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Abstract

We report on the SemEval 2019 task on math
question answering. We provided a question
set derived from Math SAT practice exams, in-
cluding 2778 training questions and 1082 test
questions. For a significant subset of these
questions, we also provided SMT-LIB logical
form annotations and an interpreter that could
solve these logical forms. Systems were eval-
uated based on the percentage of correctly an-
swered questions. The top system correctly
answered 45% of the test questions, a con-
siderable improvement over the 17% random
guessing baseline.

1 Overview

Over the past four years, there has been a surge
of interest in math question answering. Research
groups from around the globe have published pa-
pers on the topic, including MIT (Kushman et al.,
2014), University of Washington (Hosseini et al.,
2014; Koncel-Kedziorski et al., 2015), National
Institute of Informatics, Japan (Matsuzaki et al.,
2014), University of Illinois (Roy and Roth, 2015),
Microsoft Research (Shi et al., 2015; Upadhyay
and Chang, 2016), Baidu (Zhou et al., 2015), Ari-
zona State University (Mitra and Baral, 2016), KU
Leuven (Dries et al., 2017), Carnegie Mellon Uni-
versity (Sachan et al., 2017), Tencent (Wang et al.,
2017), and DeepMind (Ling et al., 2017).

Math question answering has several attractive
properties that have rekindled this interest:

1. It is easy to evaluate. Usually there is a sin-
gle correct answer for a given question, either
numeric or multiple-choice.

2. In order to achieve robust results, systems
require some (explicit or implicit) seman-
tic representation of the question language.
Consider the first question in Figure 1. The

Closed-vocabulary algebra: Suppose 3x +
y = 15, where x is a positive integer. What
is the difference between the largest possible
value of y and the smallest possible value of
x, assuming that y is also a positive integer?

Open-vocabulary algebra: At a basketball
tournament involving 8 teams, each team
played 4 games with each of the other teams.
How many games were played at this tourna-
ment?

Geometry: The lengths of two sides of a tri-
angle are (x − 2) and (x + 2), where x > 2.
Which of the following ranges includes all
and only the possible values of the third side
y? (A) 0 < y < x (B) 0 < y < 2x (C)
4 < y < 2x

Figure 1: Example math questions from different gen-
res.

correct answer (11) has a subtle relationship
to the other quantities mentioned in the text
(3 and 15). There is no obvious shortcut (like
word association metrics on a bag-of-words
representation of the question) to guessing
11.

3. Math questions exhibit interesting semantic
phenomena like cross-sentence coreference
and indirect coreference (e.g. in the geom-
etry question from Figure 1, “the third side”
refers to a triangle introduced in a previous
sentence).

This task sought to unify the somewhat divergent
research efforts and to address certain recognized
data issues that have developed in the nascent
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Figure 2: Sample of questions of the AQuA dataset.

Closed Open Geometry Total
Algebra Algebra

# test questions 476 216 335 1082
# training questions 1068 353 701 2778

Table 1: Data resources for the three subtasks. Note that the fourth column (“Total”) also includes a small minority
of questions that do not fall into the three major categories.

phase of this subfield. We discuss these issues in
the next section.

2 Existing Resources

Existing datasets are either scraped from the web
and filtered (Kushman et al., 2014; Hosseini et al.,
2014; Roy and Roth, 2015; Shi et al., 2015) or
crowdsourced (Ling et al., 2017).

The scraped datasets have been observed to be
narrow in semantic scope, and to exhibit consid-
erable lexical overlap from question to question
(Koncel-Kedziorski et al., 2015; Roy and Roth,
2016). Also, they tend to be curated to showcase
proposed models (e.g. by requiring every quantity
present in the semantic representation to be explic-
itly mentioned in the question).

DeepMind (Ling et al., 2017) provided a public,
large-scale dataset called AQuA, consisting of ap-
proximately 100,000 questions. This dataset was
created by using crowdsourcing to augment a nu-
cleus of web-scraped questions. Unfortunately,
the result is extremely redundant and noisy. Fig-
ure 2 shows a typical excerpt from the sorted list
of AQuA questions. Note the amount of repeated
boilerplate and the low quality of the language.
While AQuA may prove useful for training, it is
inappropriate as an evaluation set.

