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Abstract

We are interested in a graph-based Knowl-
edge Representation formalism that would
allow for the representation, manipula-
tion, query, and reasoning over depen-
dency structures, and linguistic knowl-
edge of the Explanatory and Combinato-
rial Dictionary in the Meaning-Text The-
ory framework. Neither the semantic web
formalisms nor the conceptual graphs ap-
pear to be suitable for this task, and this
led to the introduction of the new Unit
Graphs framework. This paper first in-
troduces the foundational concepts of this
framework: Unit Graphs are defined over
a support that contains: i) a hierarchy of
unit types which is strongly driven by their
actantial structure, ii) a hierarchy of cir-
cumstantial symbols, and iii) a set of unit
identifiers. Then, this paper provides all of
these objects with a model semantics that
enables to define the notion of semantic
consequence between Unit Graphs.

1 Introduction

We are interested in the ability to reason over
dependency structures and linguistic knowledge
of the Explanatory and Combinatorial Dictionary
(ECD), which is the lexicon at the core of the
Meaning-Text Theory (MTT) (Mel’čuk, 2006).

Some formalisation works have been led on the
ECD. For instance Kahane and Polguère, 2001)
proposed a formalization of Lexical Functions,
and the Definiens project (Barque and Polguère,
2008; Barque et al., 2010) aims at formalizing lex-
icographic definitions with genus and specific dif-
ferences for the TLFi1. Adding to these formaliza-
tion works, the goal of the Unit Graphs formalism

1Trésor de la Langue Française informatisé, http://
atilf.atilf.fr

is to propose a formalization from a knowledge
engineering perspective, compatible with standard
Knowledge Representation (KR) formalisms. The
term formalization here means not only make non-
ambiguous, but also make operational, i.e., such
that it supports logical operations (e.g., knowl-
edge manipulation, query, reasoning). We thus
adopt a knowledge engineering approach applied
to the domain of the MTT.

At first sight, two existing KR formalisms
seemed interesting for representing dependency
structures: semantic web formalisms (RDF/S,
OWL, SPARQL), and Conceptual Graphs (CGs)
(Sowa, 1984; Chein and Mugnier, 2008). Both
formalisms are based on directed labelled graph
structures, and some research has been done to-
wards using them to represent dependency struc-
tures and knowledge of the lexicon (OWL in
(Lefrançois and Gandon, 2011; Boguslavsky,
2011), CGs at the conceptual level in (Bohnet and
Wanner, 2010)). Yet Lefrançois, 2013) showed
that neither of these KR formalisms can repre-
sent linguistic predicates. As the CG formalism is
the closest to the semantic networks, the following
choice has been made (Lefrançois, 2013): Modify
the CGs formalism basis, and define transforma-
tions to the RDF syntax for sharing, and query-
ing knowledge. As we are to represents linguistic
units of different nature (e.g., semantic units, lexi-
cal units, grammatical units, words), term unit has
been chosen to be used in a generic manner, and
the result of this adaptation is thus the Unit Graphs
(UGs) framework. The valency-based predicates
are represented by unit types, and are described in
a structure called the unit types hierarchy. Unit
types specify through actant slots and signatures
how their instances (i.e., units) may be linked to
other units in a UG. Unit Graphs are then defined
over a support that contains: i) a hierarchy of unit
types which is strongly driven by their actantial
structure, ii) a hierarchy of circumstantial sym-
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bols, and iii) a set of unit identifiers.
Apart from giving an overview foundational

concepts of the UGs framework, the main goal
of this paper is to answer the following research
question: What semantics can be attributed to
UGs, and how can we define the entailment prob-
lem for UGs ?

The rest of this paper is organized as follows.
Section 2 overviews the UGs framework: the hi-
erarchy of unit types (§2.1), the hierarchy of cir-
cumstantial symbols (§2.2), and the Unit Graphs
(§2.3). Then, section 3 provides all of these math-
ematical objects with a model, and finally the no-
tion of semantic consequence between UGs is in-
troduced (§3.4).

