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Abstract

We present the Potsdam systems that par-
ticipated in the semantic dependency pars-
ing shared task of SemEval 2014. They
are based on linguistically motivated bidi-
rectional transformations between graphs
and trees and on utilization of syntactic de-
pendency parsing. They were entered in
both the closed track and the open track
of the challenge, recording a peak average
labeled F1 score of 78.60.

1 Introduction

In the semantic dependency parsing (SDP) task of
SemEval 2014, the meaning of a sentence is repre-
sented in terms of binary head-argument relations
between the lexical units – bi-lexical dependencies
(Oepen et al., 2014). Since words can be seman-
tic dependents of multiple other words, this frame-
work results in graph representations of sentence
meaning. For the SDP task, three such annotation
layers are provided on top of the WSJ text of the
Penn Treebank (PTB) (Marcus et al., 1993):

– DM: the reduction of DeepBank HPSG anno-
tation (Flickinger et al., 2012) into bi-lexical
dependencies following (Oepen and Lønning,
2006; Ivanova et al., 2012),

– PAS: the predicate-argument structures derived
from the training set of the Enju HPSG parser
(Miyao et al., 2004) and

– PCEDT: a subset of the tectogrammatical anno-
tation layer from the English side of the Prague
Czech-English Dependency Treebank (Cinková
et al., 2009).

The three annotation schemes provide three di-
rected graph representations for each PTB sen-
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tence, with word forms as nodes and labeled de-
pendency relations as edges pointing from func-
tors to arguments. The SDP-annotated PTB text is
split into training (sections 00–19), development
(sec. 20) and testing sets (sec. 21). This in turn
makes the SDP parsing task a problem of data-
driven graph parsing, in which systems are to be
trained for producing dependency graph represen-
tations of sentences respecting the three underly-
ing schemes.

While a number of theoretical and preliminary
contributions to data-driven graph parsing exist
(Sagae and Tsujii, 2008; Das et al., 2010; Jones
et al., 2013; Chiang et al., 2013; Henderson et
al., 2013), our goal here is to investigate the sim-
plest approach that can achieve competitive per-
formance. Our starting point is the observation
that the SDP graphs are relatively tree-like. On it,
we build a system for data-driven graph parsing by
(1) transforming dependency graphs into depen-
dency trees in preprocessing, (2) training and us-
ing syntactic dependency parsers over these trees
and (3) transforming their output back into graphs
in postprocessing. This way, we inherit the accu-
racy and speed of syntactic dependency parsers.
The secondary benefit is insight into the struc-
ture of the semantic representations, as graph-tree
transformations can make the phenomena that re-
quire non-tree-like structures more explicit.

2 Data and Systems

We present the basic statistics for the SDP train-
ing sets in Table 1. The graphs contain no cycles,
i.e., all SDP meaning representations are directed
acyclic graphs (DAGs). DM and PAS are auto-
matically derived from HPSG annotations, while
PCEDT is based on manual tectogrammatical an-
notation. This is reflected in more than half of the
PCEDT graphs being disjoint sets of dependency
trees, i.e., forests. The number of forests in DM
and PAS is negligible, on the other hand. The edge
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Feature DM PAS PCEDT

Sentences 32,389 32,389 32,389
Tokens 742,736 742,736 742,736

Edge labels 52 43 71
Cyclic graphs 0 0 0

Forests 810 418 18,527
Treewidth (undirected) 1.30 1.71 1.45

Tree labels
LOCAL 79 77 124

DFS 79 81 133

Table 1: Basic statistics for the training sets.

label set of PCEDT is also substantially larger than
the label sets of DM and PAS.

2.1 Baseline

A directed acyclic graph is a dependency tree in
the sense of (Nivre, 2006) if any two nodes are
connected by exactly one simple path. In other
words, a DAG is a dependency tree if there are
no disconnected (singleton) nodes and if there are
no node reentrancies, i.e., all nodes have an in-
degree of 1. We calculate the average treewidth
of SDP graphs by converting them to undirected
graphs and applying the algorithm of (Gogate and
Dechter, 2004). As we show in Table 1, the
treewidth is low for all three representations. The
low treewidth indicates that, even if the SDP se-
mantic representations are graphs and not trees,
these graphs are very tree-like and, as such, easily
transformed into trees as there are not many edges
that would require deletion. Thus, one could per-
form a lossy graph-to-tree conversion by (a) de-
tecting singleton nodes and attaching them triv-
ially and (b) detecting reentrant nodes and deleting
all but one incoming edge.