3 Resource: Train/Test Data from Math
SAT practice tests

Over the course of the Euclid project (Hosseini
et al., 2014; Seo et al., 2014, 2015; Koncel-
Kedziorski et al., 2015; Hopkins et al., 2017) at
the Allen Institute for Artificial Intelligence, we

curated a sizable collection of practice exams for
Math SAT study guides. These were originally
used as training and test in a paper that appeared
at EMNLP (Hopkins et al., 2017). At the time,
this dataset consisted of 648 training questions (12
practice tests) and 1082 test questions (21 practice
tests). For this task, we expanded the training set
to include 2778 training questions (over 50 prac-
tice tests).

Because the data is a compilation of SAT prac-
tice exams in their entirety, its distribution of top-
ics corresponds to (at least one authority’s idea of)
the breadth of knowledge expected of an incom-
ing college student. It is curated by impartial third
parties (the study guide publishers) and is thus not
a priori biased towards any particular model. The
language is high quality and diverse.

3.1 Data Collection Process and Format

First, practice exams were scanned from physi-
cal printed copies of SAT study guides by Kaplan,
McGraw-Hill, and the Princeton Review, among
others. We also processed official PDF practice
exams issued by the College Board. Then, trained
workers manually encoded each exam as a LaTeX
document, attempting to preserve the original for-
matting as much as possible. PDFs generated from
the LaTeX documents were compared against the
original scans to ensure quality and corrections
were made as necessary.

Finally, the LaTeX documents were automati-
cally converted into the JSON format shown in
Figure 3. Diagrams from the exams are stored as
Portable Network Graphics (PNG) files in a com-
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Figure 3: JSON representation of a math SAT question.

mon directory. If a question refers to a diagram,
then this is captured by the “diagramRef” field.
Not all questions are multiple-choice. For non-
multiple choice questions, the “answer” field con-
tains the answer itself (as a string) rather than the
choice key.

3.2 Subtasks

The Math SAT contains three broadly discernible
subcategories (examples of which are provided in
Figure 1):

1. Closed-vocabulary algebra (approxi-
mately 44% of the questions): Algebra
word problems described with a circum-
scribed mathematical vocabulary. Note that
the language and semantics can still be quite
involved (see the first example in Figure 1).

2. Open-vocabulary algebra (approximately
20% of the questions): Algebra word prob-
lems described with an open-ended vocabu-
lary, often involving real-world situation de-
scriptions.

3. Geometry (approximately 31% of the
questions): In contrast to the algebra subdo-
mains, these often involve diagrams and thus
require methods that perform joint reasoning

over language and images, e.g. (Seo et al.,
2014).

As part of the digitization process described in the
previous section, we have also tagged the ques-
tions based on this categorization. A small mi-
nority (approximately 5%) of questions do not fall
into any of these categories.

This categorization provides the basis for three
subtasks: (1) closed algebra QA, (2) open alge-
bra QA, and (3) geometry QA. Note that the al-
gebra subtasks do not involve diagrams (algebra
questions involving diagrams are classified into
the small “other” category). Table 1 shows the
number of questions collected, organized by sub-
task.

4 Additional Resource: Logical Forms
for Closed Algebra

To make it easier for researchers to build systems,
we provided logical form annotations for a major-
ity of the training questions in the closed algebra
subtask, as well as an engine that solves these log-
ical forms. The logical form language was intro-
duced in (Hopkins et al., 2017). Figure 4 shows an
example logical form for the question “The sum
of a two-digit number and its reverse is 121. What
is the number?” The logical form language adopts
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Figure 4: Logical form annotation for the question
“The sum of a two-digit number and its reverse is 121.
What is the number?”

the popular SMT-LIB syntax (Barrett et al., 2017),
to facilitate language expansion and the building
of alternate engines.

As part of the SemEval task, we provided:

• Logical form annotations for 50% of the
closed algebra training data.

• Thorough documentation of the logical form
language.

• An interpreter that can solve all provided an-
notations.

The logical form interpreter is an extended version
of the one described in (Hopkins et al., 2017). This
interpreter is written in Scala. We provide Scala,
Java, and Python APIs.

Note: the logical form annotations and inter-
preter were provided to help lower the barrier to
entry, but participants were not required to use
them.

