
Representing Constraints with Automata

F r a n k M o r a w i e t z a n d T o m C o r n e l l

S e m i n a r fiir S p r a c h w i s s e n s c h a f t

U n i v e r s i t £ t T i i b i n g e n

W i l h e l m s t r . 113

72074 T i i b i n g e n , G e r m a n y

{frank, cornell}~sfs, nphil, uni-tuebingen, de

A b s t r a c t

In this paper we describe an approach to
constraint based syntactic theories in terms
of finite tree automata. The solutions to
constraints expressed in weak monadic sec-
ond order (MSO) logic are represented by
tree au tomata recognizing the assignments
which make the formulas true. We show
that this allows an efficient representation
of knowledge about the content of con-
straints which can be used as a practical
tool for grammatical theory verification.
We achieve this by using the intertrans-
latability of formulae of MSO logic and
tree au tomata and the embedding of MSO
logic into a constraint logic programming
scheme. The usefulness of the approach is
discussed with examples from the realm of
Principles-and-Parameters based parsing.

1 I n t r o d u c t i o n

In recent years there has been a continuing inter-
est in computational linguistics in both model theo-
retic syntax and finite state techniques. In this pa-
per we a t tempt to bridge the gap between the two
by exploiting an old result in logic, that the weak
monadic second order (MSO) theory of two successor
functions (WS2S) is decidable (Thatcher and Wright
1968, Doner 1970). A "weak" second order theory is
one in which the set variables are allowed to range
only over finite sets. There is a more powerful result
available: it has been shown (Rabin 1969) that the
strong monadic second order theory (variables range
over infinite sets) of even countably many successor
functions is decidable. However, in our linguistic ap-
plications we only need to quantify over finite sets, so
the weaker theory is enough, and the techniques cor-

respondingly simpler3 The decidability proof works
by showing a correspondence between formulas in
the language of WS2S and tree automata , devel-
oped in such a way that the formula is satisfiable
iff the set of trees accepted by the corresponding au-
tomaton is nonempty. While these results were well
known, the (rather surprising) suitability of this for-
malism as a constraint language for Principles and
Parameters (P&P) based linguistic theories has only
recently been shown by Rogers (1994).

It should be pointed out immediately that the
translation from formulas to automata , while effec-
tive, is just about as complex as it is possible to
be. In the worst case, the number of states can be
given as a function of the number of variables in
the input formula with a stack of exponents as tall
as the number of quantifier alternations in the for-
mula. However, there is a growing body of work
in the computer science literature motivated by the
success of the MONA decision procedure (Henriksen
et al. 1995) 2 on the application of these techniques
in computer science (Basin and Klarlund 1995, Kelb
et al. 1997), which suggests that in practical cases
the extreme explosiveness of this technique can be
effectively controlled. It is one of our goals to show
that this is the case in linguistic applications as well.

The decidability proof for WS2S is inductive
on the structure of MSO formulas. Therefore we
can choose our particular tree description language
rather freely, knowing (a) that the resulting logic

1All of these are generalizations to trees of results
on strings and the monadic second order theory of one
successor function originally due to Biichi (1960). The
applications we mention here could be adapted to strings
with finite-state automata replacing tree automata. In
general, all the techniques which apply to tree au-
tomata are straightforward generalizations of techniques
for FSAs.

2The current version of the MONA tool works only on
the MSO logic of strings. There is work in progress at the
University of Aarhus to extend MONA to "MONA++",
for trees (Biehl et al. 1996).

468

will be decidable and (b) that the translation to au-
tomata will go through as long as the atomic formu-
las of the language represent relations which can be
translated (by hand if necessary) to tree automata.
We will see how this is done ill the next section,
but the point can be appreciated immediately. For
example, Niehren and Podelski (1992) and Ayari et
al. (1997) have investigated the usefulness of these
techniques in dealing with feature trees which un-
fold feature structures; there the attributes of an
attribute-value term are translated to distinct suc-
cessor functions. On the other hand, Rogers (1996)
has developed a language rich in long-distance rela-
tions (dominance and precedence) which is more ap-
propriate for work in Government-Binding (GB) the-
ory. Compact automata can be easily constructed
to represent dominance and precedence relations.
One can imagine other possibilities as well: as we
will see, the automaton for Kayne-style asymmet-
ric, precedence-restricted c-command (Kayne 1994)
is also very compact, and makes a suitable primitive
for a description language along the lines developed
by Frank and Vijay-Shanker (1995).

The paper is organized as follows. First we present
some of the mathematical background, then we dis-
cuss (na'ive) uses of the techniques, followed by
the presentation of a constraint logic programming-
based extension of MSO logic to avoid some of the
problems of the naive approach, concluding with a
discussion of its strengths and weaknesses.

2 D e f i n i n g A u t o m a t a w i t h

C o n s t r a i n t s

Tree a u t o m a t a . For completeness, we sketch the
definitions of trees and tree automata here. An in-
troduction to tree automata can be found in G~cseg
and Steinby (1984), as well as in Thatcher and
Wright (1968) and Doner (1970).

Assume an alphabet E = E0 LJ E2 with Eo = {A}
and E2 being a set of binary operation symbols. We
think of (binary) trees over E as just the set of terms
Tr. constructed from this alphabet. That is, we let
A be the empty tree and let a(tl,t2), for a E E2
and tl , t2 E T~., denote the tree with label a and
subtrees tl, t2. Alternatively, we can think of a tree
t as a function from the addresses in a binary tree
domain T to labels in E. 3

A deterministic (bottom-up) tree automaton .4 on
binary trees is a tuple (A, E, a0, F, c~ / with A the set

3The first approach is developed in Thatcher and
Wright (1968), the second in Doner (1970). A tree do-
main is a subset of strings over a linearly ordered set
which is closed under prefix and left sister.

of states, a0 E A the initial state, F C_ A the fi-
nal states and a : (A x A x E) -+ A the transition
function. The transition function can be thought of
as a homomorphism on trees inductively defined as:
h~(~) : a0 and h~(a(tl, t2)) = a(h~(t l) , ha(t2), a).
An automaton .4 accepts a tree t iff ha (t) E F. The
language recognized by A is denoted by T(A) =
{ t lh , (t) E F}.

Emptiness of the language T(,4) is decidable by a
fixpoint construction computing the set of reachable
states. The reachability algorithm is given below
in Figure 1. R contains the reachable states con-
structed so far, and R' contains possibly new states
constructed on the current pass through the loop.
T(A) is empty if and only if no final state is reach-

1. R := {ao}, R' := 0.
2. For all (ai,aj) E R x R, for all a E E,

R' := R ' U {c~(ai,aj,a)}.
3. If R r - R = 0 then return R,

else R := R U R', go to step 2.

Figure 1: Reachable states algorithm.

able. Naturally, if we want to test emptiness, we can
stop the construction as soon as we encounter a final
state in R r. Note that, given an automaton with k
states, the algorithm must terminate after at most k
passes through the loop, so the algorithm terminates
after at most k 3 searches through the transition ta-
ble.

Sets of trees which are the language of some tree
automaton are called recognizable. 4 The recogniz-
able sets are closed under the boolean operations
of conjunction, disjunction and negation, and the
automaton constructions which witness these clo-
sure results are absolutely straightforward general-
izations of the corresponding better-known construc-
tions for finite state automata. The recognizable sets
are also closed under projections (mappings from
one alphabet to another) and inverse projections,
and again the construction is essentially that for fi-
nite state automata. The projection construction
yields a nondeterministic automaton, but, again as
for FSA's, bottom-up tree automata can be made
deterministic by a straightforward generalization of
the subset construction. (Note that top-down tree
automata do not have this property: determinis-
tic top-down tree automata recognize a strictly nar-
rower family of tree sets.) