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Abstract

Pathology reports are used to store infor-
mationabout cells and tissues of apatient,
and they are crucial to monitor the health
of individuals and population groups. In
this work we present an evaluation of su-
pervised text classification models for the
prediction of relevant categories in pathol-
ogy reports. Our aim is to integrate au-
tomatic classifiers to improve the current
workflow of medical experts, and we im-
plement and evaluate different machine
learning approaches for a large number
of categories. Our results show that we
are able to predict nominal categories with
high average f-score (81.3%), and we can
improve over the majority class baseline
by relying onNaive Bayes and feature se-
lection. We also find that the classification
of numeric categories isharder, and deeper
analysiswould berequired to predict these
labels.

1 Introduction

A pathology report is the summary of the analy-
sis of cells and tissues under a microscope, and it
may also contain information of the studied spec-
imen as it looks to the naked eye. Pathology re-
ports play an important role in cancer diagnosis
andstaging (describing the extent of cancer within
the body, especially whether it has spread). These
reports are usually written by the pathologist in
natural language, and then the relevant parts are
transcribed into structured form by adifferent per-
son to be stored in adatabase.

Theuseof structured informationcan help share
thedatabetween institutions, andcan also beused
to find patterns in the data. For this reason, some
recent initiativesare exploring better waysto man-
age pathology reports. For instance, the Depart-

ment of Health and Ageing of Australia is fund-
ing the project Structured Pathology Reporting of
Cancer since 2008 to develop standard reporting
protocols for cancer reports1. Another way to
promote the creation of structured data is to use
standard terminologies, such as SNOMED CT2,
which isa large collection of medical terminology
covering most areas of clinical information such
asdiseases, findings, procedures, microorganisms,
pharmaceuticals etc. TheNational E-Health Tran-
sition Authority (NEHTA) has recently launched
an adapted terminology (SNOMED CT-AU) to be
used by theAustralian health sector3.

Theseinitiativeswill help to increasethereposi-
toriesof structured data, but they will not be asub-
stitute to the flexibilit y of natural language. The
relevant fields in structured reports change over
time as different clinical tests are made available,
and it isdifficult to design aspecific form to cover
all the possible cases that will be observed in the
pathology analysis. Clinicians need time to learn
thedifferent standards, andthey prefer theflexibil -
ity of freetext to record their analyses andconclu-
sions. Ideally their natural language input would
beused to automatically extract thestructured data
that different protocols demand.

This scenario is promising for text mining re-
search, because tools that can perform well i n this
space are likely to make an impact in the way
health information is stored and used. Our goal in
this work is to explore this area, and develop and
evaluate a text mining tool that aims to work in
a real hospital setting, by predicting pieces of in-
formation to populate adatabase. Specifically, we
focusonasystem for theRoyal MelbourneHospi-
tal, where pathology reports of cancer patients are

1http://www.rcpa.edu.au/Publications/
StructuredReporting.htm

2http://www.nlm.nih.gov/research/umls/
Snomed/snomed_main.html

3http://www.nehta.gov.au/media-centre/
nehta-news/571-snomed-ct
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kept in natural language, andan electronic form is
manually filledwith themost relevant information.
Wewould like to predict the classes automatically
in order to facilit ate the process.

Our aim is to build a generic approach for dif-
ferent prediction categories, involving heteroge-
neous classes with a large set of possible values
(e.g. the class“Tumour site” has 11 different val-
ues in our data, for instance “Sigmoid Colon”).
Wewill rely onthe availabledocument-level anno-
tations of pathology reports to build our classifiers
using Machine Learning (ML) algorithms. Anno-
tated data is difficult to obtain in this domain, and
there are few worksevaluating theperformanceof
supervised classifiers for pathology reports, as we
will seein Section 2. In this work wewill explore
how far we can get with existing annotations, and
simple lexical features that can be extracted with-
out external knowledge sources.

Thus, we present an extensive set of experi-
ments to evaluate the abilit y of different mod-
els and methods to perform class-predictions over
pathology reports. The problem will i nvolve pre-
dicting nominal and numeric classes, and we test
modelsthat perform sentence-level and document-
level classification. Our main challenges in this
project will be the sparseness of the data, the
coarsenessof the annotations (document-level cat-
egories only), and the high number of heteroge-
neous categories. In the future, the tool resulting
from this work will be integrated in the hospital
workflow, and it will work interactively with the
user, making predictionsandallowingcorrections.
We will store all user interactions to continually
add training data to our classifiers. We will also
highlight the relevant parts of the text aspredicted
by our learningmodels, by usingfeatureselection.

