
Proceedings of the 11th International Workshop on Semantic Evaluations (SemEval-2017), pages 198–202,
Vancouver, Canada, August 3 - 4, 2017. c©2017 Association for Computational Linguistics

PurdueNLP at SemEval-2017 Task 1: Predicting Semantic Textual
Similarity with Paraphrase and Event Embeddings

I-Ta Lee, Mahak Goindani, Chang Li, Di Jin, Kristen Marie Johnson
Xiao Zhang, Maria Leonor Pacheco, Dan Goldwasser

Department of Computer Science, Purdue University
West Lafayette, IN 47907

{lee2226,mgoindan,li1873,jind,john1187,
zhang923,pachecog,dgoldwas}@purdue.edu

Abstract

This paper describes our proposed solu-
tion for SemEval 2017 Task 1: Semantic
Textual Similarity (Daniel Cer and Spe-
cia, 2017). The task aims at measuring the
degree of equivalence between sentences
given in English. Performance is eval-
uated by computing Pearson Correlation
scores between the predicted scores and
human judgements. Our proposed system
consists of two subsystems and one re-
gression model for predicting STS scores.
The two subsystems are designed to learn
Paraphrase and Event Embeddings that
can take the consideration of paraphras-
ing characteristics and sentence structures
into our system. The regression model
associates these embeddings to make the
final predictions. The experimental re-
sult shows that our system acquires 0.8 of
Pearson Correlation Scores in this task.

1 Introduction

The SemEval Semantic Textual Similarity (STS)
task (Daniel Cer and Specia, 2017) is to assess
the degree of similarity between two given sen-
tences and assign a score on a scale from 0 to 5.
A score of 0 indicates that the two sentences are
completely dissimilar, while a score of 5 indicates
that the sentences have the same meaning. Predict-
ing the similarity between pieces of texts finds util-
ity in many NLP tasks such as question-answering,
and plagiarism detection.

In this paper, we proposed a system to fa-
cilitate STS task. Our system includes training
two types of embeddings–Paraphrase Embeddings
(PE) and Event Embeddings (EE)–as features to
assess STS. For the first type of embeddings, PE,
we exploit two crucial properties for measuring

sentence similarity: paraphrasing characteristics
and sentence structures. The paraphrasing char-
acteristics help identifying if two sentences share
the same meaning. Our system incorporates it us-
ing an unsupervised learning step over the Para-
phrase Database (PPDB; Ganitkevitch et al. 2013),
which is inspired by Wieting et al. 2015a. The sen-
tence structure, on the other hand, can detect struc-
tural differences, which reflect different aspects of
the similarity between the input sentences. Our
system employs a Convolutional Neural Network
(CNN) to strengthen the embedding by including
the sentence structure into our representation. The
second type of embeddings, EE, conveys the dis-
tributional semantics of events in a narrative set-
ting, associating a vector with each event.

In the last part of our system, we build a regres-
sion model that associates the two distributed rep-
resentations and predicts the similarity scores.

2 System Description

Our system builds two types of embedding mod-
els, Paraphrase Embeddings (PE) and Event Em-
beddings (EE), and trains a regression model for
predicting the similarity score between two sen-
tences, which is described in this Section 2.3.

2.1 Paraphrase Embeddings
The Paraphrase Database (PPDB) is a large scale
database containing millions of automatically ex-
tracted paraphrases. Wieting et al. 2015a show
that by training word embeddings on PPDB (Gan-
itkevitch et al., 2013), paraphrase information can
be captured by the embeddings, which is very use-
ful for the STS task. Their system works well
when word overlaps reflect sentence similarities,
which is the most common case in the STS dataset.
We extend their work by introducing a Convolu-
tional Neural Network (CNN) model, because it
better accounts for sentence structure.

198

Figure 1: The convolutional neural network archi-
tecture consists of two networks that share the net-
work parameters. The networks are constructed
by a convolutional layer, a max-pooling layer, and
two fully connected layers.

Figure 1 describes our network architecture.
Each input example consists of a pair of sen-
tences/phrases. The initial input representation for
each sentence is created by averaging the word
vectors of the words in the sentence. The initial
word vectors can rely on pre-trained word embed-
dings, such as Word2Vec (Mikolov et al., 2013) or
Glove (Pennington et al., 2014).

This input layer is followed by a convolutional
layer, a max-pooling layer, and two fully con-
nected layers. The projected outputs (the embed-
dings layer in Figure 1) comprise the PE that will
later be used for regression. Note that the two
networks in Figure 1 share the network parame-
ters. During training, the errors back-propagate
not only to the network, but also to the embed-
dings. To train PE, we adopt a 2-step framework
inspired by Wieting et al. 2015a and initialize our
word embedding look-up table with the best per-
forming embeddings they released–PARAGRAM-
PHRASE XXL. In the first step, we train the CNN
on PPDB 2.0 (Pavlick et al., 2015) and aim at mak-
ing PE a quality representation for paraphrase-
related tasks. The objective function here is a
margin-based ranking loss (Wieting et al., 2015a):

min
Wc,Ww

(∑
<x1,x2>∈X

max(0, δ − cos(g(x1), g(x2))

+ cos(g(x1), g(t1)))
+max(0, δ − cos(g(x1), g(x2)))

+ cos(g(x2), g(t2))
)

+λc||Wc||2 + λw||Winit −Ww||2,

where X is all the positive paraphrasing pairs; δ
is the margin 1; g(·) is the functional representa-
tion of CNN; λc and λw are two hyperparameters
for L2-regularization; Wc is the parameters to be
trained; Ww is the most recent word embeddings;
Winit is the initial word embeddings; and t1 and
t2 are negative examples. The negative examples
are randomly and uniformly selected from other
examples. That is, for x1, we randomly select a
phrase t1 from the corpus, which is nearly unlikely
to be a paraphrase to x1. The same strategy is also
applied to select t2 for x2.

In the second step, we fine-tune the PE by fit-
ting it to SemEval STS data. This is a super-
vised regression task, with an objective function
that considers both the distances and angles of the
two projected embeddings. This regression objec-
tive is the same as the one that we will describe in
Section 2.3. Although the objective function used
here and in Section 2.3 are the same, they are used
differently. The intention of using it in this step is
to adjust the PE representations, while the regres-
sion model in Section 2.3 is used for combining
different embeddings for regression. More details
will be discussed in Section 2.3.

2.2 Event Embeddings

Word embeddings capture distributional seman-
tics. It is a function that maps a word to a
dense, low-dimension vector. With the same
concept in mind, we can infer event semantics
by exploring its contextual events to build EE.
Similar ideas have be explored in several recent
works (Granroth-Wilding and Clark, 2016; Pi-
chotta and Mooney, 2016; Pacheco et al., 2016).

Our EE model is constructed as follows: first,
we extract event tokens, similar to narrative scripts
construction (Chambers and Jurafsky, 2008). We
resolve co-referent entities and run a dependency
parser on all documents 2. For each entity in a
co-reference chain, we represent an event token e
by its predicate p(e), a dependency relation to the
entity d(e), and animacy of the entity a(e); result-
ing in a triplet ((p(e), d(e), a(e))). An event chain
thus can be constructed by corresponding all the
entities in a co-reference chain to event tokens.

We extend the definition of the event predicate
p(e) to include lemmatized verbs and predicative
adjectives. These extensions are useful as they

1δ is tuned over {0.4, 1} in our evaluation.
2we use Stanford CoreNLP library (Manning et al., 2014)

199

capture important information about the state of
the entity. For example, “Jim was hungry. He
ate a sub”. The word “hungry” captures meaning-
ful narrative information that should be included
in the event chain of the entity “Jim”, so the re-
sulting chain here should be: (hungry, subj, an-
imate), (eat, subj, animate). Moreover, relying
on verb predicates alone is sometimes insufficient,
when the verbs are too ambiguous on their own,
e.g., verbs like go, get, and have. For such weak
verbs, we include their particles and clausal com-
plement (xcomp) in the predicates, e.g., “have
to sleep” will be represented as one predicate–
have to sleep. Lastly, negations to the predicate
matter a lot to event semantics, so we also include
it as a part of predicates. For instance, “did not
sleep” will be represented as not sleep.

For dependencies d(e), we only consider sub-
jects, objects, and indirect objects in the depen-
dency tree. Argument animacy information a(e) is
also included, because the entity’s animacy often
changes the event semantics. For instance, the dif-
ference in meaning of the phrases “killed a joke”
and “killed a person” is hard to identify without
including the object’s animacy information. There
are three possible animacy types that are repre-
sented in our triplet: animate, inanimate, or un-
known.

The Skip-Gram model (Mikolov et al., 2013),
which predicts contextual tokens given a current
token, is then used for training EE. The model
treats each event token as a word and each event
chain as a sentence, and learns EE by optimizing
the following objective:

p(C(e)|e) =
∏

e′∈C(e)

P (e′|e)

=
∏

e′∈C(e)

exp(ve′ , ve)∑
e∗∈E exp(ve∗ , ve)

,

where e is the current event, C(e) is the contextual
events of e, and ve is the embedding representation
of e.

