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Abstract 

Dependency cohesion refers to the 

observation that phrases dominated by 

disjoint dependency subtrees in the source 

language generally do not overlap in the 

target language. It has been verified to be a 

useful constraint for word alignment. 

However, previous work either treats this 

as a hard constraint or uses it as a feature in 

discriminative models, which is ineffective 

for large-scale tasks. In this paper, we take 

dependency cohesion as a soft constraint, 

and integrate it into a generative model for 

large-scale word alignment experiments. 

We also propose an approximate EM 

algorithm and a Gibbs sampling algorithm 

to estimate model parameters in an 

unsupervised manner. Experiments on 

large-scale Chinese-English translation 

tasks demonstrate that our model achieves 

improvements in both alignment quality 

and translation quality. 

1 Introduction 

Word alignment is the task of identifying word 

correspondences between parallel sentence pairs. 

Word alignment has become a vital component of 

statistical machine translation (SMT) systems, 

since it is required by almost all state-of-the-art 

SMT systems for the purpose of extracting phrase 

tables or even syntactic transformation rules 

(Koehn et al., 2007; Galley et al., 2004). 

During the past two decades, generative word 

alignment models such as the IBM Models (Brown 

et al., 1993) and the HMM model (Vogel et al., 

1996) have been widely used, primarily because 

they are trained on bilingual sentences in an 

unsupervised manner and the implementation is 

freely available in the GIZA++ toolkit (Och and 

Ney, 2003). However, the word alignment quality 

of generative models is still far from satisfactory 

for SMT systems. In recent years, discriminative 

alignment models incorporating linguistically 

motivated features have become increasingly 

popular (Moore, 2005; Taskar et al., 2005; Riesa 

and Marcu, 2010; Saers et al., 2010; Riesa et al., 

2011). These models are usually trained with 

manually annotated parallel data. However, when 

moving to a new language pair, large amount of 

hand-aligned data are usually unavailable and 

expensive to create.  

A more practical way to improve large-scale 

word alignment quality is to introduce syntactic 

knowledge into a generative model and train the 

model in an unsupervised manner (Wu, 1997; 

Yamada and Knight, 2001; Lopez and Resnik, 

2005; DeNero and Klein, 2007; Pauls et al., 2010). 

In this paper, we take dependency cohesion (Fox, 

2002) into account, which assumes phrases 

dominated by disjoint dependency subtrees tend 

not to overlap after translation. Instead of treating 

dependency cohesion as a hard constraint (Lin and 

Cherry, 2003) or using it as a feature in 

discriminative models (Cherry and Lin, 2006b), we 

treat dependency cohesion as a distortion 

constraint, and integrate it into a modified HMM 

word alignment model to softly influence the 

probabilities of alignment candidates.  We also 

propose an approximate EM algorithm and an 

explicit Gibbs sampling algorithm to train the 

model in an unsupervised manner. Experiments on 

a large-scale Chinese-English translation task 

demonstrate that our model achieves 

improvements in both word alignment quality and 

machine translation quality. 

The remainder of this paper is organized as 

follows: Section 2 introduces dependency cohesion 

291

Transactions of the Association for Computational Linguistics, 1 (2013) 291–300. Action Editor: Chris Callison-Burch.
Submitted 5/2013; Published 7/2013. c©2013 Association for Computational Linguistics.



constraint for word alignment. Section 3 presents 

our generative model for word alignment using 

dependency cohesion constraint. Section 4 

describes algorithms for parameter estimation. We 

discuss and analyze the experiments in Section 5. 

Section 6 gives the related work. Finally, we 

conclude this paper and mention future work in 

Section 7. 

2 Dependency Cohesion Constraint for 

Word Alignment 

Given a source (foreign) sentence 𝒇1
𝐽

= 𝑓1, 𝑓2, … , 𝑓𝐽 

and a target (English) sentence 𝒆1
𝐼 = 𝑒1, 𝑒2, … , 𝑒𝐼 , 

the alignment 𝓐 between 𝒇1
𝐽
and 𝒆1

𝐼  is defined as a 

subset of the Cartesian product of word positions: 

𝓐 ∈ {(𝑗, 𝑖): 𝑗 = 1, … , 𝐽; 𝑖 = 1, … , 𝐼} 

When given the source side dependency tree 𝑇, we 

can project dependency subtrees in 𝑇  onto the 

target sentence through the alignment 𝓐 . 

Dependency cohesion assumes projection spans of 

disjoint subtrees tend not to overlap. Let 𝑇(𝑓𝑖) be 

the subtree of 𝑇 rooted at 𝑓𝑖, we define two kinds 

of projection span for the node 𝑓𝑖: subtree span and 

head span. The subtree span is the projection span 

of the total subtree 𝑇(𝑓𝑖), while the head span is 

the projection span of the node 𝑓𝑖 itself. Following 

Fox (2002) and Lin and Cherry (2003), we 

consider two types of dependency cohesion: head-

modifier cohesion and modifier-modifier cohesion. 

Head-modifier cohesion is defined as the subtree 

span of a node does not overlap with the head span 

of its head (parent) node, while modifier-modifier 

cohesion is defined as subtree spans of two nodes 

under the same head node do not overlap each 

other. We call a situation where cohesion is not 

maintained crossing. 

