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Abstract

This paper describes the results of the first
shared task on Multilingual Emoji Prediction,
organized as part of SemEval 2018. Given the
text of a tweet, the task consists of predicting
the most likely emoji to be used along such
tweet. Two subtasks were proposed, one for
English and one for Spanish, and participants
were allowed to submit a system run to one or
both subtasks. In total, 49 teams participated
in the English subtask and 22 teams submitted
a system run to the Spanish subtask. Evalua-
tion was carried out emoji-wise, and the final
ranking was based on macro F-Score. Data
and further information about this task can
be found at https://competitions.
codalab.org/competitions/17344.

1 Introduction

Emojis are small ideograms depicting objects,
people, and scenes (Cappallo et al., 2015). Emojis
are one of the main components of a novel way of
communication emerging from the advent of so-
cial media. They complement (usually) short text
messages with a visual enhancement which is, as
of now, a de-facto standard for online communi-
cation (Barbieri et al., 2017). Figure 1 shows an
example of a social media message displaying an
emoji.

Sometimes I think I wanna change the
world... and I forget it just starts with
changing me.

Figure 1: Message from Twitter including a single red
heart emoji.

Emojis1 can be considered somehow an evolu-
tion of character-based emoticons (Pavalanathan
and Eisenstein, 2015), and currently they represent
a widespread and pervasive global communication
device largely adopted by almost any social media
service and instant messaging platforms.

Any system targeting the task of modeling so-
cial media communication is expected to tackle
the usage of emojis. In fact, their semantic load is
sufficiently rich that oversimplifying them to sen-
timent carriers or boosters would be to neglect
the semantic richness of these ideograms, which
in addition to mood ( ) include in their vocabu-
lary references to food ( ), sports ( ), scenery
( ), etc2. In general, however, effectively predict-
ing the emoji associated with a piece of content
may help to improve different NLP tasks (Novak
et al., 2015), such as information retrieval, gener-
ation of emoji-enriched social media content, sug-
gestion of emojis when writing text messages or
sharing pictures online. Given that emojis may
also mislead humans (Barbieri et al., 2017; Miller
et al., 2017), the automated prediction of emojis
may help to achieve better language understand-
ing. As a consequence, by modeling the semantics
of emojis, we can improve highly-subjective tasks
like sentiment analysis, emotion recognition and
irony detection (Felbo et al., 2017).

In this context, Barbieri et al. (2017) introduced
the task of emoji prediction in Twitter by training
several models based on bidirectional Long Short-
Term Memory networks (LSTMs) (Graves, 2012),
and showing they can outperform humans in solv-

1https://unicode.org/emoji/charts/
full-emoji-list.html

2https://unicode.org/emoji/charts/
emoji-ordering.html
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ing the same task. These promising results moti-
vated us to propose the first shared task on Mul-
tilingual Emoji Prediction. Following the experi-
mental setting proposed by Barbieri et al. (2017),
the task consists of predicting most likely emoji
associated of a given text-only Twitter message.
Only tweets with a single emoji are included in
the task datasets (trial, train and test sets), so that
the challenge can be cast as a single label classifi-
cation problem.

In this paper, we first motivate and describe the
main elements of this shared task (Section 2 and
3). Then, we cover the dataset compilation, cura-
tion and release process (Section 4). In Section 5
we detail the evaluation metrics and describe the
overall results obtained by participating systems.
Finally, we wrap this task description paper up
with the main conclusions drawn from the orga-
nization of this challenge, as well as outlining po-
tential avenues for future work, in Section 6.

2 Related Work

Modeling the semantics of emojis, and their ap-
plications thereof, is a relatively novel research
problem with direct applications in any social me-
dia task. By explicitly modeling emojis as self-
containing semantic units, the goal is to allevi-
ate the lack of an associated grammar. This con-
text, which makes it difficult to encode a clear
and univocous single meaning for each emoji, has
given rise to work considering emojis as function
words or even affective markers (Na’aman et al.,
2017), potentially affecting the overall semantics
of longer utterances like sentences (Monti et al.,
2016; Donato and Paggio, 2017).

The polysemy of emoji has been explored user-
wise (Miller et al., 2017), location-wise, specifi-
cally in countries (Barbieri et al., 2016b) and cities
(Barbieri et al., 2016a), gender-wise, time-wise
(Barbieri et al., 2018b; Chen et al., 2017), and
even device-wise, due to the fact that emojis may
have different pictorial characteristics (and there-
fore, different interpretations), depending on the
device (e.g., Iphone, Android, Samsung, etc.) or
app (Whatsapp, Twitter, Facebook, and so forth)3

(Tigwell and Flatla, 2016; Miller et al., 2016).

3The image that represents the same emoji can vary, e.g.,
for the emoji U+1F40F, the following are over different ren-
derings by platform in Unicode v11 (up to April 2018): Ap-
ple , Google , Twitter , EmojiOne , Facebook ,
Samsung , Windows .

Today, modeling emoji semantics via vec-
tor representations is a well defined avenue of
work. Contributions in this respect include mod-
els trained on Twitter data (Barbieri et al., 2016c),
Twitter data together with the official unicode de-
scription (Eisner et al., 2016), or using text from a
popular keyboard app Ai et al. (2017). In the lat-
ter contribution it is argued that emojis used in an
affective context are more likely to become popu-
lar, and in general, the most important factor for an
emoji to become popular is to have a clear mean-
ing. In fact, the area of emoji vector evaluation has
also experienced a significant growth as of recent.
For instance, Wijeratne et al. (2017a) propose a
platform for exploring emoji semantics. Further
studies on evaluating emoji semantics may now
be carried out by leveraging two recently intro-
duced datasets with pairwise emoji similarity, with
human annotations, namely EmoTwi50 (Barbieri
et al., 2016c) and EmoSim508 (Wijeratne et al.,
2017b). In the application avenue, emoji similarity
has been studied for proposing efficient keyboard
emoji organization, essentially for placing similar
emojis close in the keyboard (Pohl et al., 2017).

An aspect related with emoji semantic mod-
eling in which awareness is increasing dramati-
cally is the inherent bias existing in these repre-
sentations. For example, Barbieri and Camacho-
Collados (2018) show that emoji modifiers can af-
fect the semantics of emojis (they looked specif-
ically into skin tones and gender). This recent
line of research has also been explored in Robert-
son et al. (2018) who argue, for example, that
users with darker-skinned profile photos employ
skin modifiers more often than users with lighter-
skinned profile photos, and that the vast majority
of skin tone usage matches the color of a user’s
profile photo.

The application of well defined emoji represen-
tations in extrinsic tasks is, an open area of re-
search. A natural application, however, lies in
the context of sentiment analysis. This has fos-
tered research, for example, in creating sentiment
lexicons for emojis (Novak et al., 2015; Kimura
and Katsurai, 2017; Rodrigues et al., 2018), or
in studying how emojis may be used to retrieve
tweets with specific emotional content (Wood and
Ruder, 2016). Moreover, Hu et al. (2017) study
how emojis affect the sentiment of a text message,
and show that not all emojis have the same im-
pact. Finally, the fact that emojis carry sentiment
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and emotion information is verified in the study
by Felbo et al. (2017), where an emoji prediction
classifier is used as pre-trained system, and then is
fine-tuned for predicting sentiment, emotions and
irony.

The last item to be covered in this review in-
volves multimodality. Recently, emojis have been
also studied from a prism where visual signals are
incorporated, taking advantage of existing social
media platforms like Instagram, with a strong fo-
cus on visual content. Recent contributions show
that the usage of emojis depends on both textual
and visual content, but seem to agree in that, in
general, textual information is more relevant for
the task of emoji prediction (Cappallo et al., 2015,
2018; Barbieri et al., 2018a).

