
Proceedings of Recent Advances in Natural Language Processing, pages 111–117,
Hissar, Bulgaria, 12-14 September 2011.

MDL-based Models for Alignment of Etymological Data

Hannes Wettig, Suvi Hiltunen, Roman Yangarber
Department of Computer Science
University of Helsinki, Finland

First.Last@cs.helsinki.fi

Abstract

We introduce several models for alignment of
etymological data, that is, for finding the best
alignment, given a set of etymological data, at
the sound or symbol level. This is intended
to obtain a means of measuring the quality of
the etymological data sets, in terms of their in-
ternal consistency. One of our main goals is to
devise automatic methods for aligning the data
that are as objective as possible, the models
make no a priori assumptions—e.g., no prefer-
ence for vowel-vowel or consonant-consonant
alignments. We present a baseline model and
several successive improvements, using data
from the Uralic language family.

1 Introduction
We present work on induction of alignment rules for
etymological data, in a project that studies genetic re-
lationships among the Uralic language family. This is
a continuation of previous work, reported in (Wettig
and Yangarber, 2011), where the methods were intro-
duced. In this paper, we extend the models reported
earlier and give a more comprehensive evaluation of
results. In addition to the attempt to induce alignment
rules, we aim to derive measures of quality of data sets
in terms of their internal consistency. More consis-
tent dataset should receive a higher score in the evalu-
ations. Currently our goal is to analyze given, existing
etymological datasets, rather than to construct cognate
sets from raw linguistic data. The question to be an-
swered is whether a complete description of the corre-
spondence rules can be discovered automatically. Can
they be found directly from raw etymological data—
sets of cognate words from languages within the lan-
guage family? Are the alignment rules are “inherently
encoded” in a dataset (the corpus) itself? We aim to
develop methods that are as objective as possible, that
rely only on the data, rather than on any prior assump-
tions about the data, the possible rules and alignments.

Computational etymology encompasses several
problem areas, including: discovery of sets of genet-

ically related words—cognates; determination of ge-
netic relations among groups of languages, from raw
or organized linguistic data; discovering regular sound
correspondences across languages in a given language
family; and reconstruction, either diachronic—i.e., re-
construction of proto-forms for a hypothetical par-
ent language, from which the word-forms found in
the daughter languages derive, or synchronic—i.e., of
word forms that are missing from existing languages.

Several approaches to etymological alignment have
emerged over the last decade. The problem of discov-
ering cognates is addressed, e.g., in, e.g., (Bouchard-
Côté et al., 2007; Kondrak, 2004; Kessler, 2001). In
our work, we do not attempt to find cognate sets, but
begin with given sets of etymological data for a lan-
guage family, possibly different or even conflicting.
We use the principle of recurrent sound correspon-
dence, as in much of the literature, including the men-
tioned work, (Kondrak, 2002; Kondrak, 2003) and oth-
ers. Modeling relationships within the language fam-
ily arises in the process of evaluation of our alignment
models. Phylogenetic reconstruction is studied exten-
sively by, e.g.,(Nakhleh et al., 2005; Ringe et al., 2002;
Barbancon et al., 2009); these work differ from ours in
that they operate on pre-compiled sets of “characters”,
capturing divergent features of entire languages within
the family, whereas we operate at the level of words or
cognate sets. Other related work is further mentioned
in the body of the paper.

We describe our datasets in the next section, present
a statement of the etymology alignment problem in
Section 3, cover our models in detail in Sections 4– 6,
and discuss results and next steps in Section 7.

2 Data

We use two digital Uralic etymological resources,
SSA—Suomen Sanojen Alkuperä, “The Origin of
Finnish Words”, (Itkonen and Kulonen, 2000), and the
StarLing database, (Starostin, 2005). StarLing, origi-
nally based on (Rédei, 1988 1991), differs from SSA in
several respects. StarLing has about 2000 Uralic cog-
nate sets, compared with over 5000 in SSA, and does

111

not explicitly indicate dubious etymologies. However,
Uralic data in StarLing is more evenly distributed, be-
cause it is not Finnish-centric like SSA is—cognate sets
in StarLing are not required to contain a member from
Finnish. The Uralic language family has not been
studied by computational means previously.

