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Abstract
We perform a quantitative analysis of data in a
corpus that specialises on summarisation for Ev-
idence Based Medicine (EBM). The intent of
the analysis is to discover possible directions
for performing automatic evidence-based sum-
marisation. Our analysis attempts to ascertain
the extent to which good, evidence-based, multi-
document summaries can be obtained from indi-
vidual single-document summaries of the source
texts. We define a set of scores, which we call
coverage scores, to estimate the degree of in-
formation overlap between the multi-document
summaries and source texts of various granu-
larities. Based on our analysis, using several
variants of the coverage scores, and the results
of a simple task oriented evaluation, we ar-
gue that approaches for the automatic generation
of evidence-based, bottom-line, multi-document
summaries may benefit by utilising a two-step
approach: in the first step, content-rich, single-
document, query-focused summaries are gener-
ated; followed by a step to synthesise the infor-
mation from the individual summaries.

1 Introduction

Automatic summarisation is the process of pre-
senting the important information contained in
a source text in a compressed format. Such
approaches have important applications in do-
mains where lexical resources are abundant and
users face the problem of information overload.
One such domain is the medical domain, with
the largest online database (PubMed1) contain-
ing over 21 million published medical articles.
Thus, a standard clinical query on this database
returns numerous results, which are extremely
time-consuming to read and analyse manually.
This is a major obstacle to the practice of Ev-
idence Based Medicine (EBM), which requires
practitioners to refer to relevant published med-
ical research when attempting to answer clinical

1http://www.ncbi.nlm.nih.gov/pubmed

queries. Research has shown that practitioners re-
quire botom-line evidence-based answers at point
of care, but often fail to obtain them because of
time constraints (Ely et al., 1999).

1.1 Motivation

Due to the problems associated with the prac-
tise of EBM, there is a strong motivation for au-
tomatic summarisation/question-answering (QA)
systems that can aid practitioners. While auto-
matic text summarisation research in other do-
mains (e.g., news) has made significant advances,
research in the medical domain is still at an early
stage. This can be attributed to various factors:
(i) the process of answer generation for EBM re-
quires practitioners to combine their own exper-
tise with medical evidence, and automatic systems
are only capable of summarising content present
in the source texts; (ii) the medical domain is
very complex with a large number of domain spe-
cific terminologies and relationships between the
terms that systems need to take into account when
performing summarisation; and (iii) while there
is an abundance of medical documents available
electronically, specialised corpora for performing
summarisation research in this domain are scarce.

1.2 Contribution

We study a corpus that specialises on the
task of summarisation for EBM and quanti-
tatively analyse the contents of human gen-
erated evidence-based summaries. We com-
pare bottom-line evidence-based summaries to
source texts and human-generated, query-focused,
single-document summaries of the source texts.
This enables us to determine if good single-
document summaries contain sufficient content,
from source texts, to be used for the generation
of multi-document, bottom-line summaries. We
also study single-document extractive summaries
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generated by various summarisation systems and
compare their performance relative to source texts
and human generated summaries. In terms of con-
tent, our experiments reveal that there is no sta-
tistically significant difference between the source
texts and the human-generated, single-document
summaries, relative to the bottom-line summaries.
This suggests that that the generation of bottom-
line summaries may be considered to be a two
step summarisation process in which the first step
is single-document summarisation, and the sec-
ond step involves information synthesis from the
summaries, as illustrated in Figure 1. In the fig-
ure, d represents a source document, s represents
a summary of a source document, and b represents
a bottom-line summary generated from multiple
single-document summaries.

In addition to this analysis, we attempt to make
estimations about the extent to which the core con-
tents of the bottom-line summaries come from the
source texts. Such an analysis is of paramount
importance in this domain because, if only a
small proportion of the summaries contain infor-
mation from the source articles, we can assume
that the summaries are almost entirely generated
from specialised human knowledge, making it im-
possible to perform text-to-text summarisation au-
tomatically in this domain without intensive use
of domain-specific knowledge. We conclude that
there is sufficient overlap between the source texts
and evidence-based summaries for the process to
be automated. Our analysis is purely numerical
and is based on various statistics computed from
the available corpus.

The rest of the paper is organised as follows:
Section 2 presents a brief overview of research
work related to ours; Section 3 provides a descrip-
tion of the corpus we study; Section 4 details our
analytical techniques; Section 5 presents the re-
sults we obtain, along with a discussion; and Sec-
tion 6 concludes the paper and provides a brief
discussion of our planned future work.

2 Related Work

2.1 Evidence Based Medicine
There is a good amount of published work on
EBM practice, which is defined by Sackett et al.
(1996) as “the conscientious, explicit, and judi-
cious use of current best evidence in making deci-
sions about the care of individual patients”. The
goal of EBM is to improve the quality of patient

Figure 1: The two-step summarisation process.

care in the long run through the identification of
practices that work, and the elimination of inef-
fective or harmful ones (Selvaraj et al., 2010).
The necessity of searching for, appraising, and
synthesising evidence makes EBM practice time-
consuming. Research has shown that practition-
ers generally spend about 2 minutes to search for
evidence (Ely et al., 2000). Consequently, prac-
titioners often fail to provide evidence-based an-
swers to clinical queries, particularly at point of
care (Ely et al., 1999; Ely et al., 2002). The re-
search findings strongly motivate the need for end-
to-end medical text summarisation systems.

2.2 Summarisation for EBM

As already mentioned, the task of automatic
text summarisation is particularly challenging for
the medical domain because of the vast amount
of domain-specific knowledge required (Lin and
Demner-Fushman, 2007) and the highly complex
domain-specific terminologies and semantic re-
lationships (Athenikos and Han, 2009). Text
processing systems in this domain generally use
the Unified Medical Language System (UMLS)2,
which is a repository of biomedical vocabular-
ies developed by the US National Library of
Medicine. It covers over 1 million biomedical
concepts and terms from various vocabularies, se-
mantic categories for the concepts and both hier-

2http://www.nlm.nih.gov/research/umls/
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archical and non-hierarchical relationships among
the concepts (Aronson, 2001). In the UMLS
vocabulary, each medical concept is represented
using a Concept Unique Identifier (CUI). Re-
lated concepts are grouped into generic categories
called semantic types. Our analysis heavily relies
on the CUIs and semantic types of medical terms.

There has been some progress in research
for EBM text summarisation (i.e., query-focused
summarisation of published medical texts) in re-
cent years. Lin and Demner-Fushman (2007)
showed the use of knowledge-based and statis-
tical techniques in summary generation. Their
summarisation system relies on the classification
of text nuggets into various categories, includ-
ing Outcome, and presents the sentences cate-
gorised as outcomes as the final summary. Niu
et al. (2005, 2006) presented the EPoCare3 sys-
tem. The summarisation component of this sys-
tem performs sentence-level polarity classifica-
tion to determine if a sentence presents a pos-
itive, negative or neutral outcome. Polarised
sentences are extracted to be part of the final
summary. Shi et al. (2007) presented the
BioSquash system that performs query-focused,
extractive summarisation through the generation
of text graphs and the identification of impor-
tant groups of concepts from the graphs to be in-
cluded in the final summaries. More recently, Cao
et al. (2011) proposed the AskHermes4 system
that performs multi-document summarisation via
key-word identification and clustering of infor-
mation. The generated summaries are extracted,
paragraph-like text segments. Sarker et al. (2012)
showed the use of a specialised corpus to perform
evidence-based summarisation. In their recent
approach, the authors introduce target-sentence-
specific, extractive, single-document summarisa-
tion, and use various statistics derived from the
corpus to rank sentences for extraction. All these
systems, however, have limitations. Inspired by
this fact, our analyses attempt to test if automatic
summairsation is in fact possible for EBM. We
also attempt to identify possible summarisation
approaches that are likely to be effective in this
domain.

