1: Text categorisation results for the 10 selected categories with the small set and a batch size of
8000 citations. Results are reported in precision (Pre), recall (Rec) and F-measure (F1). Average results
are shown at the bottom of the table. DBN 250 means using three layers with 250 units each. DBN 500
means using three layers with 500 units each.

Methods SVM (linear) DBN 250 DBN 500
Category Positives Pre Rec F1 Pre Rec F1 Pre Rec F1
Humans 35967 0.9052 0.9354 0.9201 0.9209 0.9436 0.9321 0.9204 0.9445 0.9323
Female 16483 0.7464 0.7176 0.7317 0.8305 0.6964 0.7576 0.8216 0.7160 0.7652
Male 15530 0.7267 0.6889 0.7073 0.7917 0.7025 0.7444 0.7878 0.7213 0.7531
Animals 11259 0.8431 0.7613 0.8001 0.8895 0.6879 0.7758 0.9407 0.6337 0.7573
Adult 8792 0.5824 0.5296 0.5547 0.6915 0.4480 0.5438 0.6696 0.3592 0.4676
Middle Aged 8392 0.6323 0.5728 0.6011 0.7239 0.5654 0.6349 0.7375 0.5853 0.6527
Aged 6151 0.5616 0.5079 0.5334 0.7147 0.4076 0.5191 0.6937 0.4303 0.5312
Adolescent 3824 0.4641 0.3690 0.4111 0.5735 0.2529 0.3510 0.6583 0.2202 0.3300
Mice 3723 0.8386 0.7284 0.7796 0.8746 0.7268 0.7939 0.8984 0.7295 0.8052
Rats 1613 0.8461 0.7601 0.8008 0.9150 0.7204 0.8061 0.9123 0.7421 0.8185
Average 11173 0.7146 0.6571 0.6847 0.7926 0.6152 0.6927 0.8040 0.6082 0.6926

Table 2: Text categorisation results for the 10 selected categories with the large set and a batch size of
31647 citations. Results are reported in precision (Pre), recall (Rec) and F-measure (F1). Average results
are shown at the bottom of the table. DBN 250 means using three layers with 250 units each. DBN 500
means using three layers with 500 units each.
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