5 Evaluation Methodology and Baseline

For each subtask, the main evaluation metric was
simply question accuracy, i.e. the number of cor-
rectly answered questions. We provided a Python
script that took as input a list of JSON datum { id:
<id>, response: “<response>” }, where <id> is
the integer index of a question and <response> is
the guessed response (either a choice key or a nu-
meric string). Its output was the number of correct
responses divided by the total number of questions
in the subtask.

While the main evaluation metric included no
penalties for guessing, we also computed a sec-
ondary metric that implements the actual evalua-
tion metric used to score these SATs. This metric
is the number of correct questions, minus 1/4 point
for each incorrect guess. We include this met-
ric to challenge participants to investigate high-
precision QA systems.

For each subtask, we provided a simple Python
baseline that reads in a JSON file containing

the evaluation questions, and randomly guesses a
choice key for each multiple choice question, and
“0” for each numeric-answer question.

To train their systems, participants were per-
mitted to use the following public resources: (a)
the provided SAT training data and annotations,
(b) data collected in MAWPS (Koncel-Kedziorski
et al., 2016), (c) AQuA. Participants were also
welcome to use standard public corpora for train-
ing word vector representations, language models,
etc.

6 Evaluation

Table 2 shows the teams (and their affiliations) that
submitted systems that beat the baseline in at least
one task. Tables 3, 4, 5, and 6 compares the perfor-
mance of these systems. The AiFu systems (Ding
et al., 2019) outperformed the other entries by a
wide margin.

6.1 The AiFu System

The AiFu system (Ding et al., 2019), like other
math question answering systems designed for
complex domains (Shi et al., 2015; Hopkins et al.,
2017), followed the architecture in Figure 5. First,
a natural language question is transformed into a
logical form via a “translator” (semantic parser),
then this logical form is given to a symbolic solver
(after a suitable format conversion).

Like the previous semantic parsing approaches,
the AiFu semantic parser is engineered manually,
using the training set as a guide.

AiFu also incorporates a neural network-based
system trained to guess the answer to a multiple
choice question based on its question word se-
quence. Although this system does not work well
independently, it boosts the performance of the
overall system when used as a fallback for ques-
tions that go unanswered by the symbolic system.

The AiFu team submitted two variants of their
system, referred to in the comparison tables as
AiFu 1 and AiFu 2.

6.2 The ProblemSolver System

The ProblemSolver system (Luo et al., 2019) com-
bines two approaches.

The first approach is a neural sequence-to-
sequence translator that maps a question, e.g. “If
x + 345 = 111, what is the value of x”, to a re-
sponse, e.g. “-234”. Because the provided data
is insufficiently large for training the sequence-
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Team Name Affiliation Citation
AiFu iFLYTEK Research, Shanghai Research Center (Ding et al., 2019)

for Brain Science and Brain-Inspired Intelligence,
Fudan University, Massey University,

University of Science and Technology of China
ProblemSolver University of Tuebingen, Germany (Luo et al., 2019)

FAST National University of Computer
and Emerging Sciences, Pakistan

Table 2: Teams whose entries exceeded baseline performance on at least one subtask. FAST (and the two
anonymous systems) did not provide system description papers.

Figure 5: The architecture of AiFu. Figure taken from (Ding et al., 2019).

Team Accuracy Penalized
AiFu 1 .454 (1) .368 (1)
AiFu 2 .376 (2) .280 (2)

Anonymous 1 .208 (3) .089 (3)
Anonymous 2 .196 (4) .074 (4)

FAST .173 (5) .007 (6)
baseline .170 (6) .043 (5)

ProblemSolver .149 (7) -.021 (7)

Table 3: Results on the overall task (only showing
entries that exceeded baseline performance on at least
one subtask). System rank on each metric is shown in
parentheticals.

Team Accuracy Penalized
AiFu 1 .706 (1) .658 (1)
AiFu 2 .632 (2) .576 (2)

Anonymous 2 .196 (3) .075 (3)
Anonymous 1 .187 (4) .064 (4)

FAST .183 (5) .020 (5)
ProblemSolver .157 (6) -.012 (7)

baseline .146 (7) .015 (6)

Table 4: Results on the closed-vocabulary algebra sub-
task (only showing entries that exceeded baseline per-
formance on at least one subtask). System rank on each
metric is shown in parentheticals.

to-sequence model, they use data augmentation
methods to increase the data size to over 600K
questions.