3 Task Description

Given a text message including an emoji, the emoji
prediction task consists of predicting that emoji by
relying exclusively on the textual content of that
message. In particular, in this task we focused on
the one emoji occurring inside tweets, thus relying
on Twitter data.

Last hike in our awesome camping
weekend!

Figure 2: Example of tweet with an emoji at the end,
considered in the emoji prediction task.

The task is divided into two subtasks respec-
tively dealing with the prediction of the emoji as-
sociated to English and Spanish tweets. The mo-
tivation for providing a multilingual setting stems
from previous findings about the idiosyncrasy of
use of emojis across languages (Barbieri et al.,
2016b) (see Figure 3): one emoji may be used with
completely different meanings depending not only
on the language of the speaker, but also on regional
dialects (Barbieri et al., 2016a).

For each subtask we selected the tweets that in-
cluded one of the twenty emojis that occur most
frequently in the Twitter data we collected (Table
1). Therefore, the task can be viewed as a multi-
label classification problem with twenty labels.

Twitter datasets were shared among participants
by providing a list of tweet IDs4 or directly the

4Participants were provided with a Java-
based crawler (https://github.com/fra82/
twitter-crawler) to ease the download of the textual

It’s flipping hot out here!

Iniciamos el nuevo año con ilusión!

Figure 3: Example of distinct use of the fire emoji
across languages: the first tweet (English) comments
on the torrid weather, while the second one (Spanish)
exploits the same emoji to wish an happy new year
(’We start the new year with enthusiasm!’).

English
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Spanish
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

-

Table 1: The 20 most frequent emojis of each language
(due to a data processing issue we only considered 19
emojis in the Spanish task).

text of each tweet. The last approach was adopted
to share the test sets (more details are provided in
Section 4).

4 Task Data

The data for the task consists of a list of tweets
associated with a given emoji (i.e. label). As
explained in the previous section, the dataset in-
cludes tweets that contain one and only one emoji,
of the 20 most frequent emojis. We split the data
in trial5, training and test data. The quantity of
tweets per set is displayed in Table 2.

The tweets were retrieved with the Twitter APIs
and geolocalized in United States and Spain for
subtasks 1 and 2, respectively. As for the trial and
training data, the tweets were gathered from Oc-
tober 2015 to February 2017, whereas for the test
data we decided to gather the tweets correspond-
ing to the last months until the evaluation period
started (from May 2017 to Jan 2018). This would
prevent participants from gathering these tweets
before-hand and also would enable us to test the
emoji prediction task on a more realistic setting,
as the test data is subsequent to the training data.

content of tweets from the ID list.
5Trial data was used as development by participants.

26



Trial Training Test
English 50,000 500,000 50,000
Spanish 10,000 100,000 10,000

Table 2: Number of tweets for trial, training and test
for each of the subtasks.

5 Evaluation

This section introduces the overall evaluation set-
ting of this shared task. We first describe briefly
the evaluation metrics used and then provide a suc-
cinct description of the baseline system.

5.1 Evaluation Metrics
As this was a single label classification problem,
the classic precision (Prec.), recall (Recall), f-
score (F1) and accuracy (Acc.) were used as of-
ficial evaluation metrics. Note that because of the
skewed distribution of the label set we opted for
macro average over all labels.

5.2 Baseline
The baseline system for this task was a classifier
based on FastText6 (Joulin et al., 2017). Given a
set of N documents, the loss that the model at-
tempts to minimize is the negative log-likelihood
over the labels (in our case, the emojis):

loss = − 1

N

n=1∑

N

en log(softmax (BAxn))

where en is the emoji included in the n-th Twitter
post, represented as hot vector, and used as label.
Hyperparameters were set as default7.

