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Abstract
Emojis are widely used on social media; thus
understanding their meaning is important for
both practical purposes (e.g. opinion mining,
sentiment detection) and theoretical purposes
(e.g. How do different L1 speakers use them?,
Do they have specific syntax?). This paper
presents a set of models that predict an emoji
given a tweet as a part of the SemEval-2018
Task 2: Multilingual Emoji Prediction. We
built different models and we found that the
test results were very different from the vali-
dation results.

1 Introduction

To some extent, Twitter can be considered a huge
corpus and researchers exploit it in many different
ways to get a proxy for various types of annota-
tions. Purver and Battersby (2012) use distant su-
pervision on tweets to build an emotion detection
system; Bollen et al. (2011) show that it is pos-
sible to use Twitter data to predict the stock mar-
ket; Mohammad et al. (2016) build a corpus from
tweets for modelling stance.

Social media in general are very popular for
building corpora for sentiment-related tasks since
the users make a wide use of emojis. Pool and
Nissim (2016) show that it is possible to achieve
state-of-the-art performance in sentiment classifi-
cation using only automatically gathered data.

The wide use of emojis on the web calls for sys-
tems that can automatically process them. When
performing opinion mining tasks, for instance, it
can be the case that all we have is just an emoji.
For example, a single emoji could be used as a re-
ply to an advertisement of a certain product; thus,
being able to get the meaning of that emoji is im-
portant. Felbo et al. (2017) shows that given a text,
it is possible to successfully automatically suggest
the most appropriate emoji that can accompany
that text.

In this paper we describe our participation in the
SemEval-2018 Task 2: Multilingual Emoji Predic-
tion (Barbieri et al., 2018), a challenge that origi-
nates from the work of (Barbieri et al., 2017). The
task is structured as follows: given a tweet that
originally contained one and only one emoji, pre-
dict that emoji; the emoji is removed and given as
a training label.

We experimented using three different ap-
proaches: first we use a shallow feature repre-
sentation with two different algorithms (Naı̈ve-
Bayes and Support Vector Machine); then we ex-
perimented with a dense feature representation
(i.e. word embeddings) and a deep neural clas-
sifier; lastly, we modeled the problem as a trans-
lation problem (i.e. treating English and Spanish
as the source language and ‘Emoji’ as the target
language) using a state-of-the-art neural transla-
tion system to predict the labels as translated sen-
tences.

To summarize, our main contributions pre-
sented in this paper are three machine learning
models that predict an emoji given some text. We
confirm a fact that is well known in the literature,
i.e. that neural models can give good results but
hyper-parameter tuning is a hard task and if it is
not successful, then a good linear classifier with
a bag-of-words representation can easily outper-
form the neural model. Our best English system
was ranked 8th in SemEval Shared Task and our
best Spanish system was ranked 4th1.

2 Data

Both the training and testing data are tweet col-
lections: overall, there are 500k English tweets
and 100k Spanish tweets, provided as two distinct
datasets. These tweets are accompanied by two

1We submitted on January 10, 2018. Our submission was
made under the name ’The Fabulous EM-LCT Team from
Malta’.
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sets of labels — one per language — and these la-
bels are the emojis that were originally in the tweet
and later removed.

The English label set consists of 20 emojis,
while the Spanish label set consists of 19 emojis.

We manually inspected some portions of the
datasets and found that the English set contains
some Spanish tweets and vice versa: this is due
to the fact that the tweets were collected automat-
ically using geographical information associated
with the account of the user who wrote the tweet.
We decided to ignore this fact and assume that the
actual test set will also contain some noise. We
did not perform any systematic language identifi-
cation experiment since after the manual inspec-
tion it seemed to us that this would not be a prob-
lem.

Figure 1: The label set for both English (USA) and
Spanish (SPA).

The distribution of the labels is highly skewed
for both English and Spanish: Figure 2 shows that
the most frequent label (i.e. the red heart) is much
more frequent than the others.

We decided to conduct experiments with both
the original skewed dataset and a balanced version
of it. To balance the dataset, we randomly sample
from all classes a number of tweets which is equal
to the size of the smallest class.

2.1 Normalization

We decided not to perform any sort of normal-
ization on the dataset. The reason for this is
that we think that the information that is located
at the sub-token level would probably get lost
with normalization (e.g. ‘amaaaaazing’ vs ‘amaz-
ing’). Character-level differences can be impor-
tant in helping deciding which emoji is the most
appropriate one. For instance, we can imagine
that someone who writes ‘amaaaaaazing’ is more
prone to choose a more sophisticated and less
common emoji (e.g. a purple heart), while some-
one who writes in a more sober style would prob-
ably pick only the most common emojis.