Using the dependency tree in Figure 1 as an 

example, given the correct alignment “R”, the 

subtree span of “有/have” is [8, 14] , and the head 

span of its head node “之一/one of” is [3, 4]. They 

do not overlap each other, so the head-modifier 

cohesion is maintained. Similarly, the subtree span 

of “少数/few” is [6, 6], and it does not overlap the 

subtree span of  “有/have”, so a modifier-modifier 

cohesion is maintained. However, when “R” is 

replaced with the incorrect alignment “W”, the 

subtree span of “有/have” becomes [3, 14], and it 

overlaps the head span of its head “之一/one of”, 

so a head-modifier crossing occurs. Meanwhile, 

the subtree spans of the two nodes “有/have” and 

“少数 /few” overlap each other, so a modifier-

modifier crossing occurs.  

 
Fox (2002) showed that dependency cohesion is 

generally maintained between English and French. 

To test how well this assumption holds between 

Chinese and English, we measure the dependency 

cohesion between the two languages with a 

manually annotated bilingual Chinese-English data 

set of 502 sentence pairs 1 . We use the head-

modifier cohesion percentage (HCP) and the 

modifier-modifier cohesion percentage (MCP) to 

measure the degree of cohesion in the corpus. HCP 

(or MCP) is used for measuring how many head-

modifier (or modifier-modifier) pairs are actually 

cohesive. Table 1 lists the relative percentages in 

both Chinese-to-English (ch-en, using Chinese side 

dependency trees) and English-to-Chinese (en-ch, 

using English side dependency trees) directions. 

As we see from Table 1, dependency cohesion is 

                                                           
1 The data set is the development set used in Section 5. 
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Figure 1: A Chinese-English sentence pair 

including the word alignments and the Chinese 

side dependency tree. The Chinese and English 

words are listed horizontally and vertically, 

respectively. The black grids are gold-standard 

alignments. For the Chinese word “有/have”, 

we give two alignment positions, where “R” is 

the correct alignment and “W” is the incorrect 

alignment. 
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generally maintained between Chinese and English. 

So dependency cohesion would be helpful for 

word alignment between Chinese and English. 

However, there are still a number of crossings. If 

we restrict alignment space with a hard cohesion 

constraint, the correct alignments that result in 

crossings will be ruled out directly. In the next 

section, we describe an approach to integrating 

dependency cohesion constraint into a generative 

model to softly influence the probabilities of 

alignment candidates. We show that our new 

approach addresses the shortcomings of using 

dependency cohesion as a hard constraint. 

 

3 A Generative Word Alignment Model 

with Dependency Cohesion Constraint  

The most influential generative word alignment 

models are the IBM Models 1-5 and the HMM 

model (Brown et al., 1993; Vogel et al., 1996; Och 

and Ney, 2003). These models can be classified 

into sequence-based models (IBM Models 1, 2 and 

HMM) and fertility-based models (IBM Models 3, 

4 and 5). The sequence-based model is easier to 

implement, and recent experiments have shown 

that appropriately modified sequence-based model 

can produce comparable performance with 

fertility-based models (Lopez and Resnik, 2005; 

Liang et al., 2006; DeNero and Klein, 2007; Zhao 

and Gildea, 2010; Bansal et al., 2011). So we built 

a generative word alignment model with 

dependency cohesion constraint based on the 

sequence-based model. 

3.1 The Sequence-based Alignment Model 

According to Brown et al. (1993) and Och and Ney 

(2003), the sequence-based model is built as a 

noisy channel model, where the source sentence 𝒇1
𝐽 

and the alignment 𝒂1
𝐽 are generated conditioning on 

the target sentence 𝒆1
𝐼 . The model assumes each 

source word is assigned to exactly one target word, 

and defines an asymmetric alignment for the 

sentence pair as 𝒂1
𝐽 = 𝑎1, 𝑎2, … , 𝑎𝑗 , … , 𝑎𝐽, where each 

𝑎𝑗 ∈ [0, 𝐼] is an alignment from the source position j 

to the target position 𝑎𝑗 , 𝑎𝑗 = 0  means 𝑓𝑗  is not 

aligned with any target words. The sequence-based 

model divides alignment procedure into two stages 

(distortion and translation) and factors as: 

𝑝(𝒇1
𝐽, 𝒂1

𝐽|𝒆1
𝐼 ) = ∏ 𝑝𝑑(𝑎𝑗|𝑎𝑗−1, 𝐼)𝑝𝑡(𝑓𝑗|𝑒𝑎𝑗

)𝐽
𝑗=1       (1) 

where 𝑝𝑑  is the distortion model and 𝑝𝑡  is the 

translation model. IBM Models 1, 2 and the HMM 

model all assume the same translation model 

 𝑝𝑡(𝑓𝑗|𝑒𝑎𝑗
) . However, they use three different 

distortion models. IBM Model 1 assumes a 

uniform distortion probability 1/(I+1), IBM Model 

2 assumes 𝑝𝑑(𝑎𝑗|𝑗) that depends on word position j 

and HMM model assumes 𝑝𝑑(𝑎𝑗|𝑎𝑗−1, 𝐼)  that 

depends on the previous alignment 𝑎𝑗−1. Recently, 

tree distance models (Lopez and Resnik, 2005; 

DeNero and Klein, 2007) formulate the distortion 

model as 𝑝𝑑(𝑎𝑗|𝑎𝑗−1, 𝑇) , where the distance 

between 𝑎𝑗  and 𝑎𝑗−1  are calculated by walking 

through the phrase (or dependency) tree T. 