2 Background: overview of the Unit
Graphs Framework

For a specific Lexical Unit L, (Mel’čuk, 2004, p.5)
distinguishes considering L in language (i.e., in
the lexicon), or in speech (i.e., in an utterance).
KR formalisms and the UGs formalism also make
this distinction using types. In this paper and in
the UGs formalism, there is thus a clear distinction
between units (e.g., semantic unit, lexical unit),
which will be represented in the UGs, and their
types (e.g., semantic unit type, lexical unit type),
which are roughly classes of units for which spe-
cific features are shared. It is those types that spec-
ify through actant slots and signatures how their
instances (i.e., units) are to be linked to other units
in a UG.

2.1 Hierarchy of Unit Types

Unit types and their actantial structure are de-
scribed in a structure called hierarchy, that spec-
ifies how units may, must, or must not be inter-
linked in a UG.

Definition 2.1. A hierarchy of unit types is de-
noted T and is defined by a tuple:

T def
= (TD,ST , γγγ,γγγ1, γγγ0, CA,⊥uA, {ςςςt}t∈T)

This structure has been thoroughly described
in (Lefrançois and Gandon, 2013a; Lefrançois,
2013). Let us overview its components.
TD is a set of declared Primitive Unit Types

(PUTs). This set is partitioned into linguistic
PUTs of different nature (e.g., deep semantic, se-
mantic, lexical). ST is a set of Actant Symbols
(ASymbols). γγγ (resp1. γγγ1, resp2. γγγ0) assigns to

every s ∈ ST its radix2 (resp1. obligat3, resp2.
prohibet4) unit type γγγ(s) (resp1. γγγ1(s), resp2.
γγγ0(s)) that introduces (resp1. makes obligatory,
resp2. makes prohibited) an Actant Slot (ASlot)
of symbol s. The set of PUTs is denoted T and
defined as the disjoint union of TD, the ranges of
γγγ, γγγ1 and γγγ0, plus the prime universal PUT > and
the prime absurd PUT ⊥ (eq. 1).

T def
= TD ·∪γγγ(ST ) ·∪γγγ1(ST ) ·∪γγγ0(ST ) ·∪{⊥,>}

(1)
T is then pre-ordered by a relation . which

is computed from the set CA ⊆ T2 of asserted
PUTs comparisons. t1 . t2 models the fact
that the PUT t1 is more specific than the PUT t2.
Then a unit type has a set (that may be empty) of
ASlots, whose symbols are chosen in the set ST .
Moreover, ASlots may be obligatory, prohibited,
or optional. The set of ASlots (resp1. obligatory
ASlots, resp2. prohibited ASlots, resp3. optional
ASlots) of a PUT is thus defined as the set of their
symbols ααα(t) ⊆ ST (resp1. ααα1(t), resp2. ααα0(t),
resp3. ααα?(t)).

The set of ASlots (resp1. obligatory ASlots,
resp2. prohibited ASlots) of a PUT t ∈ T is
defined as the set of ASymbol whose radix (resp1.
obligat, resp2. prohibet) is more general or equiv-
alent to t, and the set of optional ASlots of a PUT
t is the set of ASlots that are neither obligatory
nor prohibited. The number of ASlots of a PUT is
denoted its valency. {ςςςt}t∈T, the set of signatures
of PUTs, is a set of functions. For all PUT t, ςςςt
is a function that associates to every ASlot s of t
a set of PUT ςςςt(s) that characterises the type of
the unit that fills this slot. Signatures participate
in the specialization of the actantial structure of
PUTs, which means that if t1 . t2 and s is a
common ASlot of t1 and t2, the signature of t1
for s must be more specific or equivalent than that
of t2. Hence t1 . t2 implies that the actancial
structure of t1 is more specific than the actantial
structure of t2.