Furthermore, considering the domain (i.e. Twit-
ter), it is very hard to properly normalize text.

3 Experiments

We performed two groups of experiments: for one
group we used a shallow feature representation
(i.e. bag-of-words), and for the other we used
a dense feature representation (i.e. word embed-
dings). In the following sections we present these
two groups of experiments.

3.1 General Experimental Set-up
In order to facilitate our work, we utilized Python
3.6.3 and set up a Python working environment
using pipenv to make our experiments easily
reproducible; for the same reason we are releas-
ing several Jupyter notebooks containing all the
code that we wrote2. To train our models, we
utilized the standard machine learning package,
scikit-learn (Pedregosa et al., 2011) for the
models using a shallow feature representation.
The neural models were built using Keras (Chol-
let et al., 2015). We used OpenNMT (Klein et al.,
2017) to model the problem as a translation prob-
lem.

3.2 Traditional BoW Modelling
For our first set of experiments, we chose two dif-
ferent algorithms for text classification and com-
mon bag-of-words features.

Algorithms For our algorithms, we worked
with Naı̈ve-Bayes and Support Vector Machines.
We chose these algorithms in particular because
of their success in previous work such as in Wang
and Manning (2012).

Features For our features, we worked with
the raw counts of each word as well as the tf-
idf scores, and n-grams. We used tf-idf to give
more weight to the more prominent words within
the tweets, and less weight to the more com-
mon words, while we used n-grams to capture se-
quences of words.

3.2.1 Baseline
We established our baseline by using a bag-of-
words approach and the Naı̈ve-Bayes classifier
with five-fold cross validation. We chose this as
our baseline as we felt that this was the most sim-
ple — but still reasonably strong — approach.

3.2.2 Dimensionality Reduction
As a test, we also looked at the effects of dimen-
sionality reduction using truncated singular value

2They can be found here at:
https://github.com/anbasile/emojiprediction
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(a) English (b) Spanish

Figure 2: Distribution of emojis in the English and the Spanish datasets.

decomposition (SVD) (also referred to as latent se-
mantic analysis (LSA) when used on textual data)
on our best support vector machine model. This
was only done with the support vector machine
model as it was not possible to do it with the
Naı̈ve-Bayes classifier.

We hypothesized that SVD could potentially be
useful as it would be able to model topics within
the data. If we could model topics within the text,
then it would be likely that certain topics would
align with certain emojis.

To run the test, we used 10% of our data with
dimensions of n = 100 and n = 500 on our best
unbalanced model — the support vector machine
model with tf-idf, bi-grams, and POS-tagging. We
chose to only use 10% of the data as the runtime
of utilizing SVD on the whole English dataset was
particularly long.

3.3 Neural Models

In order to take advantage of the large dataset, we
decided to try to model the problem using a neural
network, which usually requires many instances to
be trained properly.

We performed two sets of experiments: first, we
trained a simple recurrent neural network. From
there, we moved to a more complex recurrent net-
work using bidirectional long short term mem-
ory (LSTM) layers in order to account for con-
text from both the right and the left side of words;
we then used an already optimized sequence-2-
sequence model to model the problem as a trans-
lation problem and effectively treating emoji as a
language.

The main advantage of using neural networks

for processing text is that the feature extraction
process and the classification (or structured pre-
diction process) can be optimized at the same time,
possibly resulting in better performance.

Embeddings Word embeddings — one of the
possible ways to extract feature from text —
turned out to be very helpful in NLP and some
of its properties (dense, high dimensional for-
mat) make it suitable to be used with neural net-
works. Baroni et al. (2014) have shown that word
embeddings almost always perform better when
compared to systems using the traditional bag-of-
words approach.

To create the embeddings for our experiments,
we used the Embedding layer provided in the
Keras framework. This method does not make use
of the most recent advancements in the field — as
those described in Mikolov et al. (2013) — but it
has the advantage of being fast and easily under-
standable.

3.3.1 Predicting Emojis with a Neural
Classifier

Using Keras, we set up a network with the struc-
ture represented in Figure 3. One way to inter-
pret this kind of modelling is to consider it as a
list of matrices. The first layer is the embedding
layer, where every node is a word, which is rep-
resented as an embedding; the 2 hidden layers are
what makes the model able to discover eventual
non-linear relationships; the last layer consists of
a softmax function that gives in output a vector of
probabilities: choosing the most probable class al-
lows to get the most probable emoji.

By making the second hidden layer smaller in
length than the external layers, the model implic-
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itly performs a process of dimensionality reduc-
tion which allows it to eventually learn latent in-
formation (e.g. topic, style, etc.) present in the
data.