3.2 Proposed Model 

To integrate dependency cohesion constraint into a 

generative model, we refine the sequence-based 

model in two ways with the help of the source side 

dependency tree 𝑇𝑓.  

First, we design a new word alignment order. In 

the sequence-based model, source words are 

aligned from left to right by taking source sentence 

as a linear sequence. However, to apply 

dependency cohesion constraint, the subtree span 

of a head node is computed based on the 

alignments of its children, so children must be 

aligned before the head node. Riesa and Marcu 

(2010) propose a hierarchical search procedure to 

traverse all nodes in a phrase structure tree. 

Similarly, we define a bottom-up topological order 

(BUT-order) to traverse all words in the source 

side dependency tree 𝑇𝑓 . In the BUT-order, tree 

nodes are aligned bottom-up with 𝑇𝑓 as a backbone. 

For all children under the same head node, left 

children are aligned from right to left, and then 

right children are aligned from left to right. For 

example, the BUT-order for the following 

dependency tree is  “C B E F D A H G”.  

 
A HGFEDCB

 

ch-en en-ch 

HCP MCP HCP MCP 

88.43 95.82 81.53 91.62 

Table 1: Cohesion percentages (%) of a manually 

annotated data set between Chinese and English. 
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For the sake of clarity, we define a function to 

map all nodes in 𝑇𝑓  into their BUT-order, and 

notate it as BUT(𝑇𝑓) = 𝜋1, 𝜋2, … , 𝜋𝑗 , … , 𝜋𝐽 , where 𝜋𝑗 

means the j-th node in BUT-order is the 𝜋𝑗-th word 

in the original source sentence. We arrange 

alignment sequence 𝒂1
𝐽  according the BUT-order 

and notate it as 𝒂[1,𝐽] = 𝑎𝜋1
, … , 𝑎𝜋𝑗

, … , 𝑎𝜋𝐽
, where 

𝑎𝜋𝑗
 is the aligned position for a node 𝑓𝜋𝑗

. We also 

notate the sub-sequence 𝑎𝜋𝑖
, … , 𝑎𝜋𝑗

as 𝒂[𝑖,𝑗]. 

Second, we keep the same translation model as 

the sequence-based model and integrate the 

dependency cohesion constraints into the distortion 

model. The main idea is to influence the distortion 

procedure with the dependency cohesion 

constraints. Assume node 𝑓ℎ  and node 𝑓𝑚  are a 

head-modifier pair in 𝑇𝑓, where 𝑓ℎ is the head and 

𝑓𝑚  is the modifier. The head-modifier cohesion 

relationship between them is notated as 𝒽ℎ,𝑚 ∈

{𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔} . When the head-modifier 

cohesion is maintained 𝒽ℎ,𝑚 = 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, otherwise 

𝒽ℎ,𝑚 = 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 . We represent the set of head-

modifier cohesion relationships for all the head-

modifier pairs in 𝑇𝑓 as: 

      𝑯 = {𝒽ℎ,𝑚 | ℎ ∈ [1, 𝐽], 𝑚 ∈ [1, 𝐽], ℎ ≠ 𝑚,  

    𝑓ℎ and 𝑓𝑚 are a head-modifier pair in 𝑇𝑓} 

The set of head-modifier cohesion relationships for 

all the head-modifier pairs taking 𝑓ℎ  as the head 

node can be represented as: 
      𝓱ℎ = {𝒽ℎ,𝑚 | 𝑚 ∈ [1, 𝐽], 𝑚 ≠ ℎ,   

               𝑓ℎ and 𝑓𝑚 are a head-modifier pair in 𝑇𝑓} 

Obviously, 𝑯 = ⋃ 𝓱ℎ
𝐽
ℎ=0 . 

Similarly, we assume node 𝑓𝑘 and node 𝑓𝑙 are a 

modifier-modifier pair in 𝑇𝑓 . To avoid repetition, 

we assume 𝑓𝑘  is the node sitting at the position 

after  𝑓𝑙  in BUT-order and call 𝑓𝑘  as the higher-

order node of the pair. The modifier-modifier 

cohesion relationship between them is notated as 

𝓂𝑘,𝑙 ∈ {𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔} . When the modifier-

modifier cohesion is maintained 𝓂𝑘,𝑙 = 𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛 , 

otherwise 𝓂𝑘,𝑙 = 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔. We represent the set of 

modifier-modifier cohesion relationships for all the 

modifier-modifier pairs in 𝑇𝑓 as: 

      𝑴 = {𝓂𝑘,𝑙 | 𝑘 ∈ [1, 𝐽], 𝑙 ∈ [1, 𝐽], 𝑘 ≠ 𝑙,  
         𝑓𝑘 and 𝑓𝑙 are a modifier-modifier pair in 𝑇𝑓} 

The set of modifier-modifier cohesion 

relationships for all the modifier-modifier pairs 

taking 𝑓𝑘  as the higher-order node can be 

represented as: 
      𝓶𝑘 = {𝓂𝑘,𝑙 | 𝑙 ∈ [1, 𝐽], 𝑙 ≠ 𝑘,   

                𝑓𝑘 and 𝑓𝑙 are a modifier-modifier pair in 𝑇𝑓} 

Obviously, 𝑴 = ⋃ 𝓶𝑘
𝐽
𝑘=0 . 

With the above notations, we formulate the 

distortion probability for a node 𝑓𝜋𝑗
 as 

𝑝𝑑 (𝑎𝜋𝑗
, 𝓱𝜋𝑗

, 𝓶𝜋𝑗
|𝒂[1,𝑗−1]). 

 

According to Eq. (1) and the two improvements, 

we formulated our model as: 

𝑝(𝒇1
𝐽, 𝒂[1,𝐽]|𝒆1

𝐼 , 𝑇𝑓) = 𝑝(𝒂[1,𝐽], 𝑯, 𝑴, 𝒇1
𝐽 , |𝒆1

𝐼 , 𝑇𝑓) 

≈ ∏ 𝑝𝑑 (𝑎𝜋𝑗
, 𝓱𝜋𝑗

, 𝓶𝜋𝑗
|𝒂[1,𝑗−1]) 𝑝𝑡 (𝑓𝜋𝑗

|𝑒𝑎𝜋𝑗
)𝜋𝑗∈𝐵𝑈𝑇(𝑇𝑓)   

   (2) 

Here, we use the approximation symbol, 

because the right hand side is not guaranteed to 

be normalized. In practice, we only compute 

ratios of these terms, so it is not actually a 

problem. Such model is called deficient (Brown 

et al., 1993), and many successful unsupervised 

models are deficient, e.g., IBM model 3 and 

IBM model 4.  

3.3 Dependency Cohesive Distortion Model 

We assume the distortion procedure is influenced 

by three factors: words distance, head-modifier 

cohesion and modifier-modifier cohesion. 

Therefore, we further decompose the distortion 

model 𝑝𝑑 into three terms as follows: 

𝑝𝑑 (𝑎𝜋𝑗
, 𝓱𝜋𝑗

, 𝓶𝜋𝑗
|𝒂[1,𝑗−1]) 

= 𝑝 (𝑎𝜋𝑗
|𝒂[1,𝑗−1]) 𝑝 (𝓱𝜋𝑗

|𝒂[1,𝑗]) 𝑝 (𝓶𝜋𝑗
|𝒂[1,𝑗], 𝓱𝜋𝑗

) 

≈ 𝑝𝑤𝑑 (𝑎𝜋𝑗
|𝑎𝜋𝑗−1

, 𝐼) 𝑝ℎ𝑐 (𝓱𝜋𝑗
|𝒂[1,𝑗]) 𝑝𝑚𝑐 (𝓶𝜋𝑗

|𝒂[1,𝑗]) 

(3) 

where 𝑝𝑤𝑑 is the words distance term, 𝑝ℎ𝑐 is  the 

head-modifier cohesion term and 𝑝𝑚𝑐  is the 

modifier-modifier cohesion term. 

The word distance term 𝑝𝑤𝑑 has been verified to 

be very useful in the HMM alignment model. 

However, in our model, the word distance is 

calculated based on the previous node in BUT-

order rather than the previous word in the original 

sentence. We follow the HMM word alignment 

model (Vogel et al., 1996) and parameterize 𝑝𝑤𝑑 in 

terms of the jump width: 

𝑝𝑤𝑑(𝑖|𝑖′, 𝐼) =
𝑐(𝑖−𝑖′)

∑ 𝑐(𝑖′′−𝑖′)𝑖′′
       (4) 

where 𝑐() is the count of jump width. 
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The head-modifier cohesion term 𝑝ℎ𝑐 is used to 

penalize the distortion probability according to 

relationships between the head node and its 

children (modifiers). Therefore, we define 𝑝ℎ𝑐  as 

the product of probabilities for all head-modifier 

pairs taking 𝑓𝜋𝑗
 as head node: 

𝑝ℎ𝑐 (𝓱𝜋𝑗
|𝒂[1,𝑗]) = ∏ 𝑝ℎ (𝒽𝜋𝑗,𝑐|𝑓𝑐, 𝑒𝑎𝜋𝑗

, 𝑒𝑎𝑐
)𝒽𝜋𝑗,𝑐∈𝓱𝜋𝑗

 (5) 

where 𝒽𝜋𝑗,𝑐 ∈ {𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔}  is the head-

modifier cohesion relationship between 𝑓𝜋𝑗
 and 

one of its child 𝑓𝑐 ,  𝑝ℎ  is the corresponding 

probability, 𝑒𝑎𝜋𝑗
and 𝑒𝑎𝑐

 are the aligned words for 

𝑓𝜋𝑗
 and 𝑓𝑐.  

Similarly, the modifier-modifier cohesion term 

𝑝𝑚𝑐  is used to penalize the distortion probability 

according to relationships between 𝑓𝜋𝑗
 and its 

siblings. Therefore, we define  𝑝𝑚𝑐 as the product 

of probabilities for all the modifier-modifier pairs 

taking 𝑓𝜋𝑗
 as the higher-order node: 

𝑝𝑚𝑐 (𝓶𝜋𝑗
|𝒂[1,𝑗]) = ∏ 𝑝𝑚 (𝓂𝜋𝑗,𝑠|𝑓𝑠, 𝑒𝑎𝜋𝑗

, 𝑒𝑎𝑠
)𝓂𝜋𝑗,𝑠∈𝓶𝜋𝑗
  

 (6) 

where 𝓂𝜋𝑗,𝑠 ∈ {𝑐𝑜ℎ𝑒𝑠𝑖𝑜𝑛, 𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔} is the modifier-

modifier cohesion relationship between  𝑓𝜋𝑗
 and 

one of its sibling 𝑓𝑠 , 𝑝𝑚  is the corresponding 

probability, 𝑒𝑎𝜋𝑗
 and 𝑒𝑎𝑠

 are the aligned words for 

𝑓𝜋𝑗
 and 𝑓𝑠.  

Both  𝑝ℎ and 𝑝𝑚  in Eq. (5) and Eq. (6) are 

conditioned on three words, which would make 

them very sparse. To cope with this problem, we 

use the word clustering toolkit, mkcls (Och et al., 

1999), to cluster all words into 50 classes, and 

replace the three words with their classes. 

4 Parameter Estimation 

To align sentence pairs with the model in Eq. (2), 

we have to estimate some parameters: 𝑝𝑡, 𝑝𝑤𝑑, 𝑝ℎ 

and 𝑝𝑚 . The traditional approach for sequence-

based models uses Expectation Maximization (EM) 

algorithm to estimate parameters. However, in our 

model, it is hard to find an efficient way to sum 

over all the possible alignments, which is required 

in the E-step of EM algorithm. Therefore, we 

propose an approximate EM algorithm and a Gibbs 

sampling algorithm for parameter estimation. 

4.1 Approximate EM Algorithm 

The approximate EM algorithm is similar to the 

training algorithm for fertility-based alignment 

models (Och and Ney, 2003). The main idea is to 

enumerate only a small subset of good alignments 

in the E-step, then collect expectation counts and 

estimate parameters among the small subset in M-

step. Following with Och and Ney (2003), we 

employ neighbor alignments of the Viterbi 

alignment as the small subset. Neighbor 

alignments are obtained by performing one swap 

or move operation over the Viterbi alignment.  

Obtaining the Viterbi alignment itself is not so 

easy for our model. Therefore, we take the Viterbi 

alignment of the sequence-based model (HMM 

model) as the starting point, and iterate the hill-

climbing algorithm (Brown et al., 1993) many 

times to get the best alignment greedily. In each 

iteration, we find the best alignment with Eq. (2) 

among neighbor alignments of the initial point, and 

then make the best alignment as the initial point for 

the next iteration. The algorithm iterates until no 

update could be made. 

4.2 Gibbs Sampling Algorithm 

Gibbs sampling is another effective algorithm for 

unsupervised learning problems. As is described in 

the literatures (Johnson et al., 2007; Gao and 

Johnson, 2008), there are two types of Gibbs 

samplers: explicit and collapsed. An explicit 

sampler represents and samples the model 

parameters in addition to the word alignments, 

while in a collapsed sampler the parameters are 

integrated out and only alignments are sampled. 

Mermer and Saraçlar (2011) proposed a collapsed 

sampler for IBM Model 1. However, their sampler 

updates parameters constantly and thus cannot run 

efficiently on large-scale tasks. Instead, we take 

advantage of explicit Gibbs sampling to make a 

highly parallelizable sampler. Our Gibbs sampler 

is similar to the MCMC algorithm in Zhao and 

Gildea (2010), but we assume Dirichlet priors 

when sampling model parameters and take a 

different sampling approach based on the source 

side dependency tree. 

Our sampler performs a sequence of consecutive 

iterations. Each iteration consists of two sampling 

steps. The first step samples the aligned position 

for each dependency node according to the BUT-

order.  Concretely, when sampling the aligned 
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position 𝑎𝜋𝑗

(𝑡+1)
 for node 𝑓𝜋𝑗

 on iteration 𝑡+1,  the 

aligned positions for 𝒂[1,𝑗−1] are fixed on the new 

sampling results 𝒂[1,𝑗−1]
(𝑡+1)

on iteration 𝑡 +1, and the 

aligned positions for 𝒂[𝑗+1,𝐽]  are fixed on the old 

sampling results 𝒂[𝑗+1,𝐽]
(𝑡)

 on iteration 𝑡 . Therefore, 

we sample the aligned position 𝑎𝜋𝑗

(𝑡+1)
 as follows: 

𝑎𝜋𝑗

(𝑡+1)
  ~   𝑝 (𝑎𝜋𝑗

|𝒂[1,𝑗−1]
(𝑡+1)

, 𝒂[𝑗+1,𝐽]
(𝑡)

, 𝑓1
𝐽, 𝑒1

𝐼)