Now a unit type may consist of several conjoint
PUTs. We introduce the set T∩ of possible Con-
junctive Unit Types (CUTs) over T as the power-

2radix is a latin word that means (root).
3obligat is the conjugated form of the latin verb obligo, 3p

sing. indic., (it makes mandatory).
4prohibet is the conjugated form of the latin verb pro-

hibeo, 3p sing. indic., (it prohibits).
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set5 of T. The set ⊥uA is the set of declared absurd
CUTs that can not be instantiated. The definition
of the actancial structure of PUTs is naturally ex-
tended to CUTs as follows:

ααα∩(t∩)
def
=

⋃
t∈t∩ααα(t) (2)

ααα∩1 (t∩)
def
=

⋃
t∈t∩ααα1(t) (3)

ααα∩0 (t∩)
def
=

⋃
t∈t∩ααα0(t) (4)

ααα∩? (t∩)
def
= ααα∩(t∩)−ααα∩1 (t∩)−ααα∩0 (t∩) (5)

ςςς∩t∩(s)
def
=

⋃
t∈t∩|s∈ααα(t)ςςςt(s) (6)

Finally the pre-order . over T is extended to
a pre-order

∩
. over T∩ as defined by Lefrançois

and Gandon, 2013a). Lefrançois and Gandon,
2013b) proved that in the hierarchy of unit types, if
t∩1

∩
. t∩2 then the actantial structure of t∩1 is more

specific than that of t∩2 , except for some degen-
erated cases. Thus as one goes down the hierar-
chy of unit types, an ASlot with symbol s is in-
troduced by the radix {γγγ(s)} and first defines an
optional ASlot for any unit type t∩ more specific
than {γγγ(s)}, as long as t∩ is not more specific than
the obligat {γγγ1(s)} (resp. the prohibet {γγγ0(s)}) of
s. If that happens, the ASlot becomes obligatory
(resp. prohibited). Moreover, the signature of an
ASlot may only become more specific.

2.2 Hierarchy of Circumstantial Symbols

Unit types specify how unit nodes are linked to
other unit nodes in the UGs. As for any slot in a
predicate, one ASlot of a unit may be filled by only
one unit at a time. Now, one may also encounter
dependencies of another type in some dependency
structures: circumstantial dependencies (Mel’čuk,
2004). Circumstantial relations are considered of
type instance-instance contrary to actantial rela-
tions. Example of such relations are the deep syn-
tactic representation relations ATTR, COORD, AP-
PEND of the MTT, but we may also define other
such relations to represent the link between a lex-
ical unit and its sense for instance.

We thus introduce a finite set of so-called Cir-
cumstantial Symbols (CSymbols) SC which is a
set of binary relation symbols. In order to clas-
sify SC in sets and subsets, we introduce a partial
order

C
. over SC .

C
. is the reflexo-transitive clo-

sure of a set of asserted comparisons CSC ⊆ T2.

5The powerset of X is the set of all subsets of X: 2X

Finally, to each CSymbol is assigned a signa-
ture that specifies the type of units that are linked
through a relation having this symbol. The set of
signatures of CSymbol {σσσs}s∈SC is a set of cou-
ples of CUTs: {(domain(s), range(s))}s∈SC . As
one goes down the hierarchy of PUTs, we impose
that the signature of a CSymbol may only become
more specific (eq. 7).

s1 . s2 ⇒ σσσ(s1)
∩
. σσσ(s2) (7)

We may hence introduce the hierarchy of
CSymbols:

Definition 2.2. The hierarchy of CSymbols, de-
noted C def

= (SC ,CSC , T , {σσσs}s∈SC), is composed
of a finite set of CSymbols SC , a set of de-
clared comparisons of CSymbol CSC , a hierarchy
of CUTs T , and a set of signatures of the CSym-
bols {σσσs}s∈SC .

2.3 Definition of Unit Graphs (UGs)
The UGs represent different types of dependency
structures. Parallel with the Conceptual Graphs,
UGs are defined over a so-called support.

Definition 2.3. A UGs support is denoted S def
=

(T , C,M) and is composed of a hierarchy of unit
types T , a hierarchy of circumstantial symbols C,
and a set of unit identifiers M. Every element of
M identifies a specific unit, but multiple elements
of M may identify the same unit.

In a UG, unit nodes that are typed and marked
are interlinked by dependency relations that are ei-
ther actantial or circumstantial.