3http://www.cs.toronto.edu/km/epocare/index.html
4http://www.askhermes.org/

2.3 Evaluation and Analysis of
Summarisation Systems

The most important research related to automatic
evaluation of summarisation systems is perhaps
that by Lin and Hovy (2003) . The authors pro-
pose a set of metrics called Recall-Oriented Un-
derstudy for Gisting Evaluation (ROUGE) that
have become very much the standard for auto-
matic summary evaluation. The intent of the
ROUGE measures is to find the similarity between
automatically generated summaries and reference
summaries and it has been shown that ROUGE
scores of summaries have a high correlation with
human evaluations. We incorporate some ROUGE
statistics in our analysis.

ROUGE has also been used for analysis tasks in
automatic text summarisation, such as the analysis
of extractive summarisation provided by Ceylan et
al. (2011) . The authors use ROUGE to show that
the combination of all possible extractive sum-
maries follow a long-tailed gaussian distribution,
causing most summarisation systems to achieve
scores that are generally close to the mean and
making it difficult for systems to achieve very high
scores. This analysis of extractive summaries has
opened a new direction for relative comparison of
summarisation systems and the approach has been
used in recent work (Sarker et al., 2012). Another
recent analysis work on text summarisation, simi-
lar to the one we present here, is that by Louis and
Nenkova (2011), who show that human-generated
summaries generally contain a large proportion of
generic content along with specific content. From
the perspective of our research, this means that
some of the disagreement between different sum-
marisers, in terms of content, may be attributed to
dissimilar generic (stylistic) content that are not
contained in the source documents, rather than
dissimilar query-specific content.

3 Data

3.1 Corpus

The corpus we study (Mollá-Aliod and Santiago-
Martinez, 2011) was created from the Journal of
Family Practice5 (JFP). The ‘Clinical Inquiries’
section of the JFP contains clinical queries and
evidence-based answers from real-life EBM prac-
tice, and the corpus was built from the informa-
tion in this section. The corpus consists of a set

5www.jfponline.com
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Figure 2: Structure of a sample record the corpus.

of records, R = {r1 ... rm}. Each record, ri, con-
tains one clinical query, qi, so that we have a set
of questions Q = {q1 ... qm}. Each ri has as-
sociated with it a set of one or more bottom-line
answers to the query, Ai = {ai1 ... ain}. For each
bottom-line answer of ri, aij , there exists a set
of human-authored detailed justifications (single-
document summaries) Lij = {lij1 ... lijo}. Each
detailed justification in turn lijk is associated with
at least one source document dijk. Thus, the cor-
pus has a set of source documents, which we de-
note as D = {dij1 ... dijo}.

For the work described in this paper, we use the
sets A, L and D from the corpus. Figure 2 vi-
sually illustrates a sample record from the corpus
with two bottom-line summaries associated with
the query. We analyse a total of 1,279 bottom-line
summaries, associated with 456 queries, along
with source texts and human summaries.

4 Methods

4.1 Coverage Analysis

Our first analytical experiments attempt to esti-
mate the extent to which information in the set
of bottom-line summaries, A, are contained in the
source documents, Da, associated with each sum-
mary (a). This gives us a measure of the extent

to which extra information are added to the final
summaries by the authors of the JFP articles from
which the corpus has been built. For this, we de-
fine a set of scores, which we call coverage scores.
The greater the score, the better is the bottom-line
summary coverage. Consider a bottom-line sum-
mary a, which contains a set of m terms, and the
associated source documents, Da. The first vari-
ant of the coverage scores that we use is a term-
based measure and is given by the following equa-
tion:

Coverage(a,Da) =
|a ∩Da|

m
(1)

where |a ∩Da| represents the number of terms
common to a summary and the associated source
texts. We first preprocess the text by remov-
ing stop words and punctuations, lowercasing all
terms and stemming the terms using the Porter
stemmer (Porter, 1980). Term tokenisation is per-
formed using the word tokeniser of the nltk6 tool-
box. Such a term-level coverage measurement,
however, often fails to identify matches in the case
of medical concepts that may be represented by
multiple distinct terms. An example of this is the
term high blood pressure. In our corpus, this term
has various other representations including hyper-
tension and hbp.

4.1.1 Incorporation of CUIs and Semantic
Types

To address the problem of distinct lexical rep-
resentations of the same concepts, we identify
the semantic types and CUIs of all the terms in
the corpus and incorporate this information in our
coverage computation. Using CUIs in the com-
putation reduces the dependence on direct string
matching because distinct terms representing the
same medical concept have the same CUI. For ex-
ample, all the different variants of the term high
blood pressure have the same CUI (C0020538).
However, it is also possible for terms with differ-
ent CUIs to have the same underlying meaning
in our corpus. For example, the terms [African]
women (CUI: C0043210) and African Americans
(CUI:C008575) have different CUIs but have been
used to represent the same population group. The
two terms have the same UMLS semantic type:
popg (population group) and this information may
be used to match the two terms in our experiments.

6nltk.org
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We use the MetaMap7 tool to automatically iden-
tify the CUIs and semantic types for all the text in
our corpus.

We introduce two more variants of the coverage
scores. In our first variation, we use individual
terms and CUIs; and in the second variation we
use terms, CUIs and semantic types. We apply a
sequence of functions that, given a and Da, along
with the CUIs and semantic types of the terms in a
and Da, compute a ∩Da utilising all the available
information (i.e., terms, CUIs, semantic types).
Term-based matching is first performed and the
terms in a that are exactly matched by terms in
Da are collected. Next, for the unmatched terms
in a, CUI matching is performed with the CUIs of
Da. This ensures that different lexical versions of
the same concept are detected correctly. All the
matched terms are added to the covered terms col-
lection. In our first variant, this value is used for
|a ∩ Da| in equation 1. For the second variant,
for terms that are still uncovered after CUI match-
ing, semantic type matching is performed and the
terms in awith matching semantic types are added
to the covered terms collection before computing
the coverage score.

A problem with the use of semantic types in
coverage score computation is that they are too
generic and often produce incorrect matches. For
example, the terms pneumonia and heart failure
are two completely distinct concepts but have the
same semantic type (dsyn). The use of semantic
types, therefore, leads to incorrect matches, result-
ing in high coverage scores. We still use semantic
types along with terms and CUIs in our experi-
ments because their coverage scores give an idea
of the coverage upper limits.

4.1.2 Concept Coverage
In an attempt to reduce the number of non-

medical terms in our coverage score computa-
tion, we introduce a fourth varaint to our coverage
scores which we call Concept Coverage (CC). We
noticed that often non-medical terms such as enti-
ties, numbers etc. are the primary causes of mis-
match among different terms. This coverage score
only takes into account the concepts (CUIs) in a
and Da. Referring to equation 1, m in this case
represents the number of unique CUIs in a, while
|a ∩ Da| is computed as a combination of direct
CUI matches and similarity measures among un-

7http://metamap.nlm.nih.gov/

matched CUIs. That is, besides considering direct
matches between CUIs, we also consider similar-
ities among concepts when performing this calcu-
lation. This is important because often bottom-
line summaries contain generic terms representing
the more specific concepts in the source texts (e.g.,
the generic term anti-depressant in the bottom-
line summary to represent paroxetine, amitripty-
line and so on). The concept similarity between
two concepts gives a measure of their semantic
relatedness or how close two concepts are within
a specific domain or ontology (Budanitsky and
Hirst, 2006).

In our concept coverage computation, each CUI
in a receives a score of 1.0 if it has an exact match
with the CUIs in Da. For each unmatched CUI
in a, its concept similarity value with each un-
matched concept in Da is computed and the maxi-
mum similarity value is chosen as the score for that
concept. To compute the similarity between two
concepts, we use the similarity measure proposed
by Jiang and Conrath (1997). The authors apply
a corpus-based method that works in conjunction
with lexical taxonomies to calculate semantic sim-
ilarities between terms, and the approach has been
shown to agree well with human judgements. We
use the implementation provided by McInnes et
al. (2009), and scale the scores so that they fall
within the range [0.0,1.0), with 0.0 indicating no
match and 0.99 representing near perfect match
(theoretically). The direct match score or maxi-
mum similarity score of each CUI in a are added
and divided by m to give the final concept cover-
age score.

4.1.3 Comparison of Coverage Scores
Our intent is to determine the extent to which

the contents of the bottom-line summaries in the
corpus are contained in source texts of different
granularities. This gives us an estimate of the
information loss that occurs when source text is
compressed by various compression factors. More
specifically, in our experiments, a (in equation 1)
is always the bottom-line summary, while for Da,
we use:

i all the text from all the article abstracts asso-
ciated with a (FullAbs),

ii all the text from all the human-generated,
single-document summaries (from L) (HS),

iii all the text from all the ideal three-sentence
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extractive summaries associated with a (Ide-
alSum),

iv all the text from all the single document,
three-sentence extractive summaries, pro-
duced by a state of the art summarisation
system (Sarker et al., 2012), associated with
a, and

v all the text from random three sentence ex-
tractive single document summaries associ-
ated with a (Random).

The IdealSum summaries are three-sentence,
single-document, extractive summaries that have
the highest ROUGE-L f-scores (Lin and Hovy,
2003; Lin, 2004) when compared with the human
generated single document summaries (l)8. Us-
ing these five different sets enables us to estimate
the degradation, if any, in coverage scores as the
source text is compressed. Table 1 presents the
coverage scores for these five data sets along with
the concept coverage scores for (i) and (ii)9.

For each data set, we also compute their
ROUGE-L recall scores (after stemming and stop
word removal) with the bottom-line summaries,
and compare these scores. This enables us to com-
pare the voerage of these data sets using another
metric. Table 2 shows the recall scores along with
the 95% confidence intervals.

4.2 Task Oriented Evaluation
To establish some estimates about the perfor-
mances of these variants of the source texts, we
performed simple task oriented evaluations. The
evaluations required annotation of the data, which
is extremely time-consuming. Therefore, we used
a subset of the corpus for this task. We manually
identified 33 questions from the corpus that focus
on ‘drug treatments for diseases/syndromes’. All
the questions are of the generic form: ‘What is
the best drug treatment for disease X?’. Given a
question, the task for the system is to identify drug
candidates for the disease from the source texts.

From the bottom-line summaries for each of the
33 questions, we manually collected the list of all
mentioned drug interventions. Using these, we
measured a system’s performance by computing

8These summaries were produced by generating all three-
sentence combinations for each source text, and then comput-
ing the ROUGE-L f-score for each combination.

9We only compute the concept coverage scores for these
two sets because of the extremely long running time of our
similarity measurement algorithm.

System T T & C T, C & ST CC

FullAbs 0.596 0.643 0.782 0.659
HS 0.595 0.630 0.737 0.644
IdealSum 0.468 0.511 0.654 ..
Sarker et al. 0.502 0.546 0.683 ..
Random 0.403 0.451 0.594 ..

Table 1: Coverage scores for the five data sets with the
bottom-line summaries. T = Terms, C = CUIs, ST = Seman-
tic Types, and CC = Concept Coverage.