=
𝑝 (𝒇1

𝐽, �̂�𝑎𝜋𝑗
|𝒆1

𝐼 )

∑ 𝑝 (𝒇1
𝐽 , �̂�𝑎𝜋𝑗

|𝒆1
𝐼 )𝑎𝜋𝑗

∈{0,1,…,𝐼}

 

(7) 

where �̂�𝑎𝜋𝑗
= 𝒂[1,𝑗−1]

(𝑡+1)
∪ 𝑎𝜋𝑗

∪ 𝒂[𝑗+1,𝐽]
(𝑡)

, the numerator 

is the probability of aligning 𝑓𝜋𝑗
 with 𝑒𝑎𝜋𝑗

 (the 

alignments for other nodes are fixed at 𝒂[1,𝑗−1]
(𝑡+1)

and 

𝒂[𝑗+1,𝐽]
(𝑡)

) calculated with Eq. (2), and the 

denominator is the summation of the probabilities 

of aligning 𝑓𝜋𝑗
 with each target word. The second 

step of our sampler calculates parameters 𝑝𝑡, 𝑝𝑤𝑑, 

𝑝ℎ  and 𝑝𝑚  using their counts, where all these 

counts can be easily collected during the first 

sampling step. Because all these parameters follow 

multinomial distributions, we consider Dirichlet 

priors for them, which would greatly simplify the 

inference procedure. 

In the first sampling step, all the sentence pairs 

are processed independently. So we can make this 

step parallel and process all the sentence pairs 

efficiently with multi-threads. When using the 

Gibbs sampler for decoding, we just ignore the 

second sampling step and iterate the first sampling 

step many times.  

5 Experiments 

We performed a series of experiments to evaluate 

our model. All the experiments are conducted on 

the Chinese-English language pair. We employ 

two training sets: FBIS and LARGE. The size and 

source corpus of these training sets are listed in 

Table 2. We will use the smaller training set FBIS 

to evaluate the characters of our model and use the 

LARGE training set to evaluate whether our model 

is adaptable for large-scale task. For word 

alignment quality evaluation, we take the hand-

aligned data sets from SSMT20072, which contains 

                                                           
2 http://nlp.ict.ac.cn/guidelines/guidelines-2007-

SSMT(English).doc 

505 sentence pairs in the testing set and 502 

sentence pairs in the development set. Following 

Och and Ney (2003), we evaluate word alignment 

quality with the alignment error rate (AER), where 

lower AER is better. 

Because our model takes dependency trees as 

input, we parse both sides of the two training sets, 

the development set and the testing set with 

Berkeley parser (Petrov et al., 2006), and then 

convert the generated phrase trees into dependency 

trees according to Wang and Zong (2010; 2011). 

Our model is an asymmetric model, so we perform 

word alignment in both forward (ChineseEnglish) 

and reverse (EnglishChinese) directions. 

 

5.1 Effectiveness of Cohesion Constraints 

In Eq. (3), the distortion probability 𝑝𝑑  is 

decomposed into three terms: 𝑝𝑤𝑑 , 𝑝ℎ𝑐  and 𝑝𝑚𝑐 . 

To study whether cohesion constraints are effective 

for word alignment, we construct four sub-models 

as follows:  

(1) wd: 𝑝𝑑 = 𝑝𝑤𝑑;  

(2) wd-hc: 𝑝𝑑 = 𝑝𝑤𝑑 ∙ 𝑝ℎ𝑐;  

(3) wd-mc: 𝑝𝑑 = 𝑝𝑤𝑑 ∙ 𝑝𝑚𝑐; 

(4) wd-hc-mc: 𝑝𝑑 = 𝑝𝑤𝑑 ∙ 𝑝ℎ𝑐 ∙ 𝑝𝑚𝑐. 

We train these four models with the approximate 

EM and the Gibbs sampling algorithms on the 

FBIS training set. For approximate EM algorithm, 

we first train a HMM model (with 5 iterations of 

IBM model 1 and 5 iterations of HMM model), 

then train these four sub-models with 10 iterations 

of the approximate EM algorithm. For Gibbs 

sampling, we choose symmetric Dirichlet priors 

identically with all hyper-parameters equals 0.0001 

to obtain a sparse Dirichlet prior. Then, we make 

the alignments produced by the HMM model as the 

initial points, and train these sub-models with 20 

iterations of the Gibbs sampling.  

AERs on the development set are listed in Table 

3. We can easily find: 1) when employing the 

head-modifier cohesion constraint, the wd-hc 

model yields better AERs than the wd model; 2) 

Train Set Source Corpus # Words 

FBIS FBIS newswire data Ch: 7.1M 

En: 9.1M 

 

LARGE 

LDC2000T50, LDC2003E14, 

LDC2003E07, LDC2004T07, 

LDC2005T06, LDC2002L27, 

LDC2005T10, LDC2005T34 

 

Ch: 27.6M 

En: 31.8M 

Table 2: The size and the source corpus of the two 

training sets. 
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when employing the modifier-modifier cohesion 

constraint, the wd-mc model also yields better 

AERs than the wd model; and 3) when employing 

both head-modifier cohesion constraint and 

modifier-modifier cohesion constraint together, the 

wd-hc-mc model yields the best AERs among the 

four sub-models. So both head-modifier cohesion 

constraint and modifier-modifier cohesion 

constraint are helpful for word alignment. Table 3 

also shows that the approximate EM algorithm 

yields better AERs in the forward direction than 

reverse direction, while the Gibbs sampling 

algorithm yields close AERs in both directions. 