Definition 2.4. A UG G defined over a UG-
support S is a tuple denoted G def

= (U, l, A,C,Eq)
where U is the set of unit nodes, l is a labelling
mapping over U , A and C are respectively actan-
tial and circumstantial triples, and Eq is a set of
asserted unit node equivalences.

Let us detail the components of G.
U is the set of unit nodes. Every unit node

represents a specific unit, but multiple unit nodes
may represent the same unit. Unit nodes are typed
and marked so as to respectively specify what
CUT they have and what unit they represent. The
marker of a unit node is a set of unit identifiers for
mathematical reasons. The set of unit node mark-
ers is denoted M∩ and is the powerset5 of M. If a
unit node is marked by ∅, it is said to be generic,
and the represented unit is unknown. On the other
hand, if a unit node is marked {m1,m2}, then the
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unit identifiers m1 and m2 actually identify the
same unit. l is thus a labelling mapping over U
that assigns to each unit node u ∈ U a couple
l(u) = (t∩,m∩) ∈ T∩ × M∩ of a CUT and a
unit node marker. We denote t∩ = type(u) and
m∩ = marker(u).
A is the set of actantial triples (u, s, v) ∈ U ×

ST × U . For all a = (u, s, v) ∈ A, the unit
represented by v fills the ASlot s of the unit rep-
resented by u. We denote u = governor(a),
s = symbol(a) and v = actant(a). We also de-
note arc(a) = (u, v).
C is the set of circumstantial triples (u, s, v) ∈

U × SC × U . For all c = (u, s, v) ∈ C, the unit
represented by u governs the unit represented by
v with respect to s. We denote u = governor(c),
s = symbol(c) and v = circumstantial(c). We
also denote arc(c) = (u, v).
Eq ⊆ U2 is the set of so-called asserted

unit node equivalences. For all (u1, u2) ∈ U2,
(u1, u2) ∈ Eq means that u1 and u2 represent the
same unit. The Eq relation is not an equivalence
relation over unit nodes6. We thus distinguish ex-
plicit and implicit knowledge.

UGs so defined are the core dependency struc-
tures of the UGs mathematical framework. On
top of these basic structures, one may define for
instance rules and lexicographic definitions. Due
to space limitation we will not introduce such ad-
vanced aspects of the UGs formalism, and we will
provide a model to UGs defined over a support that
does not contain definitions of PUTs.

3 Model Semantic for UGs

3.1 Model of a Support

In this section we will provide the UGs framework
with a model semantic based on a relational al-
gebra. Let us first introduce the definition of the
model of a support.

Definition 3.1 (Model of a support). Let S =
(T , C,M) be a support. A model of S is a couple
M = (D, δ). D is a set called the domain of M
that contains a special element denoted • that rep-
resents nothing, plus at least one other element. δ
is denoted the interpretation function and must be
such that:

• M is a model of T ;
• M is a model of C;
6An equivalent relation is a reflexive, symmetric, and

transitive relation.

• ∀m ∈ M, δ(m) ∈ D \ •;

This definition requires the notion of model of a
unit types hierarchy, and model of a CSymbols hi-
erarchy. We will sequentially introduce these no-
tions in the following sections.

3.2 Model of a Hierarchy of Unit Types
The interpretation function δ associates with any
PUT t ∈ T a relation δ({t}) of arity 1 +
valency(t) with the following set of attributes (eq.
8):

• a primary attribute denoted 0 (0 /∈ ST ) that
provides {t} with the semantics of a class;

• an attribute for each of its ASlot in ααα(t) that
provides {t} with the dual semantics of a re-
lation.

∀t ∈ T, δ({t}) ⊆ D1+valency(t)

with attributes {0} ∪ααα(t)
(8)

Every tuple r of δ({t}) can be identified to a
mapping, still denoted r, from the attribute set
{0} ∪ ααα(t) to the universe D. r describes how
a unit of type {t} is linked to its actants. r(0) is
the unit itself, and for all s ∈ ααα(t), r(s) is the unit
that fills ASlot s of r(0). If r(s) = •, then there
is no unit that fills ASlot s of r(0). A given unit
may be described at most once in δ({t}), so 0 is a
unique key in the interpretation of every PUT:

∀t ∈ T,∀r1, r2 ∈ δ({t}),
r1(0) = r2(0)⇒ r1 = r2

(9)

> must be the type of every unit, except for the
special nothing element •, and ⊥ must be the type
of no unit. As the projection π0δ({t}) on the main
attribute 0 represents the set of units having type
{t}, equations 10 and 11 model these restrictions.