2 Related work

Related work in text mining from pathology re-
ports has mainly relied on domain-specific lexi-
cons and rules (Dunham et al., 1978; Schadow
and McDonald, 2003; Xu et al., 2004; Hanauer
et al., 2007; Coden et al., 2009; Nguyen et al.,
2010); although there has been some work us-
ing ML (Nguyen et al., 2007; McCowan et al.,
2007). The earliest work in this area was per-
fomed by Dunham et al. (1978), who built mor-
phosyntactic rules, synonym expansion, and hand-
crafted rulesin order to extract termsfrom theSys-
tematized Nomenclature of Pathology (SNOP),

which was an earlier version of the SNOMED
CT terminology collection. More recent works
have used SNOMED CT as the target terminol-
ogy to map the raw text into. Hanauer et al.
(2007) relied oncustom-made lists containing ap-
proximately 2,500 terms and phrases, and 800
SNOMED codes. Their method was based on
looking up relevant phrases in order to discrimi-
nate the documents of interest.

Other works have developed their own set of
relevant classes instead of relying onSNOMED.
This is interesting when the focus is on a spe-
cific subdomain, and this is the approach that we
explored in our work. Schadow and McDonald
(2003) relied onasubset of UMLS4 (Unified Med-
ical LanguageSystem) as target concept inventory
for information extraction from surgical pathol-
ogy reports. They applied a regular expression-
based parser with good performance, but they also
foundthat their target terminology was too exten-
sive, and this caused false positives. Xu et al.
(2004) also targeted surgical pathology reports,
and they used a restricted set of 12 classes, re-
ferred as “ types of findings” . This is similar to
our approach, andsomeof their classes arepart of
our relevant classes aswell (e.g. “number of posi-
tivenodes”); however they do not provide theper-
formance for each class separately, which makes
comparison unfeasible. Regarding the methodol-
ogy, their system is based on hand-crafted rules,
and relies on a domain-specific lexicon. Our mo-
tivation is different, and we rely on ML to infer
theknowledge from coarse-grained annotation for
a larger set of classes.

Also in the areaof information extraction from
pathologyreports, recent work from theAustralian
e-Health Research Centre5 explored the extraction
of staging information of lung cancer using Sup-
port Vector Machines (Nguyen et al., 2007). Their
initial experiments showed thedifficulty of thepri-
mary tumour stage detection (T), with a top ac-
curacy of 64%. In a follow-up paper they ex-
plored richer annotation, anda combination of ML
and rule-based post-processing (McCowan et al.,
2007). They performed fine-grained annotation of
stage details for each sentence in order to build
their system, and they observed improvements
over a coarse-grained (document-level) multiclass
classifier. However, the authors explain that the

4http://www.nlm.nih.gov/research/umls
5http://aehrc.com/

42



annotation cost is high, and in their latest work
they rely heavily on the SNOMED CT concepts
and relationships to identify the relevant entities
(Nguyen et al., 2010). They argue that this ap-
proach is more portable than fine-grained anno-
tation, althoughit still requires involvement from
the experts, and there is a loss in accuracy with
respect to their best ML approach. These threepa-
persevaluate their system in theprediction of stag-
ingclasses (T, N, andM), which arenot explicit in
our dataset.

Another relevant work on this area was con-
ducted by Coden et al. (2009), where the authors
defined an extensive knowledge model for pathol-
ogy reports. Their model was linked to hand-built
inference rules built to processunseen data. They
reported high performanceover 9 target classesfor
a hand-annotated 300-report dataset. This system
seeks to build a strong representation of the do-
main by relying on human experts, and its porta-
bilit y to a different dataset or class-set could be
problematic. The classes they evaluate on are not
present in our dataset.

Currently there is no dataset of pathology re-
ports that is freely available for research, and dif-
ferent groupshavebuilt their own corpora. Pathol-
ogy reports contain sensitive material, and even
after de-identification it is not easy to make them
widely available. However, initiatives as the NLP
challenges leaded by the Informatics for Integrat-
ing Biology and the Bedside (i2b2)6 ill ustrate that
there is growing interest on text mining from clin-
ical data, and show that the research community
can collaboratively create corpora for experimen-
tation. In 2010they organised their fourth chal-
lenge, focused on the extraction of medical prob-
lems, tests, and treatments from patient discharge
summaries7. Previous challenges have also fo-
cused on discharge summaries and narrative pa-
tient records for different information extraction
categories. Although this data is different to
pathology reports, the initiative is interesting for
the future of text mining from pathology reports.

3 Experimental sett ing

In this sectionwefirst describe thedataset andcat-
egories we will work on, and then introduce the

6i2b2 is a NIH-funded National Center for Biomed-
ical Computing (NCBC), for more information see
https://www.i2b2.org/about/index.html

7https://www.i2b2.org/NLP/Relations/

Category Unique Highest Lowest
Values

CAV 21 40 0
Distal Distance 48 150 0
Nodes Examined 36 73 0
Nodes Positive 12 15 0
Polyps Number 13 43 0
Radial Distance 9 80 0
Tumour Length 36 110 0
Tumour depth 22 40 0
Tumour width 35 75 0

Table1: List of numeric categories, with thenum-
ber of unique values and the full range.

models and classifiers we applied. Finally we ex-
plain our feature set, and our evaluation method-
ology.

3.1 Dataset

For our analysis we rely on a corpus of 203 de-
identified clinical records from the Royal Mel-
bourne Hospital. These records were first writ-
ten in natural language, and then structured infor-
mation about 36 fields of interest was introduced
to the Colorectal Cancer Database of the hospital.
The written records tend to be brief, usually cov-
ering a single page, and semantically dense. Each
report contains threesections describing different
partsof the intervention: macroscopic description,
microscopic description, and diagnosis. All sec-
tionscontain relevant informationfor thedatabase.

There are two types of fields (which will be
the target categories of our work), depending on
the type of values they take: numeric and nomi-
nal. Numeric categories are those that take only
numeric values, and they are listed in Table 1.
We also show the number of different values they
can take, and their value range. We can seethat
most categories exhibit a large number of unique
values. The remaining 27 categories are nomi-
nal, and the list is shown in Table 2, where we
also provide the number of unique values, and the
most frequent value in the corpus for each cate-
gory. Some of the categories are linked to a large
number of values (e.g. Colon Adherent To and Tu-
mour Site). During pre-processing we observed
that the database had some inconsistencies, and
a normalisation step was required with collabora-
tion of the experts. For nominal categories this in-
volved mapping empty values, “0” , and “?” into
the class “N/A”; and for numeric categories we
mapped empty values into “zero” .

Themanual annotation isprovided at document

43



Category Unique Most
Values Frequent

Anastomosis Method 3 Staple
Anastomosis Type 4 End-End
Biopsy Confirmed Mata 3 No
ColonAdherent 3 No
ColonAdherent To 14 N/A
Differentiation 8 Moderate
Inflammatory Infiltrate 4 Not reported
Liver 3 N/A
LymphoInvasion 4 No
MLH1 4 Not done
MSH2 4 Not done
MSH6 4 Not done
MSI 4 Not done
Margins Distal 3 Not involved
Margins Radial 4 N/A
Microscopic Type 5 Adenocarcinoma
Mucinous 4 Not reported
Necrosis 4 Not reported
Other Meta 3 N/A
Pathologic Response 4 N/A
Peritoneal 3 N/A
Polyps 3 No
Polyps Type 6 N/A
Primary Tumour Rectum 4 N/A
Ressected Meta 3 No
StagingACPS 6 B
Tumour Site 11 Sigmoid Colon

Table2: List of nominal categories, with thenum-
ber of unique values, and most frequent class.

level, and for numeric categories we automati-
cally produce fine-grained annotation by looking
upthegoldstandard mentions in thetext. Wetry to
match both the string representation and the num-
bers, and only numbers different to zero are iden-
tified. After this automatic process, each sentence
has individual annotations for each of the target
categories, and this information is used to build
sentence-level classifiers. Because the process is
automatic, some matches will be missed, but our
hypothesis is that thenoisy annotation will beuse-
ful for the document-level evaluation.

3.2 Models

Our goal is to build document classifiers for each
of the 36 categories with minimal hand tuning.
Wefollow different strategies for nominal and nu-
meric categories. For nominal categories we ob-
served that the information can be given at dif-
ferent points in the document, and we decided to
build amulticlassclassifier for each category. This
method makes a single prediction based on the
classannotations in training data.

For numeric categories the information tends to
be contained in a single sentence, and instead of
usingthefull document, werelied onthesentence-

level annotation that weobtained automatically. In
this case the target values would be the different
numeric values seen in the goldstandard. The first
step is to build sentence classifiers for each class,
by using the sentence-level annotations. Note that
only numbers different to zero are detected, and
the zero label is assigned only in cases where the
sentence classifiers fail to identify any number.
After the model identifies the positive sentences,
the numeric values are extracted, and the number
closest to themedian of the class(in training data)
is assigned. In the cases where no positive sen-
tences are identified the number zero isassigned.

3.3 Classifiers

Each of our models is tested with a suite of clas-
sifiers provided by the Weka toolkit (Witten and
Frank, 2005). We chose a set of classifiers that
has been widely used in the text mining literature
in order to compare their performances over our
dataset:

• Naive Bayes (Naive Bayes): A simple prob-
abili stic classifier based on applying Bayes’
theorem (from Bayesian statistics) to ob-
tain the conditional probabilit y of each class
given the features in the context. It assumes
independence of the features, which in real
cases can be astrong(naive) assumption.

• Support Vector Machines (SVM): They map
feature vectors into ahigh-dimensional space
and construct a classifier by searching for the
hyperplane in that spacethat gives the great-
est separation between the classes.

• AdaBoost (AdaBoost): This is a meta-
learning algorithm where an underlaying
classifier is used to update a distribution of
weights that indicates the importance of the
training examples. Adaboost is an adaptive
algorithm, and the prediction hits and misses
in each iteration are used to build the final
weight distribution for themodel.

We use the default parameter settings of Weka
(version 3-6-2) for each of the classifiers. As un-
derlaying classifier for AdaBoost we rely on sim-
pleDecision Stumps (one-level decision trees).

We also explore the contribution of feature se-
lection to the classification performance. We ap-
ply a correlation-based feature subset selection
method, which considers the individual predictive
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Category Majority Class Naive Bayes SVM AdaBoost
Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc

Tumour site 3.9 19.7 6.5 23.3 40.4 27.7 28.5 38.4 32.2 12.4 34.0 18.1
StagingACPS 12.9 36.0 19.0 39.2 43.8 36.7 44.1 48.3 45.1 33.2 49.3 37.5
Anastomosis type 22.4 47.3 30.4 46.6 52.7 44.9 53.5 59.1 55.0 32.7 50.2 39.3
Colonadherent 23.3 48.3 31.4 63.2 67.0 62.0 67.4 70.4 67.0 47.8 58.6 51.4
Lymphoinvasion 23.8 48.8 32.0 48.4 51.2 42.9 53.4 55.7 53.5 32.3 51.2 39.6
Polyps 27.8 52.7 36.4 69.6 72.9 69.3 83.1 84.2 83.3 74.9 77.8 74.3
Colonadherent to 28.3 53.2 37.0 59.9 70.0 63.9 62.6 73.4 67.4 40.6 47.3 43.7
Margins radial 31.0 55.7 39.8 65.4 73.4 68.6 65.2 70.9 67.4 59.9 67.5 62.0
MlH1 31.5 56.2 40.4 41.4 50.7 45.4 46.7 49.8 46.9 35.6 58.1 43.4
MSH6 31.5 56.2 40.4 41.5 50.7 45.5 43.0 48.8 45.7 35.0 57.6 42.7
MSH2 31.5 56.2 40.4 41.5 50.7 45.5 43.0 48.8 45.7 35.0 57.6 42.7
MSI 32.7 57.1 41.6 44.5 53.7 48.4 45.8 50.7 47.9 32.7 57.1 41.6
Mucinous 34.9 59.1 43.9 42.6 58.6 46.7 70.2 72.4 68.8 57.8 73.4 64.5
Anastomosis method 41.6 64.5 50.6 57.6 70.4 62.0 62.4 71.9 65.8 56.9 69.5 60.4
Necrosis 42.9 65.5 51.9 64.5 74.4 68.7 73.5 77.3 74.6 62.8 69.5 62.7
Polyps type 49.6 70.4 58.2 49.6 70.4 58.2 66.9 72.9 63.4 49.6 70.4 58.2
Differentiation 51.0 71.4 59.5 51.2 70.9 59.5 70.3 78.3 72.1 66.0 80.8 72.7
Inflammatory infiltrate 51.0 71.4 59.5 66.5 72.4 62.6 68.4 76.8 70.9 68.9 70.9 66.2
Liver 53.2 72.9 61.5 53.0 68.0 59.5 59.5 64.5 61.7 52.8 70.9 60.5
Other meta 53.2 72.9 61.5 53.0 68.0 59.5 59.5 64.5 61.7 53.1 71.4 60.9
Primary tumour rectum 53.2 72.9 61.5 56.5 72.4 62.7 70.9 80.3 75.1 67.5 73.9 70.4
Peritoneal 53.2 72.9 61.5 53.0 68.0 59.5 59.5 64.5 61.7 52.7 70.4 60.3
Ressected meta 63.7 79.8 70.8 68.6 79.8 72.1 70.4 79.3 73.2 66.2 77.8 70.8
Margins distal 76.0 87.2 81.2 76.0 87.2 81.2 86.1 92.1 89.0 86.1 92.1 89.0
Biopsy confirmed mata 80.4 89.7 84.8 80.4 89.7 84.8 85.0 89.7 86.5 80.3 88.7 84.3
Pathologic response 81.3 90.1 85.5 81.3 90.1 85.5 81.3 90.1 85.5 81.3 90.1 85.5
Microscopic type 87.6 93.6 90.5 87.6 93.6 90.5 88.0 93.1 90.5 87.6 93.6 90.5
Macro-average 43.5 63.8 51.0 56.5 67.1 59.8 63.3 69.1 65.1 54.1 67.8 59.0

Table 3: Performances of multiclassdocument classifiers for nominal categories without feature selec-
tion. Results sorted by baseline f-score performance. Best f-score per category isgiven in bold.

abilit y of each feature and the redundancy of each
subset (Hall , 1999). We relied on Weka’s imple-
mentation of this technique, and used Best-First
search, with a cache-size of one element, and 5
levels of backtracking.

3.4 Features

Pathology reports tend to be short and dense, and
theselection of words tries to precisely specify the
relevant pieces of information. For this reason we
rely on a bag-of-words (BOW) approach for our
feature representation, without any lemmatisation.
We built a simple tokeniser based on regular ex-
pressions to separatewords, numbers, and punctu-
ation. We also use regular expressions to convert
thetextual mentionsof numbers into their numeric
representation. Finally, we include the binary fea-
ture “NUMBER” to indicatewhether there isanu-
meric reference in the text.

3.5 Evaluation

In order to evaluate the different models and clas-
sifiers we use precision, recall , and f-score by
micro-averaging theresultsover thedifferent class
values. The macro-averaged scores over all cate-

gories are also provided to compare different sys-
tems. 10-fold cross-validation is used in all our
experiments.

As a baseline we rely on the Majority Class
classifier, which assigns the most frequent class
from training data to all test instances. In case
of ties the value is chosen randomly among those
tied.

4 Results

We first present our result over the nominal cate-
gories, and then show the performances over nu-
meric categories.

4.1 Nominal categor ies

Our first experiment applies the multiclass docu-
ment classifier to nominal categories. The results
are given in Table 3. We can see that the best
performanceisachieved by SVM, with a large im-
provement over the majority classbaseline. Naive
Bayes and AdaBoost also perform above the base-
line, and attain similar results. However, a max-
imum f-score of 65.1% seems insufficient to be
of use for an application. Regarding the different
categories, as expected these with lowest baseline
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Category Naive Bayes SVM
Prec. Rec. F-sc Prec. Rec. F-sc