5.3 Participant Systems
Due to the overwhelming number of participants,
we cannot describe all systems.8 We do, however,

6github.com/facebookresearch/fastText
7https://github.com/facebookresearch/

fastText#full-documentation
8This is the list of systems that ranked below the base-

line in either of the subtasks: #TeamINF (Ribeiro and Silva,
2018), CENNLP (J R et al., 2018), DUTH (Effrosynidis
et al., 2018), ECNU (Lu et al., 2018), EICA (Xie and
Song, 2018), EPUTION (Zhou et al., 2018), LIS (Guibon
et al., 2018), Manchester Metropolitan (Gerber and Shard-
low, 2018), Peperomia (Chen et al., 2018), PickleTeam!
(Groot et al., 2018), Shi (Shiyun et al., 2018), SyntNN (Zan-
zotto and Santilli, 2018), TAJJEB (Basile and Lino, 2018),
The Dabblers (Alexa et al., 2018), THU NGN (Wu et al.,
2018), Tweety (Kopev et al., 2018), UMDSub (Wang and
Pedersen, 2018), YNU-HPCC (Wang et al., 2018). Note that
some participants did not submit a final paper but they are
included in the results table.

briefly mention the main features of some signif-
icant systems ranked above the baseline in either
of the subtasks.

• Tübingen-Oslo (Çöltekin and Rama, 2018).
This supervised system consists of an SVM
classifier with bag-of-n-grams features (both
characters and words). Tübingen-Oslo is the
top performing system in both tasks.

• NTUA-SLP (Baziotis et al., 2018). This sys-
tem uses a Bi-LSTM with attention, and pre-
trained word2vec vectors. They used external
resources for associating each tweet with in-
formation on emotions, concreteness, famil-
iarity, and others. They only participated in
the English subtask but they classified second
(according to the F1 score) with the highest
recall.

• EmoNLP (Liu, 2018). This system is based
on a Gradient Boosting Regression Tree Ap-
proach combined with a Bi-LSTM on char-
acter and word ngrams. It is complemented
with several lexicons as well as learning sen-
timent specific word embeddings.

• UMDuluth-CS8761 (Beaulieu and
Asamoah Owusu, 2018) This supervised sys-
tem combines an SVM with a bag-of-words
approach for extracting salient features. This
is one of the most competitive systems with
the highest precision in English and the third
best result in Spanish.

• Hatching Chick (Coster et al., 2018). This
system builds an SVM classifier (with gradi-
ent descent optimization) on words and char-
acter ngrams. They obtained the second best
result in the Spanish subtask, but their En-
glish system performed worse than the base-
line.

• TAJJEB (Basile and Lino, 2018). This sys-
tem made use of an SVM classifier over wide
variety of features such as tf-idf, part-of-
speech tags and bigrams. The system was
competitive on both languages, outperform-
ing the baseline on the Spanish dataset.

• Duluth UROP (Jin and Pedersen, 2018).
This system consists of a soft voting en-
semble approach combining different ma-
chine learning algorithms (Naı̈ve Bayes, Lo-
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gistic Regression, Random Forests, etc.). In-
frequent classes are oversampled using the
SMOTE algorithm. As for features, they use
both unigrams and bigrams.

English Spanish
Emo F1 % Emo F1 %

87.8 21.6 69.6 21.4
37.8 9.7 37.3 14.1
47.1 9.1 53.4 15
26.9 5.2 8.5 3.5
55.5 7.4 14.9 5.1
16.2 3.2 26.9 4
22.6 4 39.8 3.1
36.2 5.5 16.3 4.5
24 3.1 13 1.8

22.2 2.4 49.9 4.2
40 2.9 14.7 3.4

64.7 3.9 14.2 4.1
63.7 2.5 6.8 2.4
17.1 2.2 7.7 2.7
13 2.6 5.6 0.9

29.2 2.5 20 4.2
14.3 2.3 23.7 2.1
73.6 3.1 8.6 1.3
38.4 4.8 5.1 2.1

9 2 - - -

Table 4: Best F1 measure (among all the teams) for
each emoji in English (20) and Spanish (19). We also
report the relative frequency percentage of each emoji
in the test set.