3 Aligning Pairs of Words

We begin with pairwise alignment: aligning a set of
pairs of words from two related languages in our data
set. The task of alignment means, for each word pair,
finding which symbols correspond. We expect that
some symbols will align with themselves, while others
have undergone changes over the time when the two
related languages have been evolving separately. The
simplest form of such alignment at the symbol level is
a pair (σ : τ) ∈ Σ × T , a single symbol σ from the
source alphabet Σ with a symbol τ from the target al-
phabet T . We denote the sizes of the alphabets by |Σ|
and |T |, respectively.1

Clearly, with this type of 1x1 alignment alone we
cannot align a source word σ of length |σ| with a tar-
get word τ of length |τ | 6= |σ|.2 To model also inser-
tions and deletions, we augment both alphabets with
the empty symbol, denoted by a dot, and use Σ. and
T. as augmented alphabets. We can then align word
pairs such as ien—ige, meaning “gum” in Finnish and
Established, for example, as:

i e n i . e n
| | | | | | |
i g e i g e .

etc. The (historically correct) alignment on the right
consists, e.g., of symbol pairs: (i:i), (.:g), (e:e), (n:.).

4 The Baseline Model

We wish to encode these aligned pairs as com-
pactly as possible, following the Minimum Descrip-
tion Length Principle (MDL), see e.g. (Grünwald,
2007; Rissanen, 1978). Given a data corpus D =
(σ1, τ 1), . . . , (σN , τN) of N word pairs, we first
choose an alignment of each word pair (σi, τ i), which
we then use to “transmit” the data, by simply listing the
sequence of the atomic pairwise symbol alignments.3

In order for the code to be uniquely decodable, we also
need to encode the word boundaries. This can be done
by transmitting a special symbol # that we use only at
the end of a word.

1We refer to “source” and “target” language for conve-
nience only—our models are symmetric, as will become ap-
parent.

2We use boldface to denote words, as vectors of symbols.
3By atomic we mean that the symbols are not analyzed—

in terms of their phonetic features—and treated by the base-
line algorithm as atoms. In particular, the model has no no-
tion of identity of symbols across the languages!

Thus, we transmit objects, or events, e, in the event
space E—which is in this case:

E = Σ. × T. ∪
{

(# : #)
}

We do this by means of Bayesian marginal likeli-
hood, or prequential coding, see e.g., (Kontkanen et al.,
1996), giving the total code length as:

Lbase(D) = (1)

−
∑
e∈E

log Γ
(
c(e) + α(e)

)
+
∑
e∈E

log Γ
(
α(e)

)
+ log Γ

[∑
e∈E

(
c(e) + α(e)

)]
− log Γ

[∑
e∈E

α(e)

]

The count c(e) is the number of times event e occurs
in a complete alignment of the corpus; in particular,
c(# : #) = N occurs as many times as there are word
pairs. The alignment counts are maintained in a corpus-
global count matrix M , where M(i, j) = c(i : j).
The α(e) are the (Dirichlet) priors on the events. In
the baseline algorithm, we set α(e) = 1 for all e, the
so-called uniform prior, which does not favor any dis-
tribution over E, a priori. Note that this choice nulls
the second summation in equation 1.

Our baseline algorithm is simple: we first randomly
align the entire corpus, then re-align one word pair at a
time, greedily minimizing the total cost in Eq. 1, using
dynamic programming.

In the matrix in Fig. 1, each cell corresponds to a par-
tial alignment: reaching cell (i, j) means having read
off i symbols of the source and j symbols of the tar-
get word. We iterate this process, re-aligning the word
pairs, i.e., for the given word pair, we subtract the con-
tribution of its current alignment from the global count
matrix, then re-align the word pair, then add the newly
aligned events back to the global count matrix. Re-
alignment continues until convergence.

Re-alignment Step: align source word σ consisting
of symbols σ = [σ1...σn] ∈ Σ∗ with target word τ =
[τ1...τm]. We use dynamic programming to fill in the
matrix, e.g., top-to-bottom, left-to-right:4

Alignments of σ and τ correspond in a 1-1 fashion
to paths through the matrix, starting with cost equal to
0 in top-left cell and terminating in bottom-right cell,
moving only downward or rightward.

Each cell stores the cost of the most probable path
so far: the most probable way to have scanned σ up to
symbol σi and τ up to τj , marked X in the Figure:

V (σi, τj) = min


V (σi, τj−1) +L(. : τj)

V (σi−1, τj) +L(σi : .)