Tumour site 53.0 54.2 51.1 43.9 44.8 43.8
StagingACPS 71.1 71.9 70.7 58.0 59.1 58.3
Anastomosis type 74.1 71.9 71.3 69.4 69.5 69.4
MSH6 75.7 70.9 71.4 65.3 65.0 64.7
MSH2 75.7 70.9 71.4 65.3 65.0 64.7
Colonadherent to 68.9 74.9 71.6 64.4 70.4 66.5
MSI 77.6 72.9 73.3 71.5 72.4 71.3
Lymphoinvasion 74.3 75.4 74.4 69.8 70.9 70.3
MlH1 78.1 75.4 75.2 71.2 71.4 70.6
Anastomosis method 77.8 78.8 77.8 75.1 76.4 75.5
Margins radial 79.1 79.8 78.5 76.8 76.4 75.5
Colonadherent 78.2 80.3 78.8 80.0 80.3 79.7
Other meta 83.6 83.7 83.7 75.6 77.3 76.4
Peritoneal 83.9 84.2 84.0 79.0 80.3 78.6
Inflammatory infiltrate 82.9 86.2 84.0 83.3 84.2 82.9
Polyps type 84.8 85.2 84.4 80.5 82.3 81.2
Necrosis 84.6 85.7 85.1 79.9 81.3 80.5
Mucinous 84.5 86.7 85.4 82.6 83.7 82.8
Liver 86.9 86.2 86.4 76.1 76.8 76.4
Primary tumour rectum 87.8 86.2 86.6 84.4 84.7 83.8
Ressected meta 89.8 90.1 89.7 86.6 86.7 86.2
Margins distal 90.0 92.6 90.3 88.4 91.6 89.5
Polyps 90.3 91.6 90.9 90.1 90.1 90.1
Differentiation 91.8 92.6 91.9 90.0 92.1 90.7
Biopsy confirmed mata 93.8 94.1 93.9 94.3 94.6 93.9
Microscopic type 96.6 96.6 96.4 94.2 95.6 94.6
Pathologic response 97.7 97.5 97.5 91.4 93.1 91.9
Macro-average 81.9 82.1 81.3 77.3 78.4 77.4

Table 4: Performances of multiclassdocument classifiers for nominal categories using feature selection.
Results sorted by baseline f-score performance. Best f-score per category isgiven in bold.

performance are the ones most benefited from our
classifier, and the categories with highest baseline
score are the only ones that do not get any im-
provement.

Our next experiment applies feature selection
over the initial classifiers. The results are given
in Table 4 for Naive Bayes and SVM8. We can
seethat thescenario changes when we add feature
selection, with Naive Bayes achieving the high-
est performance in all cases. The performance
for the hardest category (which is again Tumour
site) raises to above 50% f-score, clearly beating
the baseline. The highest-performing category is
now Pathologic response, and Naive Bayes almost
reaches perfect scores over this category, improv-
ingthebaseline again. Themacro-averaged results
show that our best classifier is able to reach an
f-score of 81.3% over the 27 nominal categories,
with an improvement of 30.3% over the majority
classbaseline.

8AdaBoost obtains the same results with and without fea-
ture selection.

4.2 Numeric categor ies

In this section we present the results of our nu-
meric classifiers in Table5. In thiscase the results
of Naive Bayes are worse than the baseline, and
AdaBoost and SVM only achieve small i mprove-
ments. Oneof thereasonsfor thelow performance
seems to be the strong bias of the categories to-
wards themajority value. On these conditions, the
baseline obtains the best result for 6 of the 9 cat-
egories. The macro-averaged performances show
that the performance is insufficient for a real ap-
plication.

For our next experiment we applied feature se-
lection to the numeric classifiers, and the results
arepresented in Table6. We can seethat theover-
all performancegoes down when applying feature
selection, and the main cause for this seems the
low number of features that are left for each in-
stance.

5 Discussion

Our results over nominal categories show that our
classifiers can achieve high performance (above
80% f-score in average) by relying on feature
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Category Majority Class Naive Bayes SVM AdaBoost
Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc

Nodes examined 7.4 7.4 7.4 83.1 58.1 68.4 82.1 58.6 68.4 81.8 57.6 67.6
Tumour length 42.9 42.9 42.9 41.7 24.6 31.0 50.3 37.0 42.6 44.9 39.4 42.0
Tumour width 47.8 47.8 47.8 41.4 26.1 32.0 51.8 42.4 46.6 46.5 42.9 44.6
Distal distance 52.2 52.2 52.2 63.3 34.0 44.2 70.1 53.2 60.5 52.0 51.7 51.8
Polyps number 62.1 62.1 62.1 48.9 43.4 46.0 57.0 54.2 55.6 58.9 58.6 58.8
Nodes positive 64.0 64.0 64.0 66.5 58.6 62.3 79.0 75.9 77.4 67.5 67.5 67.5
Tumour depth 70.0 70.0 70.0 70.1 49.8 58.2 74.7 61.1 67.2 70.0 70.0 70.0
Cav 72.4 72.4 72.4 72.1 71.4 71.8 73.1 69.5 71.2 72.4 72.4 72.4
Radial distance 94.1 94.1 94.1 94.1 94.1 94.1 95.4 92.1 93.7 94.1 94.1 94.1
Macro-average 57.0 57.0 57.0 64.6 51.1 56.4 70.4 60.4 64.8 65.3 61.6 63.2

Table 5: Performances for numeric categories without feature selection. Results sorted by baseline f-
score performance. Best f-score per category is given in bold.