Furthermore, following the work of Srivastava
et al. (2014), we apply to our network a drop-out
layer in order to avoid over-fitting and improve the
capability of the network to generalize the results.

Figure 3: The structure of the neural network.

3.3.2 Seq2Seq Modelling
To some extent, we can say that emojis compress
— or tend to compress — all the meaning of the
English or Spanish texts that accompanies them.
This suggests that the problem can be modelled
as a translation problem, where the source lan-
guage is either English or Spanish and the target
language is the emoji language.

We use a state-of-the-art machine translation
system and consider our emoji-annotated text as
a parallel corpus, having English or Spanish as the
source language, and the emojis as the target lan-
guage.

We use the default network from the OpenNMT
framework. This network consists of 2 LSTM lay-
ers with 500 hidden units each; furthermore, this
implementation includes an attention layer that
weights the importance of the different words in
translating to the target language3.

We trained the same network for both English
and Spanish — building one model for each lan-
guage — and we got similar results, even though
the English dataset is considerably larger than the

3We use the PyTorch implementation: see https://
github.com/OpenNMT/OpenNMT-py

Spanish one. Surprisingly, the network learned for
both languages that the syntax of the emoji lan-
guage — so to say — specify that only one token
can be used for each sentence.

4 Evaluation

4.1 Metrics

In order to quantify our results for the shallow rep-
resentation models, we chose to use F-score as our
main metric, as F-score is fairly standard and gives
us a more unbiased view of the results.

With the dense representation and translation
models, we utilized accuracy and perplexity as
we could not extract precision and recall for these
models for time constraints and technical issues.
For the neural networks we did not perform cross-
validation since it would have been too costly to
perform; however, we use a development set dur-
ing training and we tested on a blind test set when
we finished training.

4.2 Results

Investigating the results of the experiments, we
were able to confirm some of our linguistic intu-
itions.

First, it is evident that the best model for both
the English and Spanish dataset based on macro
F1 score was the most complex SVM model using
tf-idf normalization, part-of-speech tagging and
bi-grams. We see that POS-tagging added a sub-
stantial increase when comparing the SVM+tfidf
model to the SVM + tfidf + 2grams model with
an increase of 11% and 5% in the English and
Spanish dataset respectively. This suggests that
POS-tagging provides key information that helps
the classifiers (at least SVMs).

However, dimensionality reduction — with n =
100 and n = 500 — did not prove to be as suc-
cessful as we had hypothesized. Instead, we found
that it had negative effects on the models as seen
in Table 1. This is likely because we remove too
much information that distinguishes the individual
classes.

Table 1 and Table 2 describe the results for En-
glish and Spanish respectively. The models were
trained and five-fold cross-validated with various
configurations4. Models with * were with the bal-

4The naming of each model is built in the following
way: classifier, feature extraction method, n-grams and po-
tential extra features. The following are the acronyms of the
configurations– NB: Naive-Bayes; SVM: Support Vector Ma-
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anced dataset. The model submitted to the chal-
lenge has also been bolded for easy viewing.

Considering the neural models, we found out
that the best model using an SVM and bag-of-
words outperformed the more sophisticated neu-
ral classifier that we built. We believe that this is
due to either the hyper-parameters not being op-
timized. Our networks (emoji-nn-dp) has a struc-
ture that is very similar to the one implemented in
OpenNMT (except for the attention layer). About
OpenNMT: since we got development results that
are much higher that test results, we believe to
have over-fitted the model. For the OpenNMT net-
work we also report on perplexity since it is a ma-
chine translation system and that metric is reported
by default. Table 3 highlights the results of the
NN. The systems were tested on 100k tweets: we
tested our network on the English dataset only be-
cause of time constraints. We managed to test the
OpenNMT system on both English and Spanish5.

One of the most exciting things that we ob-
served from our experiments was the impact of the
skewed data on the models. In order to see what
effect the skewedness had on the data, we tested
the best unbalanced model by using a balanced
dataset for both languages using the the number
of tweets of the least frequent class.

This proved to be a huge success, as observed
in the confusion matrix in Figure 4c. As we can
see, there is a well-defined diagonal in the con-
fusion matrix as compared to the best unbalanced
model in Figure 4b, which shows that the balanced
model is more capable of classifying tweets for all
classes.

If we take a closer look at the matrix, we see that
some categories are not retrieved at all. Of partic-
ular interest are the heart emojis, represented in
categories 0, 3, 8 and 13 for the English dataset.
In the best unbalanced model, categories 8 and 13
(blue heart and purple heart) are completely miss-
ing while these are actually retrieved by the bal-
anced model. More interestingly, we see that there
is a bit of confusion between these four hearts in
the balanced model: we think that this is because
the distribution of words that co-occur with all of
the heart emojis overlap.

chines; tfidf: term-frequency inverse document frequency;
POS: part-of-speech tagged data; 2grams: bi-grams; SVD:
singular value decomposition.