V (σi−1, τj−1) +L(σi : τj)

(2)

Each term V (., .) has been computed earlier by the dy-
namic programming; the term L(.)—the cost of align-

4NB: in Fig. 1, the left column and the top row store the
costs for symbol deletions at the beginning of the source and
the target word, respectively.

112

Figure 1: Re-alignment matrix: computes Dynamic
Programming search for the most probable alignment.

ing the two symbols—is a parameter of the model,
computed in equation (3).

The parameters L(e), or P (e), for every observed
event e, are computed from the change in the total
code-length—the change that corresponds to the cost
of adjoining the new event e to the set of previously
observed events E:

L(e) = ∆eL = L
(
E ∪ {e}

)
− L(E)

P (e) = 2−∆eL =
2−L

(
E∪{e}

)
2−L(E)

(3)

Combining eqs. 1 and 3 gives the probability:

P (e) =
c(e) + 1∑

e′

c(e′) + |E|
(4)

In particular, the cost of the most probable complete
alignment of the two words will be stored in the
bottom-right cell, V (σn, τm), marked �. An example
alignment count matrix is shown in Fig. 2.

4.1 The Two-Part Code
The baseline model revealed two problems. First, it
seems to get stuck in local optima, and second, it pro-
duces many events with very low counts (occurring
only once or twice).

To address the first problem we use simulated an-
nealing with a sufficiently slow cooling schedule. This
yields a reduction in the cost, and a better—more
sparse—alignment count matrix.

The second problem is more substantial. Start-
ing from a common ancestor language, the number
of changes that occurred in either language should be
small. We expect sparse data—that only a small pro-
portion of all possible events in E will actually ever
occur.

We incorporate this notion into the model by means
of a two-part code. First we encode which events have
occurred/have been observed: we send a. the number
of events with non-zero counts—this costs log(|E|+1)
bits, and b. specifically which subset E+ ⊂ E of the

Figure 2: Global count matrix, using two-part model

events have non-zero counts—this costs log
(|E|
|E+|

)
bits.

This first part of the code is called the codebook. Given
the codebook, we transmit the complete data, E+, us-
ing Bayesian marginal likelihood. The code length be-
comes:

Ltpc(D) = log(|E|+ 1) + log

(
|E|
|E+|

)
(5)

−
∑

e∈E+

log Γ
(
c(e) + 1

)
+ log Γ

(∑
e∈E+

(
c(e) + 1

))
− log Γ(|E+|)

where E+ denotes the set of events with non-zero
counts, and we have set all α(e)’s to one. Optimiz-
ing the above function with simulated annealing yields
much better alignments.

4.2 Aligning Multiple Symbols
Multiple symbols are aligned in (Bouchard-Côté et al.,
2007; Kondrak, 2003). For example, Estonian and
Finnish have frequent geminated consonants, which
correspond to single symbols/sounds in other lan-
guages; diphthongs may align with single vowels; etc.
We extend the baseline model to a 2x2 model, to al-
low correspondences of up to two symbols on both the
source and the target side. The set of admissible kinds
of events is then extended to include:

K =

 (# : #), (σ : .), (σσ′ : .),
(. : τ), (σ : τ), (σσ′ : t),
(. : ττ ′), (σ : ττ ′), (σσ′ : ττ ′)

 (6)

We expect correspondences of the different types to
behave differently, so we encode the occurrences of dif-
ferent event kinds separately in the codebook:

Lmult = L(CB) + L(Data|CB) (7)

L(CB) =
∑
k∈K

[
log(Nk + 1) + log

(
Nk

Mk

)]
(8)

113

L(D|CB) = −
∑
e∈E

log Γ
(
c(e) + 1

)
(9)

+ log Γ

[∑
e∈E

(
c(e) + 1

)]
− log Γ(|E|)

where Nk is the number of possible events of kind k
and Mk the corresponding number of such events actu-
ally observed in the alignment;

∑
k Mk ≡ |E|.

5 Three-Dimensional Alignment
The baseline models align languages pairwise. The
alignment models allow us to learn 1-1 patterns of cor-
respondence in the language family. This model is eas-
ily extended to any number of languages. The model
in (Bouchard-Côté et al., 2007) also aligns more than
two languages at a time. We extend the 2-D model
to three dimensions as follows. We seek an alignment
where symbols correspond to each other in a 1-1 fash-
ion, as in the 2-D baseline. A three-dimensional align-
ment is a triplet of symbols (σ : τ : ξ) ∈ Σ. × T. × Ξ..
For example, the words meaning “9” in Finnish, Es-
tonian and Mordva, can be aligned simultaneously as:

y . h d e k s ä n
| | | | | | | | |
ü . h . e k s a .
| | | | | | | | |
v e χ . . k s a .

In 3-D alignment, the input data contains all examples
where words in at least two languages are present5—
i.e., a word may be missing from one of the languages,
(which allows us to utilize more of the data). Thus
we have two types of examples: complete—where all
three words present (as “9” above), and incomplete—
containing words in only two languages. For ex-
ample, for (haamu:—:čama)—“ghost” in Finnish and
Mordva—the cognate Estonian word is missing.

We next extend the 2-D count matrix and the 2-D
re-alignment algorithm to three dimensions. The 3-D
re-alignment matrix is directly analogous to the 2-D
version. For the alignment counts in 3-D, we handle
complete and incomplete examples separately.

Our “marginal” 3-D alignment model aligns three
languages simultaneously, using three marginal 2-D
matrices, each storing a pairwise 2-D alignment. The
marginal matrices for three languages are denoted
MΣT , MΣΞ and MTΞ. The algorithm optimizes the
total cost of the complete data, which is defined as the
sum of the three 2-D costs obtained from applying pre-
quential coding to the marginal alignment matrices.

When computing the cost for event e = (σ, τ, ξ), we
consider complete and incomplete examples separately.
In “incomplete” examples, we use the counts from the
corresponding marginal matrix directly. E.g., for event
count c(e), where e = (σ,−, ξ), and “−” denotes the
missing word, the event count is given by: MΣΞ(σ, ξ),

5This was true by definition in the baseline 2-D algorithm.

Figure 3: 3-dimensional alignment matrix.

and the cost of each alignment is computed as in the
baseline model, directly in two dimensions.

In case when the data triplet is complete—fully
observed—the alignment cost is computed as the sum
of the pairwise 2-D costs, given by three marginal
alignment count matrices:6

L(σ : τ : ξ) = LΣT (σ : τ)

+ LΣΞ(σ : ξ)

+ LTΞ(τ : ξ) (10)

The cost of each pairwise alignment is computed using
prequential two-part coding, as in sec. 4.1. Note that
when we register a complete alignment (σ, τ, ξ), we
register it in each of the base matrices—we increment
each of the marginal counts: MΣT (σ, τ), MΣΞ(σ, ξ),
and MTΞ(τ, ξ).

To calculate the transition costs in the Viterbi algo-
rithm, we also have two cases, complete and incom-
plete. For incomplete examples, we perform Viterbi
in 2-D, using the costs directly from the corresponding
marginal matrix, equation (5).

3-D re-alignment phase: for complete examples in
3-D, is a direct analogue of the 2-D re-alignment—in
the (i, j) plane—in eq. (2), extended to the third di-
mension, k. The cell V (σi, τj , ξk)—the cost of the
most probable path leading to the cell (i, j, k)—is cal-
culated by Dynamic Programming, using the symbol-
alignment costs L(σ : τ : ξ). In addition to the three
source cells as in eq. (2), in plane k, there are four ad-
ditional source cells from the previous plane, k − 1.

Visualization: We wish to visualize the distribution
of counts in the final 3-D alignment, except that now we
must deal with expected counts, rather than observed
counts, because some of the examples are incomplete.
We can form a 3-D visualization matrixM∗ as follows:

• Compute |D|, the total number of alignments
in the complete data (including the end-of-word
alignments)

6Note that this results in an incomplete code, since every
symbol is coded twice, but that does not affect the learning.

114

• For each cell (i, j, k) inM∗, the weight in that cell
is given by P (i : j : k) · |D|, where P (i : j : k) is
the probability of the alignment.

• The matrix of expected counts will have no zero-
weight cells, since there are no zero-probability
events—except (. : . : .). To suppress visualizing
events with very low expected counts, we don’t
show cells with counts below a threshold, say, 0.5.