Category Majority Class Naive Bayes SVM AdaBoost
Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc Prec. Rec. F-sc

Nodes examined 7.4 7.4 7.4 35.3 32.0 33.6 22.7 21.7 22.2 26.7 25.1 25.9
Tumour length 42.9 42.9 42.9 39.4 31.0 34.7 42.3 37.9 40.0 43.7 40.9 42.2
Tumour width 47.8 47.8 47.8 53.5 49.3 51.3 53.3 51.7 52.5 49.0 48.8 48.9
Distal distance 52.2 52.2 52.2 53.8 31.5 39.8 52.5 51.7 52.1 52.2 52.2 52.2
Polyps number 62.1 62.1 62.1 52.8 51.2 52.0 64.4 64.0 64.2 60.2 59.6 59.9
Nodes positive 64.0 64.0 64.0 69.0 67.0 68.0 68.5 67.5 68.0 68.2 67.5 67.8
Tumour depth 70.0 70.0 70.0 70.2 62.6 66.1 70.8 70.4 70.6 70.0 70.0 70.0
Cav 72.4 72.4 72.4 71.1 65.5 68.2 72.4 72.4 72.4 72.4 72.4 72.4
Radial distance 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1 94.1
Macro-average 57.0 57.0 57.0 59.9 53.8 56.4 60.1 59.1 59.6 59.6 58.9 59.3

Table 6: Performances for numeric categories with feature selection. Results sorted by baseline f-score
performance. Best f-score per category isgiven in bold.

selection. These results have been attained us-
ing BOW features, and this indicates that pathol-
ogy reports tend to use similar lexical elements
to refer to the relevant classes. The results show
promise to incorporate an extraction prototype
into the medical workflow for nominal classes,
which would aid the collection of structured infor-
mation, and benefit from the interaction with the
user.

One of the most interesting findings has been
the effect of the feature selection step to achieve
high performance. Apart from the increment of
the f-score, feature selection would allow us to
highlight the relevant terms in the document, and
present them to the user for abetter interaction.

Regarding the results for numeric categories,
our strategy hasnot been successful, andtheincre-
ments over the majority classbaseline have been
small . The baseline for these categories is higher
than for nominal categories, and there is a strong
bias towards the “zero” value. We observed that
the main difficulty was to discriminate between
“zero” and other classes, and a 2-step classifier
would have been a better option to build upon.
Our results over numeric categories also indicate

that the generic BOW approach successfully eval-
uated over nominal categories may not be enough,
and deeper analysis of the feature spacemay be
required for these categories.

6 Conclusion

We have presented the results of a set of su-
pervised text classification systems over different
prediction categories in the domain of pathology
records. Our results show that we are able to
predict nominal labels with high average f-score
(81.3%) and improve the majority class baseline
by relying onNaive Bayes and feature selection.
Theseresultsarepositive for the integration of au-
tomatic aids in the medical workflow, and they il -
lustrate that pathology reports contain repetitive
lexical items that can be captured by a bag-of-
wordsmodel. Our experiments also show that this
is not the case for numeric labels, and richer fea-
tures would be required in order to improve the
baselines.

For future work one of our goals is to im-
provenumeric classifiers by adding an initial clas-
sifier that identifies zero-valued instances before
looking for the final value. We observed that
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lexical items expressing negation may be rele-
vant for this category (e.g. “No positive nodes
werefound”), weplan to incorporate thenegation-
classifier Negex (Chapman et al., 2001) to the fea-
ture extraction.

Finally, wewant to combineour classifierswith
a user interface that will allow clinicians to up-
load structured information into the database with
the help of automatic predictions. The users will
be able to copy the pathology reports, and the
database fields will be pre-filled with the cate-
gories from the predictors. We will also highlight
thetopfeatures from theselection process, andthe
user will be able to correct the automatic predic-
tions before saving. All i nteractions will be kept
and used to improve our classifiers.
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