 

5.2 Comparison with State-of-the-Art Models 

To show the effectiveness of our model, we 

compare our model with some of the state-of-the-

art models. All the systems are listed as follows: 

1) IBM4: The fertility-based model (IBM model 4) 

which is implemented in GIZA++ toolkit. The 

training scheme is 5 iterations of IBM model 1, 

5 iterations of the HMM model and 10 

iterations of IBM model 4. 

2) IBM4-L0: A modification to the GIZA++ 

toolkit which extends IBM models with ℓ0 -

norm (Vaswani et al., 2012). The training 

scheme is the same as IBM4. 

3) IBM4-Prior: A modification to the GIZA++ 

toolkit which extends the translation model of 

IBM models with Dirichlet priors (Riley and 

Gildea, 2012). The training scheme is the same 

as IBM4. 

4) Agree-HMM: The HMM alignment model by 

jointly training the forward and reverse models 

(Liang et al., 2006), which is implemented in 

the BerkeleyAligner. The training scheme is 5 

iterations of jointly training IBM model 1 and 5 

iterations of jointly training HMM model. 

5) Tree-Distance: The tree distance alignment 

model proposed in DeNero and Klein (2007), 

which is implemented in the BerkeleyAligner. 

The training scheme is 5 iterations of jointly 

training IBM model 1 and 5 iterations of jointly 

training the tree distance model. 

6) Hard-Cohesion: The implemented “Cohesion 

Checking Algorithm” (Lin and Cherry, 2003) 

which takes dependency cohesion as a hard 

constraint during beam search word alignment 

decoding. We use the model trained by the 

Agree-HMM system to estimate alignment 

candidates.  

We also build two systems for our soft 

dependency cohesion model: 

7) Soft-Cohesion-EM: the wd-hc-mc sub-model 

trained with the approximate EM algorithm as 

described in sub-section 5.1. 

8) Soft-Cohesion-Gibbs: the wd-hc-mc sub-model 

trained with the Gibbs sampling algorithm as 

described in sub-section 5.1. 

We train all these systems on the FBIS training 

set, and test them on the testing set. We also 

combine the forward and reverse alignments with 

the grow-diag-final-and (GDFA) heuristic (Koehn 

et al., 2007). All AERs are listed in Table 4. We 

find our soft cohesion systems produce better 

AERs than the Hard-Cohesion system as well as 

the other systems. Table 5 gives the head-modifier 

cohesion percentage (HCP) and the modifier-

modifier cohesion percentage (MCP) of each 

system. We find HCPs and MCPs of our soft 

cohesion systems are much closer to the gold-

standard alignments.  

 
To evaluate whether our model is adaptable for 

large-scale task, we retrained these systems using 

the LARGE training set. AERs on the testing set 

are listed in Table3 6. Compared with Table 4, we 

                                                           
3 Tree-Distance system requires too much memory to run on 

our server when using the LARGE data set, so we can’t get the 

result. 

  forward reverse GDFA 

IBM4 42.90 42.81 44.32 

IBM4-L0 42.59 41.04 43.19 

IBM4-Prior 41.94 40.46 42.44 

Agree-HMM 38.03 37.91 41.01 

Tree-Distance 34.21 37.22 38.42 

Hard-Cohesion 37.32 38.92 38.92 

Soft-Cohesion-EM 33.65 34.74 35.85 

Soft-Cohesion-Gibbs 34.45 33.72 34.46 

Table 4: AERs on the testing set (trained on the 

FBIS data set). 

  

EM Gibbs 

forward reverse forward reverse 

wd 26.12  28.66  27.09  26.40  

wd-hc 24.67  25.86  26.24  24.39  

wd-mc 24.49  26.53  25.51  25.40  

wd-hc-mc 23.63  25.17  24.65  24.33  

Table 3: AERs on the development set (trained 

on the FBIS data set). 
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find all the systems yield better performance when 

using more training data. Our soft cohesion 

systems still produce better AERs than other 

systems, suggesting that our soft cohesion model is 

very effective for large-scale word alignment tasks. 

 

 

5.3 Machine Translation Quality Comparison 

We then evaluate the effect of word alignment on 

machine translation quality using the phrase-based 

translation system Moses (Koehn et al., 2007). We 

take NIST MT03 test data as the development set, 

NIST MT05 test data as the testing set. We train a 

5-gram language model with the Xinhua portion of 

English Gigaword corpus and the English side of 

the training set using the SRILM Toolkit (Stolcke, 

2002).  