System Recall 95% CI

FullAbs 0.418 0.40 - 0.44
HS 0.405 0.39 - 0.42
IdealSum 0.284 0.27 - 0.30
Sarker et al. 0.318 0.30 - 0.34
Random 0.229 0.21 - 0.24

Table 2: ROUGE-1 recall scoresand 95% confidence inter-
vals for the five data sets with the bottom-line summaries.

its recall for the drug interventions. Our intent, in
fact, is not to evaluate the performances of differ-
ent systems. Instead, it is to evaluate the perfor-
mances of different source texts on the same task.
To extract drug candidates from text, the system
relies fully on the MetaMap system’s annotation
of the data set. All terms identified as drugs or
chemicals10 are extracted by the system and re-
turned as a list. Recall and precision for each
type of source text is computed from this list of
drug names.

Using this technique we evaluate the perfor-
mance of the five previously mentioned source
texts. The recall for the FullAbs set acts as the
upper limit and this evaluation enables us to de-
termine how much information is lost when the
source texts are summarised either manually or
automatically. The performance of the Random
data set indicates the lower limit. The results of
this experiment are presented in the next section.

5 Results and Discussion

Table 1 shows that, when terms and CUIs are
used, the source texts cover approximately 65%
of the summary texts, and incorporation of se-

10The semantic types included in these two categories
are: aapp, antb, hops, horm, nnon, orch, phsu, strd, vita,
bacs, carb, eico, elii, enzy, imft, inch, lipd nsba, opco. A
list of the current UMLS semantic types can be found at:
www.nlm.nih.gov/research/umls/
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Figure 3: Distributions for concept coverage scores.

mantic types takes the coverage score to close to
80%. The concept coverage scores are similar to
the term and CUI overlap scores. Analysis of the
uncovered components reveal a number of rea-
sons behind coverage mismatches. First of all,
as already metioned earlier in this paper, authors
often prefer using generalised medical terms in
the bottom-line summaries while the source texts
contain more specific terms (e.g., antibiotics vs
penicillin). Incorporating semantic types ensures
coverage in such cases, but also leads to false
matches. Secondly, MetaMap has a relatively low
word sense disambiguation accuracy (Plaza et al.,
2011) and often fails to disambiguate terms cor-
rectly, causing variants of the same term to have
different CUIs, and often different semantic types.
Thirdly, a large portion of the uncovered compo-
nents consists of text that improves the qualita-
tive aspects of the summaries and do not repre-
sent important content. Considering the analysis
presented by Louis and Nenkova (2011), it is no
surprise that the texts of all granularities contain a
significant amount of generic information, which
may be added or lost during summarisation.

Interestingly, Table 1 reveals that the human
generated single-document summaries have al-
most identical coverage scores to full source ar-
ticles. Figure 3 shows the distributions of the con-

T T & C CC

z -1.5 -1.27 -1.33
p-value (2-tail) 0.13 0.20 0.16

Table 3: z and p-values for Wilcoxon rank sum tests.

cept coverage scores for the two sets, and it can
be seen that the distributions are very similar. The
coverage scores obtained by the two summarisa-
tion systems (IdealSum and Sarker et al.) also
have high coverage scores compared to the Ran-
dom summaries.

Table 2 shows that the ROUGE-L recall scores
are also very similar for the HS and FullAbs data
sets and lie within each other’s 95% confidence in-
tervals, indicating that there is no statistically sig-
nificant difference between the contents of the HS
and FullAbs sets.

To verify if the difference in the coverage scores
between the HS and FullAbs sets are statisti-
cally significant, we perform statistical signifi-
cance tests for the two pairs of coverage scores.
Due to the paired nature of the data, we perform
the Wilcoxon rank sum test with the null hypothe-
sis that the coverage scores for the two sets are the
same (µ0 = 0). Table 3 shows the z and p-values
for the tests performed for the term, term and CUI
and concept coverage scores for the HS and Ful-
lAbs sets. In all cases p > 0.05, meaning that we
cannot reject the null hypothesis. Therefore, the
difference in the two sets of coverage scores are
not statistically significant. This adds further evi-
dence to the hypothesis that single document sum-
maries may contain sufficient content for bottom-
line summary generation. This, in turn, strength-
ens our claim that the generation of bottom-line
summaries by humans may be considered to be a
two step process, in which the first step involves
summarising individual documents, based on the
information needs of queries, and the second step
synthesises information from the individual sum-
maries.