The official SDP baseline system1 (Oepen et al.,
2014) is based precisely on this principle: single-
tons are attached to their right neighbors, only the
edges to the closest predicates are kept for reen-
trant nodes, with a preference for leftward predi-
cates in ties, and all remaining nodes with an in-
degree of 0 are attached to the root. Two dummy
labels are introduced in the process: root for at-
tachments to root and null for the remaining new
attachments. The baseline is thus limited by the
lossy approach to graph-to-tree reductions and the
lack of linguistic motivation for these particular re-
duction operations. Here, we aim at introducing

1http://alt.qcri.org/semeval2014/
task8/index.php?id=evaluation

Figure 1: Distributions of node indegrees for (a)
all nodes and (b) source nodes of edges participat-
ing in reentrancies.

Figure 2: Distributions of parts of speech for reen-
trancy source nodes with zero indegree. Ten most
frequent parts of speech are displayed.

less lossy and more linguistically motivated reduc-
tions.

2.2 Local Edge Flipping

Furthermore, inspecting the distribution of node
indegrees in the SDP data in Figure 1, we make
two important observations: (1) from its left his-
togram, that most of the nodes in all three annota-
tions have an indegree of 0 or 1, and (2) from its
right histogram, that most source nodes of edges
causing reentrancies themselves have an indegree
of 0. Figure 2 deepens this observation by provid-
ing a part-of-speech distribution of source nodes
in reentrancies. It shows that the edges in DM
and PAS are systematically pointed from modi-
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System DM PAS PCEDT

BASELINE 66.19 57.66 90.70
LOCAL 89.93 88.73 91.86

DFS 95.52 93.98 92.85

Table 2: Upper bound LF scores on the develop-
ment set for LOCAL and DFS conversion compared
to the baseline. This score indicates the quality of
graph-tree transformation as no parsing is done.

Dataset P R F1

DM 73.30 62.99 67.76
PAS 76.03 72.12 74.02

PCEDT 79.40 78.52 78.96

Table 3: Top node detection accuracy with CRFs
on the development set for the three annotations.
Precision (P), recall (R) and the F1 scores relate to
marking tokens with the binary top node flag.

fiers to modifiees, while coordinating conjunctions
in PCEDT introduce the coordinated nodes. We
conclude that edges in reentrancies, for which the
source nodes have zero indegree, could be flipped
by changing places of their source and target nodes
and encoding the switch in the edge labels by ap-
pending the suffix flipped to the existing labels.

This is the basis for our first system: LOCAL.
In it, we locally flip all edges in reentrancies for
which the source node has zero indegree and run
the BASELINE conversion on the resulting graphs.
We apply this conversion on the training data, use
the converted training sets to train syntactic de-
pendency parsers (Bohnet, 2010) and utilize the
parsing models on the development and test data.
The parsing outputs are converted back to graphs
by simply re-flipping all the edges denoted as
flipped.

2.3 Depth-first Edge Flipping

Our second system, DFS, is based on depth-first
search graph traversal and edge flipping. In it, we
create a undirected copy of the input graph and
connect all nodes with zero indegree to the root us-
ing dummy edges. We do a depth-first traversal of
this graph, starting from the root, while perform-
ing edge lookup in the original DAG. For each DFS

edge traversal in the undirected copy, we check if
the direction of this edge in the original DAG is
identical or reversed to the traversal direction. If
it is identical, we keep the existing edge. If we
traverse the edge against its original direction, we

DM PAS PCEDT

closed LAS UAS LAS UAS LAS UAS
LOCAL 79.09 81.35 81.93 83.79 81.16 89.60

DFS 82.02 83.74 87.06 87.93 79.94 88.04
open

LOCAL 80.86 82.73 85.16 86.18 82.04 90.79
DFS 84.23 85.77 88.42 89.26 80.82 89.02

Table 4: Syntactic dependency parsing accuracy
of our systems before the tree-to-graph transfor-
mations, given as a set of labeled (LAS) and un-
labeled (UAS) attachment scores. The scores are
given for the development set.

reverse it. Finally, we delete the dummy edges and
convert the resulting graph to a dependency tree by
running the baseline, to connect the singletons to
their neighbors, and to attach predicates with zero
indegree and sentence-final nodes to the root.

We illustrate our graph-to-tree transformations
LOCAL and DFS on a gold standard graph from the
training data in Figure 3. It shows how DFS man-
ages to preserve more edges than LOCAL by per-
forming traversal flipping, while LOCAL flips only
the edges that have source nodes with zero inde-
gree. On the other hand, DFS performs more flip-
ping operations than LOCAL, but as Table 1 shows,
this does not result in substantial increase of the
label sets.