The second approach is an adaptation of the
arithmetic tree approach of (Roy and Roth, 2015)

Team Accuracy Penalized
AiFu 1 .251 (1) .145 (1)
AiFu 2 .247 (2) .140 (2)

Anonymous 2 .247 (2) .140 (2)
Anonymous 1 .196 (4) .079 (4)

baseline .174 (5) .052 (5)
FAST .146 (6) -.025 (6)

ProblemSolver .146 (6) -.025 (6)

Table 5: Results on the open-vocabulary algebra sub-
task (only showing entries that exceeded baseline per-
formance on at least one subtask). System rank on each
metric is shown in parentheticals.

Team Accuracy Penalized
AiFu 1 .265 (1) .145 (1)

Anonymous 1 .216 (2) .099 (2)
baseline .212 (3) .095 (3)
FAST .159 (4) -.009 (6)

Anonymous 2 .152 (5) .023 (4)
ProblemSolver .152 (6) -.018 (7)

AiFu 2 .134 (7) -.003 (5)

Table 6: Results on the geometry subtask (only show-
ing entries that exceeded baseline performance on at
least one subtask). System rank on each metric is
shown in parentheticals.

to Math SAT question answering.

The combination of these techniques provides
a minor improvement over the random guessing
baseline.
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Figure 6: Example diagram accompanying the ques-
tion “In the circle above, the length of an arc is 10, and
there are two radii shown extended by 5 units outside
the circle. If the length of arc Q is x, what must x
equal?”

7 Discussion

Lately, math question answering seems to have bi-
furcated into two distinct approaches:

1. Simple, elegant machine learning approaches
that work mainly on narrowly-scoped
datasets with considerable redundancy.

2. Engineering-heavy, rule-based approaches
that significantly outperform ML approaches
on more realistic datasets, but are laborious
to scale to new domains.

This SemEval task provides additional examples
of these two approaches. As NLP researchers, we
could focus on narrow-scope datasets for the time
being1, improving the performance of scalable
ML approaches on these datasets. However the
challenges presented by more difficult datasets,
like the Math SAT data provided in this task, are
intriguing and important. For instance:

How do we synthesize information that comes
from heterogenous sources (e.g. from text and
diagrams)?

Many of the geometry questions require a gener-
alized notion of coreference resolution that spans

1Indeed, this seems to be the prevailing opinion of the
hundredsome task participants who abandoned the task after
obtaining the data.

language and vision. Figure 6 shows an example
diagram that accompanies the question “In the cir-
cle above, the length of an arc is 10, and there
are two radii shown extended by 5 units outside
the circle. If the length of arc Q is x, what must
x equal?”. It remains an open question how to
reliably resolve textual references like “the circle
above” and “two radii shown” with diagram com-
ponents. (Seo et al., 2014, 2015) provide a start-
ing point for this area, but their dataset consisted
of less than 100 diagrams. Hopefully our larger
resource can help spur research into this research
question.

How can machine learning be leveraged to
reduce (or eliminate) the burden of
engineering semantic parsers for complicated
domains?

Given that the only techniques that have so far
found success on Math SAT question answering
(Hopkins et al., 2017; Ding et al., 2019) have in-
volved semantic parsers with engineered rules, it
suggests that one path forward might be to use ma-
chine learning to facilitate the engineering or elici-
tation of such rules for low-resource QA domains.

How do we create ML systems for diverse
datasets for which we do not (and will never
have) millions of training instances?

Despite the huge industry surrounding the Math
SAT, it was still challenging to find and digitize
over 50 distinct practice exams. Having millions
of instances is not feasible. We argue that there
will always be a long tail of domains for which we
do not have millions of training instances, and we
need ways to induce performant systems on this
scale of data.

8 Conclusion

We have digitized over 70 SAT practice exams as
a resource for driving research in math (and low-
resource) question answering. We have also pro-
vided logical form annotations for approximately
half of the closed-vocabulary algebra questions in
the training data. The top system in our compe-
tition, AiFu, correctly answered 45% of the test
questions, compared to a random guessing base-
line of 17%. Our data and logical forms are avail-
able at https://github.com/allenai/semeval-2019-
task-10, subject to the terms and conditions speci-
fied in that repository.
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