To make the computation feasible, the negative
sampling strategy is again used here. For each
pair of event tokens in a sliding window, we sam-
ple k negative tokens. Other optimizing strategies
for improve embedding quality used by Mikolov
et al. 2013 are also applied here, such as sub-
sampling for high-frequency tokens and filtering
low-frequency tokens. The followings are the hy-
perparameters related to PE that are used in our

Figure 2: The regression model that considers the
distance and angle between the two inputs.

system: the sub-sampling rate is empirically set to
0.001; the minimum count of tokens is set to 5;
the sliding window size and k are set to 5; and the
vector dimension is set to 300.

2.3 Regression
In this section, we discuss how to fuse the differ-
ent embedding representations in the final regres-
sion model that predicts a similarity score between
the two input sentences. The objective function is
shown below:

h∗ = ve1 ⊗ ve2 (1)

h4 = |ve1 − ve2| (2)

h = tanh(W∗ · h∗ +W4 · h4) (3)

p = softmax(W · h), (4)

where ve1 and ve2 are vector representations of
input 1 and input 2 respectively; W∗ ∈ Rd×k,
W4 ∈ Rd×k, and W ∈ R6×k are the parame-
ters to be trained; d is the total dimension of PE
and EE; k is a hyperparameter of hidden layer size
(the 6 in the first dimension of W is from the soft-
max layer outputs which account for the proba-
bilities of integer scores between 0-5). The final
score is calculated by taking the mean of the 6
softmax outputs. This regression model is visu-
alized in Figure 2. The PE and EE are concate-
nated to represent each input. They are fixed rep-
resentations that will not be updated during the
regression. The ”X” and ”-” shown in Figure 2
are element-wise products and element-wise dif-
ferences between two input representations (Equa-
tion (1) and (2)). They represent the angles and
distances between the input sentences. This re-
gression objective has been shown to be very use-
ful in text similarity tasks (Tai et al., 2015).

3 Evaluation

We train PE using two datasets, PPDB 2.0 (Pavlick
et al., 2015) and SemEval STS data. These are

200

Train Dev. Test
W2V 0.3060 0.2442 0.2641
EE 0.2491 0.2458 0.3545
paragram-small 0.6723 0.5446 0.6989
paragram-XXL 0.6639 0.6610 0.7322
PE 0.8138 0.6896 0.7979
PE+W2V 0.8214 0.6879 0.7961
PE+EE (official) - - 0.7928
PE+EE 0.8243 0.6932 0.8015
Winner STS2017 - - 0.8547

Table 1: Pearson Correlation Scores for the mod-
els we tested, where the Train data is STS2012-
2015, Dev. data is STS2016, Test data is STS2017.
The best scores of our model are in bold fonts.

used in the first (Section 2.1) and second steps
(Section 2.2) respectively. We used the New
York Times (NYT) section of the Gigaword cor-
pus (Parker et al., 2011) for training EE and our
baselines. The SemEval STS data is also used in
training the final regression model. The data splits
are as follows: SemEval STS2012-2015 was used
as the training set, STS2016 data was used as the
development set, and STS2017 was used as the test
set. After the development stage was finished, the
training and development sets were both used to
train a final model with the best hyperparameters.

To update the parameters, Mini-batch Stochas-
tic Gradient Descent is used for optimizing the pa-
rameters and Adagrad (Duchi et al., 2011) is used
to update the learning rate while training. The
batch size is set to 100 and the number of epochs
is set to 10. L2-regularization is included in all
the objective functions and the λ is tuned over
{1e−5, 1e−6, 1e−7, 1e−8}. Both PE and EE’s
dimensions are set to 300.

The first baseline we compare with is the
Word2Vec Skip-Gram (W2V; Mikolov et al. 2013)
model, one of the most popular universal word
embeddings. It was trained over the same cor-
pus as EE (NYT section of Gigaword). The sec-
ond baseline (paragram-small) and third baseline
(paragram-XXL) are the best performing word
embeddings for STS tasks shown in Wieting et al.
2015b,a. In order to represent the input sentences
with the word embeddings, we average the word
embeddings based on the words in the input sen-
tences. This approach has been shown to be effec-
tive in Wieting et al. 2015a,

Table 1 lists the Pearson Correlation Score of

SemEval 2017 STS tasks. We can see that the
general embedding models, (W2V and EE), do not
perform well as their general purpose representa-
tion does not fit the textual similarity task. On the
other hand, paragram-small and paragram-XXL
which were trained with the textual-similarity-
related data (PPDB and STS data) perform reason-
ably well. The PE model, which takes paragram-
XXL as the initial embeddings and tunes all the
parameters on a CNN, gets higher score in both
development and test sets. The performance fur-
ther increases as we introduce EE to be parts of in-
put representations (PE+EE), while the W2V does
not provide such improvement (PE+W2V).

PE is specifically designed for identifying para-
phrasing characteristics and sentence structures,
which we believe are the keys to STS task, result-
ing in the strongest feature set in our system. We
do not expect that using EE alone will give high
performance, since considerable amounts of infor-
mation are filtered out during event chain extrac-
tion. In addition, EE does not use any STS-related
data during training. However, it is still helpful for
capturing high-level event semantics, which can
be a complement to our PE.

The official result of PE+EE is also included in
Table 1. Our best results improve on it, by fine
tuning the model’s hyperparameters. In addition,
the best performing system of SemEval STS2017
acquires the score of 0.8547, outperforming our
model. However, it is not clear that what exter-
nal resources or hand-crafted features were used
in their work. Our system, nevertheless, can ac-
commodate additional resources and features. We
believe that our results can be further improved by
including such information and we will look into
it in the future.

4 Conclusion

In this paper, we describe our system for SemEval
2017 STS task which consists three key compo-
nents relevant to this task: paraphrasing character-
istics, sentence structures, and event-level seman-
tics. To incorporate the first two ideas into the sys-
tem, PE–a CNN model trained with a paraphrase
database–is used. It measures sentence similarity
in terms of paraphrasing and structure similarities.
We capture event semantics using EE, and include
it in our system. It complements the PE and fur-
ther boosts performance. Our full system was able
to achieve a 0.8 of Pearson Correlation Score.

201

References
Nathanael Chambers and Daniel Jurafsky. 2008. Unsu-

pervised learning of narrative event chains. In ACL.
Citeseer, volume 94305, pages 789–797.

Mona Diab Eneko Agirre Inigo Lopez-Gazpio
Daniel Cer and Lucia Specia. 2017. Semeval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. Proceedings of
SemEval .

John Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research 12(Jul):2121–2159.

Juri Ganitkevitch, Benjamin Van Durme, and
Chris Callison-Burch. 2013. PPDB: The para-
phrase database. In Proceedings of NAACL-
HLT . Association for Computational Lin-
guistics, Atlanta, Georgia, pages 758–764.
http://cs.jhu.edu/ ccb/publications/ppdb.pdf.

Mark Granroth-Wilding and Stephen Clark. 2016.
What happens next? event prediction using a com-
positional neural network model. In AAAI. pages
2727–2733.

Christopher D. Manning, Mihai Surdeanu, John
Bauer, Jenny Finkel, Steven J. Bethard,
and David McClosky. 2014. The Stanford
CoreNLP natural language processing toolkit.
In Association for Computational Linguistics
(ACL) System Demonstrations. pages 55–60.
http://www.aclweb.org/anthology/P/P14/P14-5010.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Maria Leonor Pacheco, I-Ta Lee, Xiao Zhang, Abdul-
lah Khan Zehady, Pranjal Daga, Di Jin, Ayush Paro-
lia, and Dan Goldwasser. 2016. Adapting event em-
bedding for implicit discourse relation recognition.
ACL 2016 page 136.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and
Kazuaki Maeda. 2011. English gigaword. Linguis-
tic Data Consortium .

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevitch,
Benjamin Van Durme, and Chris Callison-Burch.
2015. Ppdb 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification .

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP. volume 14, pages 1532–
1543.

Karl Pichotta and Raymond J Mooney. 2016. Learn-
ing statistical scripts with lstm recurrent neural net-
works. In AAAI. pages 2800–2806.

Kai Sheng Tai, Richard Socher, and Christopher D
Manning. 2015. Improved semantic representations
from tree-structured long short-term memory net-
works. arXiv preprint arXiv:1503.00075 .

John Wieting, Mohit Bansal, Kevin Gimpel, and
Karen Livescu. 2015a. Towards universal para-
phrastic sentence embeddings. arXiv preprint
arXiv:1511.08198 .

John Wieting, Mohit Bansal, Kevin Gimpel, Karen
Livescu, and Dan Roth. 2015b. From paraphrase
database to compositional paraphrase model and
back. arXiv preprint arXiv:1506.03487 .

202