2.4 Parsing and Top Node Detection

The same syntactic parser and top node detector
are used in both LOCAL and DFS. Both systems
ran in the closed SDP track, with no additional
features for learning, and in the open track, where
they used the SDP companion data, i.e., the out-
puts of a syntactic dependency parser (Bohnet and
Nivre, 2012) and phrase-based parser (Petrov et
al., 2006) as additional features. Our choice of
parser was based on the high non-projectivity of
the resulting trees, while parsers of (Bohnet and
Nivre, 2012; Bohnet et al., 2013) could also be
used, among others. We use the parser out of
the box, i.e., without any parameter tuning or ad-
ditional features other than what was previously
listed for the open track.

Top node detection is implemented separately,
by training a sequence labeling model (Lafferty
et al., 2001; Kudo, 2005) on tokens and part-of-
speech tags from the training sets. Its accuracy
is given in Table 3. We use only the tokens and
parts of speech as features for these models, and
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Figure 3: Illustration of graph-to-tree transformations of a gold standard graph for LOCAL and DFS. Edge
labels are omitted. The sentence (PAS, #20415005): Who that winner will be is highly uncertain.

we design our feature set by adapting the chunking
template from the CRF++ toolkit documentation.2

We note that this model can be improved by, e.g.,
adding the open track companion features to the
feature set, but they were not used in the experi-
ments we present here.3

Our graph-to-tree conversions expand the label
sets by appending the edge flip flag. The sizes of
the new label sets are given in Table 1 in compar-
ison to the original ones. The increase in size is
expected to affect the parsing accuracy. The pars-
ing accuracies on the development sets are given
in Table 4. The scores correlate with the label
set sizes, with a notable difference between the la-
beled (LAS) and unlabeled (UAS) attachment score
for PCEDT. The LOCAL approach tends to out-
perform DFS for PCEDT, while DFS parsers also
significantly outperform LOCAL for DM and PAS.
The open track parsers tend to perform a little bet-
ter as they make use of the additional features.

In Table 2, we measure the theoretical maxi-
mum accuracy for parsers based on our two con-
versions in comparison with the baseline. There,
we run BASELINE, LOCAL and DFS on the devel-
opment set and convert the trees back to graphs
right away, i.e., without the parsing step, so as
to observe the dissipation of the conversion. The
scores show that LOCAL and DFS outperform
BASELINE by a large margin, while the maximum
accuracy for DFS is larger than the one for LOCAL,
1 point for PCEDT and around 5 points for DM
and PAS. This is due to DFS performing non-local
edge flipping, thus preserving more edges. The
parsing scores from Table 4 and the maximum ac-
curacy from Table 2 show that our systems are not

2http://crfpp.googlecode.com/svn/
trunk/doc/index.html

3The recall would increase by 15 points, amounting to a
10 point increase in F1 for top node detection in DM.

closed open

dev LF UF LF UF
LOCAL 76.70 82.01 77.87 83.19

DFS 78.49 83.78 80.03 85.31
test

LOCAL 75.94 81.58 76.79 82.52
DFS 77.34 82.99 78.60 84.32

Table 5: Overall accuracy for our LOCAL and DFS

systems, i.e., averaged labeled and unlabeled F1

scores over the three annotations.

as lossy in graph-tree conversions as the baseline,
while they pay the price in the number of new la-
bels in actual parsing and, subsequently, in the ac-
curacy of the dependency parsers. Thus, LAS and
UAS for the baseline are 1-2 points higher than the
scores in Table 4 for DM and PCEDT, while our
scores are 3-4 points higher for PAS.

3 Results and Discussion

As in the official SDP scoring, we express the
results in terms of labeled and unlabeled preci-
sion (LP, UP) and recall (LR, UR), their harmonic
means, the F1 scores (LF, UF), and sentence-level
exact matches (LM, UM). The official SDP scorer
reports on two variants of these scores: the one
taking into account the virtual edges to top nodes
and the one excluding those edges. The former is
less relaxed as it requires the top nodes to be pre-
dicted, and this is the only one we use in this re-
port. We note that for our systems, the scores with-
out the virtual edges are approximately 2 points
higher for all the metrics.