5We are releasing both the OpenNMT systems and an hf5
version of our network with the model and the weights: this
will make it easy to reproduce the results without having to
train the network again.

In contrast, perhaps the most interesting obser-
vation in the balanced model is its success with
certain categories. For example, if we take an-
other closer look, we observe that the balanced
model performs well at classifying tweets with
the fire emoji, American flag, Christmas tree and
camera emojis. This is likely due to the fact that
these emojis, especially the American flag and
the Christmas tree, have very predictable distri-
butions. For example, the tweet ‘Things got a
little festive at the office #christmas2016 @ Re-
dRock. . . ’ may be easy to classify because of the
word ‘festive’ or because of the hashtag.

model accuracy precision recall macro F1
baseline (NB + bow) 0.30 0.39 0.30 0.21
NB + tfidf + POS + 2grams 0.24 0.57 0.24 0.13
SVM + bow 0.31 0.28 0.31 0.29
SVM + tfidf 0.33 0.30 0.33 0.30
SVM + tfidf + POS 0.43 0.41 0.43 0.41
SVM+ tfidf + 2grams 0.35 0.31 0.35 0.32
SVM+ tfidf + POS + 2grams 0.45 0.43 0.45 0.43
SVM + tfidf + POS + 2grams + SVD 0.31 0.23 0.31 0.23
NB + tfidf + POS + 2grams* 0.33 0.32 0.33 0.32
SVM + tfidf + POS + 2grams* 0.35 0.34 0.35 0.34

Table 1: Results of English Models.

model accuracy precision recall macro F1
baseline (NB + bow) 0.26 0.32 0.26 0.17
NB + tfidf + POS + 2grams 0.22 0.37 0.22 0.10
SVM + bow 0.23 0.21 0.23 0.21
SVM + tfidf 0.25 0.22 0.25 0.23
SVM + tfidf + POS 0.30 0.27 0.30 0.28
SVM + tfidf + 2grams 0.26 0.23 0.26 0.24
SVM + tfidf + POS + 2grams 0.31 0.28 0.31 0.29
NB + tfidf + POS + 2grams* 0.22 0.21 0.22 0.20
SVM + tfidf + POS + 2grams* 0.21 0.20 0.21 0.21

Table 2: Results of Spanish Models.

model accuracy perplexity
emoji-nn 38.71 -
emoji-nn-dp 34.23 -
OpenNMT-en 65.11 3.29
OpenNMT-es 71.02 3.28

Table 3: The Result of Neural Network Models.

4.3 Test Results

All the previous discussion about the results is
based solely on cross-validation (for the NB and
SVM based models) and validation data (for the
neural models). The results based on the test set
show that we ended up over-fitting the neural mod-
els and that the high-scores obtained during vali-
dation do not hold for the test set: the model that
looked like to be the best during validation (i.e.
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(a) Baseline (b) Best unbalanced model (c) Balanced model

Figure 4: Confusion matrices of select English models.

OpenNMT-es, 71.02% accuracy) saw its perfor-
mance dropping by over 50%. From investigation
of the test set results, it seems that the loss in per-
formance may also be due to the fact that the trans-
lation model is conflating the different variation of
hearts with the more ‘plain’ red heart, as we ob-
serve this in the Spanish results.

5 Conclusions

To summarize, we performed several machine
learning experiments on an automatically created
corpus: we experimented with both traditional
bow models and with recent neural models. We
conclude that when optimized properly, the neural
models can outperform linear classifiers; also, we
have to note that training neural models requires a
significant amount of computational power, which
is not always available. When a big amount of
data is available, neural networks usually tend to
perform better than other models.

Due to time constraints, we did not perform a
systematic optimization of the hyper-parameters
of the models and instead we only tried some op-
tions that are know in the literature to work well
(e.g. using a linear kernel for the SVM, since
text data are usually linearly separable). Further-
more, we did not try using pre-trained embeddings
with neither models: in the future we plan to use
the Glove (Pennington et al., 2014) embeddings
trained on Twitter. In particular, the next major
experiment that we will try will be the following:
modelling the problem as an image description
problem. Considering the nature of the labels —
emoji — it is easy to see that they cannot be treated
as discrete indistinct labels, but instead they share
many features that are easy to represent visually:
as an example, we can clearly imagine that a cam-
era with flash and no flash or a purple and a red
heart are much more similar than, for instance, a

red heart and a smile. We had this idea during the
last stage of conducting our experiments and for
time reasons again we could not test this idea.
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