5.4 Results
Each system was evaluated according to its capac-
ity to perform well across all emojis under consid-
eration. As mentioned, and due to the skewed dis-
tribution of the label set, we evaluated each partic-
ipating system according to Macro F-Score (F1).

The overall results are provided in Table 3,
and already several interesting conclusions can be
drawn from them. For instance, it is noteworthy
the fact that the best systems for both subtasks
are more than 10 points apart (English better),
which suggests that a one-size-fits-all model may
be suboptimal for this task, and that indeed the

particularities of each individual language should
be taken into consideration for best performance.
The most precise systems were EmoNLP and
Tübingen-Oslo, whereas the highest Recall was
obtained by NTUA-SLP and again Tübingen-Oslo
(English and Spanish respectively, in both cases).
Clearly, the Tübingen-Oslo system shows a fine
balance between precision and recall, perhaps due
to its little preprocessing, fine-tuning and reliance
on external libraries. It seems reasonable to as-
sume, thus, that combining word and ngram em-
beddings as features, with SVMs and NN classi-
fiers, provides a robust and high performing archi-
tecture for emoji prediction, with the added value
of being resource/knowledge agnostic.

5.5 Analysis
This evaluation is finally complemented with the
overall emoji-wise performance across all systems
(Table 4). The lexical notion of near synonymy
seems to clearly apply to emojis as well, as we can
clearly see a worse performance on those emojis
which are pictorically similar (e.g., the photo cam-
era with and without flash, or the expected con-
fusion between least frequent hearts and the red
heart, which accounts for over 20% of the whole
label set in the test data).

Finally, emojis with several interpretations and
less frequent seem to be much more difficult to
predict (e.g., the face in the English and Span-
ish dataset, and in the Spanish dataset). Zhou
et al. (2018) showed in their system description
paper how exploiting user-specific features may
provide significance performance boosts.9 This
additional user-specific information may clearly
help in these difficult cases which proved to be
hard for all systems.

6 Conclusions

In this paper we have described the SemEval 2018
shared task in multilingual emoji prediction. The
task, consisting in predicting the most likely emoji
given the text of a tweet, was well received, with
almost 50 system runs submitted to the English
subtask and more than 20 to the Spanish subtask.
One of the main conclusions that can be drawn is
that the baseline we used (FastText) was highly
competitive, with only 6 and 5 system runs per-
forming better in English and Spanish.

9The use of user-specific data was not allowed by the main
competition regulations and therefore none of the systems in
the final ranking made use of it.
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ENGLISH SPANISH
Team F1 Prec. Recall Acc. Team F1 Prec. Recall Acc.