The overall scores are given in Table 5. There,
we provide the labeled and unlabeled F1 scores on
the development and test data in the closed and
open track, averaged for all three annotations. The
open track systems consistently score approxi-
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closed track DM PAS PCEDT

LP LR LF LM LP LR LF LM LP LR LF LM
LOCAL 83.39 72.88 77.78 4.53 88.18 74.00 80.47 2.00 72.25 67.10 69.58 6.38

DFS 79.36 79.34 79.35 9.05 88.15 81.60 84.75 7.72 69.68 66.25 67.92 5.86
–4.03 +6.46 +1.57 +4.52 –0.03 +7.60 +4.28 +5.72 –2.57 –0.85 –1.66 –0.52
UP UR UF UM UP UR UF UM UP UR UF UM

LOCAL 85.47 74.70 79.72 5.04 89.70 75.28 81.86 2.23 86.36 80.21 83.17 19.44
DFS 81.56 81.54 81.55 10.31 89.62 82.96 86.16 7.86 83.37 79.27 81.27 17.51

–3.91 +6.84 +1.83 +5.27 –0.08 +7.69 +4.30 +5.63 –3.00 –0.94 –1.91 –1.93

open track DM PAS PCEDT

LP LR LF LM LP LR LF LM LP LR LF LM
LOCAL 84.54 73.80 78.80 4.53 89.72 75.08 81.75 2.00 72.52 67.33 69.83 6.08

DFS 81.32 80.91 81.11 10.46 89.41 82.61 85.88 8.46 70.35 67.33 68.80 5.79
–3.22 +7.11 +2.31 +5.93 –0.31 +7.53 +4.13 +6.46 –2.17 +0.00 –1.03 –0.29
UP UR UF UM UP UR UF UM UP UR UF UM

LOCAL 86.43 75.45 80.57 5.49 90.99 76.14 82.91 2.30 87.32 81.07 84.08 19.73
DFS 83.37 82.95 83.16 11.94 90.78 83.87 87.19 8.75 84.46 80.83 82.60 18.47

–3.06 +7.50 +2.59 +6.45 –0.22 +7.73 +4.28 +6.45 –2.86 –0.24 –1.48 –1.26

Table 6: Breakdown of the scores for our LOCAL and DFS systems on the test sets. We provide labeled
and unlabeled precision (LP, UP), recall (LR, UR), F1 scores (LF, UF) and exact matches (LM, UM) for
all three annotations in both the closed and the open evaluation track.

mately 1 point higher than their closed track coun-
terparts, apparently taking advantage of the ad-
ditional features available in training and testing.
The DFS system is 2 points better than LOCAL in
all scenarios, owing to the higher maximum cover-
age of the original graphs in the conversions. The
large label sets amount to a difference of approxi-
mately 6 points between the labeled and unlabeled
accuracies in favor of the latter attachment.

Table 6 is a breakdown of the scores in Table 5
across the three annotations and the two tracks.
Here, we pair the F1 scores with the correspond-
ing precision and recall scores. We also explicitly
denote the differences in scores between LOCAL

and DFS. For DM and PAS, the score patterns
are very similar: due to the larger label set and
less regular edge flipping, DFS has a 3-4 points
lower precision than LOCAL, while its recall is 6-8
points higher, amounting to the overall improve-
ment of approximately 4 points F1. In contrast, on
the PCEDT data, LOCAL outperforms DFS by ap-
proximately 1.5 points. We note that the label sets
for PCEDT are much larger than for DM and PAS
and that the favorable reentrancies in PCEDT are
much less frequent to begin with (see Table 1, Ta-
ble 2 and Figure 2). At 14 points F1, the discrep-
ancy between the labeled and unlabeled scores is
much higher for PCEDT than for DM and PAS,
for which we observe a 1-2 point difference.

The exact match scores (LM, UM) favor DFS

over LOCAL by approximately 5 points for DM
and PAS, while LOCAL is better than DFS for
PCEDT by 1-2 points. In absolute terms, the PAS
scores are higher than those for DM and PAS in
both our systems. This difference between the
token-level and the sentence-level scores stems
from the properties of our graph-tree transforma-
tions as, e.g., certain edges in undirected cycles
could not be addressed by our edge inversions.

At approximately 81, 86 and 70 points F1 for
DM, PAS and PCEDT, in this contribution we
have shown that focusing on graph-tree transfor-
mations for the utilization of a syntactic depen-
dency parser lets us achieve good overall perfor-
mance in the semantic dependency parsing task. In
the future, we will further investigate what trans-
formations are appropriate for different styles of
graph-based semantic representations, and what
we can learn from this both for improving SDP
parser accuracy and for making linguistically mo-
tivated design choices for graph-based seman-
tic representations. Furthermore, we will extend
our system to cover inherently non-tree-like struc-
tures, such as those induced by control verbs.
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Joint Morphological and Syntactic Analysis for
Richly Inflected Languages. TACL, 1:415–428.

Bernd Bohnet. 2010. Top Accuracy and Fast Depen-
dency Parsing is not a Contradiction. In Proc. COL-
ING, pages 89–97.

David Chiang, Jacob Andreas, Daniel Bauer,
Karl Moritz Hermann, Bevan Jones, and Kevin
Knight. 2013. Parsing Graphs with Hyperedge
Replacement Grammars. In Proc. ACL, pages
924–932.
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