The compression factors (CF) in Table 4 show
the relative compression rates required for the var-
ious source texts to generate the bottom-line sum-
maries. It can be seen that generating bottom-
line summaries from original source texts require
approximately 5 times more compression com-
pared to the generation from single document
summaries, suggesting that the single document
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System Recall (%) Precision (%) CF

FullAbs 77 41 0.05
HS 75 68 0.26
IdealSum 66 48 0.20
Sarker et al. 68 45 0.15
Random 52 35 0.21

Table 4: Task oriented evaluation results and summary com-
pression factors (CF) for the five sets of source texts.

summaries contain important information from
the source texts in a much compressed manner.
Thus, for a summarisation system that focuses on
generating bottom-line summaries, it is perhaps
better to use single document summaries as input
rather than whole source texts, as the information
in the source texts are generally very noisy. Con-
sidering the balance between coverage scores and
compression factors of IdealSum and Sarker et al.,
such content-rich automatic summaries may prove
to be better inputs for the generation of bottom-
line summaries than original texts.

Table 4 also presents the drug name recall and
precision values for the five source text sets from
the task-oriented evaluation. The relative recall-
based performances of the different source text
sets closely resemble their coverage scores. The
performance of the HS summaries is almost iden-
tical to the FullAbs system, and the systems Ide-
alSum and Sarker et al. are close behind. Pri-
mary reasons for drops in recall are the use of
generic terms in bottom-line summaries, as al-
ready discussed, and errors made by MetaMap.
For the former problem, automatic summarisation
systems such as IdealSum and Sarker et al. suffer
the most, as the articles in the FullAbs set gener-
ally contain the generic terms (e.g., antibiotic) and
also the specific terms (e.g., penicillin). However,
the compressed versions of the source texts, in the
IdealSum and Sarker et al. sets, only the specific
terms tend to occur. Importantly, the low preci-
sion score for the FullAbs set illustrates the high
amount of noise present. The precision scores for
the HS set and the two summarisation systems are
higher than the FullAbs set, indicating that selec-
tive compression of the source text may help to
efficiently remove noise.

6 Conclusions and Future Work

We performed analyses on a corpus that is spe-
cialised for automatic evidence-based summari-
sation. Our intent was to analyse the extent
to which: (i) information in the bottom-line
summaries are directly contained in the source
texts; and, (ii) good, evidence-based, multi-
document summaries can be obtained from indi-
vidual single-document summaries of the source
texts. We applied various statistics from the cor-
pus to ascertain the difference in content among
source texts and summaries of the source texts.

Our analyses show that human summarisers
rely significantly on information from published
research when generating bottom-line evidence-
based summaries. This is demonstrated by the
coverage scores presented in the previous section
and the manual analysis following it. This indi-
cates that, content-wise, it is possible to generate
summaries for EBM automatically in a text-to-text
manner. Our experiments also show that human-
generated single-document summaries contain ap-
proximately the same relevant information as the
source texts but in a much more compressed for-
mat. This suggests that, for generating bottom-
line summaries, it might be a good idea to ap-
ply a two-step summarisation. The first step in-
volves single-document, query-focused summari-
sation. The second step, which is dependent on
the output of the first step, performs further sum-
marisation of the already compressed source texts
to generate bottom-line answers. For such an ap-
proach, it is essential that the first step produces
content-rich, high precision summaries. With the
advent of new, efficient, single-document sum-
marisation systems in this domain, a multi-step
summarisation system has the potential of produc-
ing very good results.

Future work will focus on performing more
comprehensive task-oriented experiments using
these different datasets to evaluate their usefulness
in the summarisation task. We will also attempt
to develop a two-step summarisation system and
compare its performance with other state of the
art summarisation systems in this domain.
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