π0δ({>}) = D \ •; (10)

δ({⊥}) = ∅ (11)

The ASlot s of the obligat γγγ1(s) must be filled
by some unit, but no unit may fill ASlot s of the
prohibet γγγ0(s). As for every s ∈ ααα(t), the pro-
jection πsδ({t}) represents the set of units that fill
the ASlot s of some unit that has type t, equations
12 and 13 model these restrictions.
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∀s ∈ ST , • /∈ πsδ({γγγ1(s)}); (12)

∀s ∈ ST , πsδ({γγγ0(s)}) = {•}; (13)

Now if a unit i ∈ D is of type {t1} and t1 is
more specific than t2, then the unit is also of type
{t2}, and the description of i in δ({t2}) must cor-
respond to the description of i in δ({t1}). Equiv-
alently, the projection of δ({t1}) on the attributes
of δ({t2}) must be a sub-relation of δ({t2}):

∀t1 . t2,
π{0}∪ααα(t2)δ({t1}) ⊆ δ({t2})

(14)

The interpretation of a CUT is the join of the
interpretation of its constituting PUTs, except for
∅ which has the same interpretation as {>}, and
asserted absurd CUTs t∩ ∈ ⊥uA that contain no
unit.

∀t∩ ∈ T∩ \∅−⊥uA,
δ(t∩) =./t∈t∩ δ({t})

(15)

δ(∅) = δ({>}) (16)

∀t∩ ∈ ⊥uA, δ(t∩) = ∅ (17)

Finally, for every unit of type {t} and for every
ASlot of t, the unit that fills ASlot smust be either
nothing, or a unit of type ςςςt(s):

∀t ∈ T, ∀s ∈ ααα(t),

πsδ({t}) \ • ⊆ π0δ(ςςςt(s))
(18)

We may now define the model of a unit type
hierarchy.

Definition 3.2. Let be a unit types hierarchy
T = (TD,ST , γγγ,γγγ1, γγγ0, CA,⊥uA, {ςςςt}t∈T). A
model of T is a couple M = (D, δ) such that
the interpretation function δ satisfies equations 8
to 18.

3.3 Model of a Hierarchy of Circumstantial
Symbols

So as to be also a model of a CSymbols hierarchy,
the interpretation function δ must be extended and
further restricted as follows.

The interpretation function δ associates with ev-
ery CSymbol s ∈ SC a binary relation δ(s) with
two attributes : gov which stands for governor, and
circ which stands for circumstantial.

∀s ∈ SC , δ(s) ⊆ (D \ •)2,
a relation with attributes {gov, circ};

(19)

Parallel with binary relations in the semantic
model of the CGs formalism, if a CSymbol s1 is
more specific than another CSymbol s2, then the
interpretation of s1 must be included in the inter-
pretation of s2.

∀s1, s2 ∈ SC , s1
C
. s2 ⇒ δ(s1) ⊆ δ(s2) (20)

Finally, the type of the units that are linked
through a CSymbol s must correspond to the sig-
nature of s.

∀s ∈ SC , πgovδ(s) ⊆ π0δ(domain(s)); (21)

∀s ∈ SC , πcircδ(s) ⊆ π0δ(range(s)); (22)

We may thus define the model of a CSymbols
hierarchy.

Definition 3.3 (Model of a Circumstantial Depen-
dency Symbols Hierarchy). Let be a CSymbols hi-
erarchy C = (SC ,CSC , T , {σσσs}s∈SC). A model of
C is a model M = (D, δ) of T such that the inter-
pretation function δ satisfies equations 19 to 22.