A distribution of the expected counts in 3-D alignment
is shown in figure 3. The three languages are Finnish,
Estonian and Mordva. The area of each point in this
figure is proportional to the expected count of the cor-
responding 3-way alignment.

6 Nuisance Suffixes

The existing etymological datasets are not always per-
fectly suited to the alignment task as we have defined it
here. For example, the SSA contains mostly complete
word-forms from all the languages, as they would ap-
pear in a dictionary. As a consequence, this frequently
includes morphological material that is not relevant
from the point of view of etymology or alignment. To
illustrate this (in the Indo-European family), consider
aligning English maid and German mädchen—in Ger-
man, the word-form without the suffix has disappeared.
Many instances with such suffixes are found in the
SSA; StarLing presents stemmed data to a larger extent,
though assuring that every form in the dataset is per-
fectly stemmed is a very difficult task. From the point
of view of computational alignment, such “nuisance”
suffixes present a problem, by confusing the model.

We extend the model to handle, or discover, the nui-
sance suffixes automatically, as follows. Consider, in
the realignment matrix in Fig. 1, the cells (i, j) (marked
X ,) (i,m), and (j, n). We always end by transitioning
from cell marked �, to the terminal cell, via the spe-
cial end-of-word alignment event (# : #), whose cost
is computed from N , the number of word pairs in the
data (this final transition is not shown in the figure).

While previously, we could only reach the terminal
cell from cell � via event (# : #), we now also permit
a hyper-jump from any cell in the matrix to the terminal
cell, which is equivalent to treating the remainder of
source and/or target word as a nuisance suffix. Thus,
hyper-jump from cell marked X means that we code
the remaining symbols [σi+1...σn] in σ and [τj+1...τm]
in τ separately, not using the global count matrix.

That is, to align σ and τ , we first code the symbols
up to X jointly, prequentially, using the global count
matrix. After X , we code a special event (− : −),
meaning an aligned morpheme boundary, similar to
(# : #) which says we have aligned the word bound-
aries. Then we code the rest of [σi+1...σn], and the rest
of [τj+1...τm], both followed by #.

If we hyper-jump from cell (i,m), rather than from
X , then we code the event (− : #)—empty suffix on

Two-part model Suffix model
Fin-Est 21748.29 21445.01
Fin-Ugr 10987.98 10794.87

Table 1: Nuisance suffix models.

target side, and then code the rest of [σi+1...σn] in σ
and #. Symmetrically for the hyper-jump from (j,m).

The cost of each symbol in the suffix can be coded,
for example, according to: a uniform language model:
each source symbol costs − log 1/(|Σ|+ 1); a unigram
model: for each source symbol σ (including #), com-
pute its frequency p(σ) from the raw source data, and
let cost(σ) = − log p(σ); a bigram model; etc.

Table 1 compares the code length between the orig-
inal 1x1 two-part code model and a nuisance suffix
model (for two language pairs). The code length is al-
ways lower in the nuisance suffix model.

Although it finds instances of true nuisance suf-
fixes, the model may be fooled by certain phenom-
ena. For example, when aligning Finnish and Estonian,
the model decides that final vowels in Finnish which
have disappeared in Estonian are suffixes, whereas
that is historically not the case. To avoid such mis-
interpretation, the suffix detection feature should be
used in conjunction with other model variants, includ-
ing alignment of more than a pair of languages.

7 Results

One way to evaluate the presented models thoroughly
would require a gold-standard aligned corpus; the
models produce alignments, which would be com-
pared to expected alignments. Given a gold-standard,
we could measure performance quantitatively, e.g., in
terms of accuracy. However, no gold-standard align-
ment for the Uralic data currently exists, and building
one is very costly and slow.

Alignment: We can perform a qualitative evalua-
tion, by checking how many correct sound correspon-
dences a model finds—by inspecting the final align-
ment of the corpus and the alignment matrix. A matrix
for a 2-D, 1x1 two-part model alignment of Finnish-
Estonian is shown in figure 2. The size of each ball is
proportional to the number of alignments in the corpus
of the corresponding symbols.

Finnish and Estonian are closely related, and the
alignment shows a close correspondence—the model
finds the “diagonal,” i.e., most sounds correspond to
“themselves.” We must note that this model has no a
priori knowledge about the nature of the symbols, e.g.,
that Finnish a is identical to or has any relation to Esto-
nian a. The languages are coded separately, and they
may have different alphabets—as they do in general
(we use transcribed data).