We train machine translation models using 

GDFA alignments of each system. BLEU scores 

on NIST MT05 are listed in Table 7, where BLEU 

scores are calculated using lowercased and 

tokenized data (Papineni et al., 2002). Although 

the IBM4-L0, Agree-HMM, Tree-Distance and 

Hard-Cohesion systems improve word alignment 

than IBM4, they fail to outperform the IBM4 

system on machine translation. The BLEU score of 

our Soft-Cohesion-EM system is better than the 

IBM4 system when using the FBIS training set, but 

worse when using the LARGE training set. Our 

Soft-Cohesion-Gibbs system produces the best 

BLEU score when using both training sets. We 

also performed a statistical significance test using 

bootstrap resampling with 1000 samples (Koehn, 

2004; Zhang et al., 2004). Experimental results 

show the Soft-Cohesion-Gibbs system is 

significantly better (p<0.05) than the IBM4 system. 

The IBM4-Prior system slightly outperforms IBM4, 

but it’s not significant. 

 

6 Related Work 

There have been many proposals of integrating 

syntactic knowledge into generative alignment 

models. Wu (1997) proposed the inversion 

transduction grammar (ITG) to model word 

alignment as synchronous parsing for a sentence 

pair. Yamada and Knight (2001) represented 

translation as a sequence of re-ordering operations 

over child nodes of a syntactic tree. Gildea (2003) 

introduced a “loosely” tree-based alignment 

technique, which allows alignments to violate 

syntactic constraints by incurring a cost in 

probability. Pauls et al. (2010) gave a new instance 

of the ITG formalism, in which one side of the 

synchronous derivation is constrained by the 

syntactic tree. 

Fox (2002) measured syntactic cohesion in gold 

standard alignments and showed syntactic 

cohesion is generally maintained between English 

and French. She also compared three variant 

syntactic representations (phrase tree, verb phrase 

flattening tree and dependency tree), and found the 

dependency tree produced the highest degree of 

cohesion. So Cherry and Lin (2003; 2006a) used 

dependency cohesion as a hard constraint to 

restrict the alignment space, where all potential 

alignments violating cohesion constraint are ruled 

  

forward reverse 

HCP MCP HCP MCP 

IBM4 60.53 63.94 56.15 64.80 

IBM4-L0 60.57 62.53 66.49 65.68 

IBM4-Prior 66.48 74.65 67.19 72.32 

Agree-HMM 75.52 66.61 73.88 66.07 

Tree-Distance 81.37 74.69 78.00 71.73 

Hard-Cohesion 98.70 97.43 98.25 97.84 

Soft-Cohesion-EM 85.21 81.96 82.96 81.36 

Soft-Cohesion-Gibbs 88.74 85.55 87.81 84.83 

gold-standard 88.43 95.82 81.53 91.62 

Table 5: HCPs and MCPs on the development 

set. 

  FBIS LARGE 

IBM4 30.7 33.1 

IBM4-L0 30.4 32.3 

IBM4-Prior 30.9 33.2 

Agree-HMM 27.2 30.1 

Tree-Distance 28.2 N/A 

Hard-Cohesion 30.4 32.2 

Soft-Cohesion-EM 30.9 33.1 

Soft-Cohesion-Gibbs   31.6*   33.9* 

Table 7: BLEU scores, where * indicates 

significantly better than IBM4 (p<0.05). 

  forward reverse GDFA 

IBM4 37.45 39.18 40.52 

IBM4-L0 38.17 38.88 39.82 

IBM4-Prior 35.86 36.71 37.08 

Agree-HMM 35.58 35.73 39.10 

Hard-Cohesion 35.04 37.59 37.63 

Soft-Cohesion-EM 30.93 32.67 33.65 

Soft-Cohesion-Gibbs 32.07 32.68 32.28 

Table 6: AERs on the testing set (trained on the 

LARGE data set). 
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out directly. Although the alignment quality is 

improved, they ignored situations where a small set 

of correct alignments can violate cohesion. To 

address this limitation, Cherry and Lin (2006b) 

proposed a soft constraint approach, which took 

dependency cohesion as a feature of a 

discriminative model, and verified that the soft 

constraint works better than the hard constraint. 

However, the training procedure is very time-

consuming, and they trained the model with only 

100 hand-annotated sentence pairs. Therefore, their 

method is not suitable for large-scale tasks. In this 

paper, we also use dependency cohesion as a soft 

constraint. But, unlike Cherry and Lin (2006b), we 

integrate the soft dependency cohesion constraint 

into a generative model that is more suitable for 

large-scale word alignment tasks. 

7 Conclusion and Future Work  

We described a generative model for word 

alignment that uses dependency cohesion as a soft 

constraint. We proposed an approximate EM 

algorithm and an explicit Gibbs sampling 

algorithm for parameter estimation in an 

unsupervised manner. Experimental results 

performed on a large-scale data set show that our 

model improves word alignment quality as well as 

machine translation quality. Our experimental 

results also indicate that the soft constraint 

approach is much better than the hard constraint 

approach.  

It is possible that our word alignment model can 

be improved further. First, we generated word 

alignments in both forward and reverse directions 

separately, but it might be helpful to use 

dependency trees of the two sides simultaneously. 

Second, we only used the one-best automatically 

generated dependency trees in the model. However, 

errors are inevitable in those trees, so we will 

investigate how to use N-best dependency trees or 

dependency forests (Hayashi et al., 2011) to see if 

they can improve our model. 
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