3.4 Model Satisfying a UG and Semantic
Consequence

Now that the model of a support is fully defined,
we may define the model of a UG. A model of
a UG is a model of the support on which it is
defined, augmented with an assignment mapping
over unit nodes that assigns to every unit node an
element of D.

Definition 3.4 (Model of a UG). Let G =
(U, l, A,C,Eq) be a UG defined over a support
S. A model of G is a triple (D, δ, β) where:

• (D, δ) is a model of S;
• β, called an assignment, is a mapping from U

to D.

So as to satisfy the UG, the assignment β must
satisfy a set of requirements. First, if a unit node
u ∈ U has a marker m ∈ marker(u), then the
assignment of umust correspond to the interpreta-
tion of m.

∀u ∈ U,∀m ∈ marker(u), β(u) = δ(m) (23)
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Then, the assignment of any unit node u must
belong to the set of units that have type type(u).

∀u ∈ U, β(u) ∈ π0δ(type(u)) (24)

For every actantial triple (u, s, v) ∈ A, and as
{γγγ(s)} is the CUT that introduces a ASlot s, the
interpretation δ({γγγ(s)}) must reflect the fact that
the unit represented by v fills the actant slot s of
the unit represented by u.

∀(u, s, v) ∈ A,
π0,sδ({γγγ(s)}) = {(β(u), β(v))}

(25)

Similarly, for every circumstantial triple
(u, s, v) ∈ C, the interpretation of s must reveal
the fact that the unit represented by v depends on
the unit represented by u with respect to s.

∀(u, s, v) ∈ C, (β(u), β(v)) ∈ δ(s) (26)

Finally, if two unit nodes are asserted to be
equivalent, then the unit they represent are the
same and their assignment must be the same.

∀(u1, u2) ∈ Eq, β(u1) = β(u2) (27)

We may now define the notion of satisfaction of
a UG by a model.

Definition 3.5 (Model satisfying a UG). Let G =
(U, l, A,C,Eq) be a UG defined over a support
S, and (D, δ, β) be a model of G. (D, δ, β) is a
model satisfying G, noted (D, δ, β)�mG, if β is
an assignment that satisfies equations 23 to 27.

Using the notion of a support model and a UG
model it is possible to define an entailment relation
between UGs as follows.

Definition 3.6 (Entailment and equivalence). Let
H and G be two UGs defined over a support S .

• G entails H , or H is a semantic consequence
of G, noted G�mH , if and only if for any
model (D, δ) of S and for any assignment βG
such that (D, δ, βG)�mG, then there exists
an assignment βH of the unit nodes inH such
that (D, δ, βH)�mH .

• H and G are model-equivalent, noted
H ≡mG, if and only ifH �mG andG�mH .

4 Conclusion

We thus studied how to formalize, in a knowledge
engineering perspective, the dependency struc-
tures and the valency-based predicates. We gave
an overview of the foundational concepts of the
new graph-based Unit Graphs KR formalism. The
valency-based predicates are represented by unit
types, and are described in a unit types hierar-
chy. Circumstantial relations are another kind of
dependency relation that are described in a hierar-
chy, and along with a set of unit identifiers these
two structures form a UGs support on which UGs
may be defined.

We then provided these foundational structures
with a model, in the logical sense, using a rela-
tional algebra. We dealt with the problem of pro-
hibited and optional actant slots by adding a spe-
cial nothing element • in the domain of the model,
and listed the different equations that the interpre-
tation function must satisfy so that a model satis-
fies a UG. We finally introduced the notion of se-
mantic consequence, which is a first step towards
reasoning with dependency structure in the UGs
framework.

We identify three future directions of research.

• We did not introduce the definition of PUTs
that are to model lexicographic definitions in
the ECD and shall be included to the support.
The definition of the model semantics of the
UGs shall be completed so as to take these
into account.

• A UG represents explicit knowledge that only
partially define the interpretations of unit
types, CSymbols, and unit identifiers. One
need to define algorithms to complete the
model, so as to check the entailment of a UG
by another.

• We know from ongoing works that such an
algorithm may lead to an infinite domain. A
condition over the unit types hierarchy must
be found so as to ensure that the model is de-
cidable for a finite UG.
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