Rules of correspondence: One of our main goals
is to model complex rules of correspondence among
languages. We can evaluate the models based on how

115

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 500 1000 1500 2000 2500 3000 3500

C
om

pr
es

se
d

si
ze

 (
by

te
s)

Data set size

Aligning Finnish with Estonian

GZip
BZip2

two-part code
2x2-boundaries

Figure 4: Comparison of compression power. Two-part
code model refers to the 1x1 model that is described in
section 4.1 and 2x2-boundaries model multiple symbol
alignment model that is discussed in section 4.2.

well they discover rules, and how complex the rules
are. In Fig. 2, the baseline model finds that Fin. u ∼
Est. u, but sometimes to o—this entropy is left unex-
plained by this model. However, the more complex 2x2
model identifies the cause exactly—by discovering that
Finnish diphthongs uo, yö, ie correspond to Estonian
long vowels oo, öö, ee, which covers (i.e., explains!)
all instances of (u:o).

The plot shows many Finnish-Estonian corresp-
ondences, which can be found in handbooks,
e.g., (Lytkin, 1973; Sinor, 1997). For example, ä∼ä
vs. ä∼a about evenly—reflecting the rule that original
front vowels (ä) became back (a) in non-first syllables
in Estonian; word-final vowels a, i, ä, preserved in
Finnish are often deleted in Estonian; etc. These can
be observed directly in the alignment matrix, and in the
aligned corpus.

Compression: In figure 4, we compare the mod-
els against standard compressors, gzip and bzip, tested
on over 3200 Finnish-Estonian word pairs from SSA.
The data given to our models is processed by the com-
pressors, one word per line. Of course, our models
know that they should align pairs of consecutive lines.
This shows that learning about the “vertical” corresp-
ondences achieves much better compression rates—
extract regularity from the data.

Language distance: We can use alignment to mea-
sure inter-language distances. We align all languages
in StarLing pairwise, e.g., using a two-part 1x1 model.
We can then measure the Normalized Compression
Distance (Cilibrasi and Vitanyi, 2005):

NCD(a,b) =
C(a,b)−min(C(a,a), C(b,b))

max(C(a,a), C(b,b))

where 0 < NCD < 1, and C(a,b) is the compression
cost—i.e., the cost of the complete aligned data for lan-
guages a and b. The pairwise compression distances

Fin-Ugr

Ob’

Volga

Baltic

Hungarian

Hanty

Mansi

Finnish

Komi

Udmurt

Estonian

Saami
Mari

Mordva

Perm’

Figure 5: Finno-Ugric branch of the Uralic family

Figure 6: Finno-Ugric tree induced by NCD

are shown in table 2. We can then use these distances to
draw phylogenetic trees, using hierarchical clustering
methods. We used the UPGMA algorithm, (Murtagh,
1984), the resulting tree shown in Fig. 6. More so-
phisticated methods, such as the Fast Quartet method,
CompLearn, (Cilibrasi and Vitanyi, 2011) may produce
even more accurate trees. Even such a simple model
as the 1x1 baseline shows emerging patterns that mir-
ror the relationships in the Uralic family tree, shown
in Fig. 5, adapted from (Anttila, 1989). For exam-
ple, scanning the entries in the table corresponding to
Finnish, the compression distances grow as the corre-
sponding distance within the family tree grows. Sis-
ter languages (in bold) should be closest among all
their relations. This confirms that the model is able
to compress better—find more regularity in the data—
between languages that are are more closely related.

8 Conclusions and Future Work
We have presented a baseline model for alignment,
and several extensions. We have evaluated the mod-
els qualitatively, by examining the alignments and the
rules of correspondence that they discover, and quanti-
tatively by measuring compression cost and language
distances. We trust that the methods presented here
provide a good basis for further research.

We are developing methods that take context, or en-

116

fin khn kom man mar mrd saa udm ugr
est .37 .70 .70 .71 .70 .66 .58 .73 .77
fin .73 .69 .75 .69 .63 .58 .69 .77
khn .67 .63 .70 .71 .66 .71 .76
kom .67 .65 .67 .70 .41 .70
man .67 .71 .77 .68 .75
mar .64 .67 .67 .73
mrd .64 .70 .72
saa .68 .76
udm .75

Table 2: Pairwise normalized compression costs for Finno-Ugric sub-family of Uralic, in StarLing data.

vironment into account in modeling. The idea is to
code sounds and environments as vectors of phonetic
features and instead of aligning symbols, to align in-
dividual features of the symbols. The gain from intro-
ducing the context enables us to discover more com-
plex rules of correspondence. We also plan to extend
our models to diachronic reconstruction, which allows
reconstruction of proto forms.

Acknowledgments
This research was supported by the Uralink Project
of the Academy of Finland, grant 129185. We thank
Teemu Roos for his suggestions, and Arto Vihavainen
for his work on the implementation of the algorithms.

References
R. Anttila. 1989. Historical and comparative linguis-

tics. John Benjamins.

F. Barbancon, T. Warnow, D. Ringe, S. Evans, and
L. Nakhleh. 2009. An experimental study compar-
ing linguistic phylogenetic reconstruction methods.
In Proc. Conf. on Languages and Genes, UC Santa
Barbara. Cambridge University Press.

A. Bouchard-Côté, P. Liang, T.Griffiths, and D. Klein.
2007. A probabilistic approach to diachronic
phonology. In Proc. EMNLP-CoNLL, Prague.

R. Cilibrasi and P.M.B. Vitanyi. 2005. Clustering
by compression. IEEE Transactions on Information
Theory, 51(4).

R.L. Cilibrasi and P.M.B. Vitanyi. 2011. A fast quar-
tet tree heuristic for hierarchical clustering. Pattern
Recognition, 44(3):662–677.

P. Grünwald. 2007. The Minimum Description Length
Principle. MIT Press.

E. Itkonen and U.-M. Kulonen. 2000. Suomen Sano-
jen Alkuperä (The Origin of Finnish Words). Suo-
malaisen Kirjallisuuden Seura, Helsinki, Finland.

B. Kessler. 2001. The Significance of Word Lists:
Statistical Tests for Investigating Historical Con-
nections Between Languages. The University of
Chicago Press, Stanford, CA.

G. Kondrak. 2002. Determining recurrent sound cor-
respondences by inducing translation models. In
Proceedings of COLING 2002, Taipei.

G. Kondrak. 2003. Identifying complex sound cor-
respondences in bilingual wordlists. In A. Gelbukh
(Ed.) CICLing, Mexico. Springer LNCS, No. 2588.

G. Kondrak. 2004. Combining evidence in cognate
identification. In Proceedings of Canadian-AI 2004,
London, ON. Springer-Verlag LNCS, No. 3060.

P. Kontkanen, P. Myllymäki, and H. Tirri. 1996. Con-
structing Bayesian finite mixture models by the EM
algorithm. Technical Report NC-TR-97-003, ES-
PRIT Working Group on NeuroCOLT.

V. I. Lytkin. 1973. Voprosy Finno-Ugorskogo Jazykoz-
nanija (Issues in Finno-Ugric Linguistics), volume
1–3. Nauka, Moscow.

F. Murtagh. 1984. Complexities of hierarchic cluster-
ing algorithms: the state of the art. Computational
Statistics Quarterly, 1.

L. Nakhleh, D. Ringe, and T. Warnow. 2005. Perfect
phylogenetic networks: A new methodology for re-
constructing the evolutionary history of natural lan-
guages. Language, 81(2).

K. Rédei. 1988–1991. Uralisches etymologisches
Wörterbuch. Harrassowitz, Wiesbaden.

D. Ringe, T. Warnow, and A. Taylor. 2002. Indo-
european and computational cladistics. Transact.
Philological Society, 100(1).

J. Rissanen. 1978. Modeling by shortest data descrip-
tion. Automatica, 14(5).

Denis Sinor, editor. 1997. The Uralic Languages: De-
scription, History and Foreign Influences (Handbook
of Uralic Studies). Brill Academic Publishers.

S. A. Starostin. 2005. Tower of babel: Etymological
databases. http://newstar.rinet.ru/.

H. Wettig and R. Yangarber. 2011. Probabilistic mod-
els for alignment of etymological data. In Proc.
NODALIDA, Riga, Latvia.

117