Tübingen-Oslo 35.99 36.55 36.22 47.09 Tübingen-Oslo 22.36 23.49 22.80 37.27
NTUA-SLP 35.36 34.53 38.00 44.74 Hatching Chick 18.73 20.66 19.16 37.23
hgsgnlp 34.02 35 33.57 45.55 UMDuluth-CS8761 18.18 19.02 18.6 34.83
EmoNLP 33.67 39.43 33.7 47.46 TAJJEB 17.08 18.99 20.36 25.13
ECNU 33.35 35.17 33.11 46.3 Duluth UROP 16.75 17.11 18.1 28.51
UMDuluth-CS8761 31.83 39.80 31.37 45.73 BASELINE 16.72 16.84 17.52 31.63
BASELINE 30.98 30.34 33 42.56 Nova 16.7 17.2 17.07 26.50
THU NGN 30.25 31.85 29.81 42.18 ECNU 16.41 16.91 16.48 30.82
TAJJEB 30.13 29.91 33.02 38.09 MMU - Computing 16.34 17.83 16.4 28.92
EmojiIt 29.5 35.17 29.91 39.21 PickleTeam! 15.86 17.57 16.76 29.70
Reborn 29.24 33.67 28.94 42.43 ART @ Tor Vergata 14.91 15.81 15.51 30.68
freeze 29.13 31.54 29.23 37.14 CENNLP 14.68 16.32 16.2 34.85
csy 28.93 31.12 29 36.85 YNU-HPCC 14.25 17.51 15.98 31.19
Nova 27.89 28.49 28.2 34.83 Amrita CEN NLP1 12.13 12.46 12.41 21.64
Sheffield 27.18 28.57 26.61 37.69 erai 11.36 12.72 11.39 23.38
YNU-HPCC 26.89 26.97 29.71 32.53 Lips Eggplant 10.89 15.78 10.62 23.88
mboyanov 26.77 32.82 27.42 36.79 thelonewolf190694 10.87 11.13 12.55 27.04
kaka manData 26.59 30 26.97 36.34 The Dabblers 9.2 17.28 9.92 27.72
Duluth UROP 26.59 27.18 27.87 33.8 LIS 8.81 15.16 10.14 28.53
CENNLP 26.45 31.62 26.87 41.18 jogonba2 7.99 17.81 9.85 29.99
UMDSub 25.99 33.01 26.71 41 hjpwhu 3.9 7.46 6.81 13.81
THU HCSI 25.83 32.38 25.9 35.34
Peperomia 25.68 28.98 26.04 35.34
MMU - Computing 24.98 28.94 25.04 34.59
NoEmotionsAttached 23.3 25.27 24.47 32.76
PickleTeam! 22.86 26.17 24.37 34.09
Reborn 21.97 26.52 22.06 30.64
PALM gzy 21.97 26.52 22.06 30.64
#TeamINF 21.5 26.21 20.84 31.59
Hatching Chick 21.44 25.97 21.48 36.52
CORAL 21.35 32.82 22.48 34.05
Meisele 20.02 25.74 19.54 30.71
erai 19.96 22.1 19.62 28.36
SBIG 19.44 25.41 16.12 19.84
The Dabblers 18.92 25.02 18.96 30.45
ART @ Tor Vergata 18.39 24.49 17.25 29.45
Amrita CEN NLP1 17.96 19.47 17.75 24.41
Lips Eggplant 17.69 21.81 17.19 26.81
XSSX 16.45 31.56 16.77 30.99
Kno.e.sis 14.42 18.72 18.49 18.99
thelonewolf190694 14.21 13.66 17.35 30.7
LIS 13.53 25.58 14.14 29.42
uaic2018 11.06 13.65 11.24 19.61
jogonba2 8.52 24.16 9.51 25.6
SBIG2 6.44 18.76 8.49 12.64
alsu wh 3.73 4.38 5.06 9.83
Innovating world 3.09 18.47 5.73 22.74
hjpwhu 2.04 2.63 3.22 3.92

Table 3: Ranking of the participating systems by precision, recall, F1 and accuracy for the English track and the
Spanish track. Those above the horizontal line ranked above the task baseline.
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In terms of participating systems, and accord-
ing to the post-participation survey the participants
completed, we can see a high prevalence of neu-
ral approaches, with only 9 systems opting for
more traditional linear models (6 SVMs, 3 Ran-
dom Forests). Among the chosen neural architec-
tures, LSTMs and CNNs are by far the preferred
ones. It is noteworthy, however, the excellent per-
formance of SVMs as used in the best performing
system on both English and Spanish datasets.

This task has set the foundations for upcoming
work on modeling emoji semantics, first, by pro-
viding a standardized testbed for emoji prediction
in two languages, and second, by providing a com-
prehensive evaluation with a wide range of ideas,
which we hope are of use for future research.
Emojis, undoubtedly, are becoming increasingly
important in understanding social media commu-
nication and in human-computer interaction, and
thus we believe the problem of modeling emoji
semantics can be further extended as follows. (1)
Leveraging multimodal information (e.g., associ-
ated images (Barbieri et al., 2018a)); (2) incorpo-
rating more and more diverse languages (one step
in this direction will be the re-run of this task for
Italian at the Evalita 2018 evaluation campaign10);
and (3) considering individual and communicative
contexts for overall performance improvements.
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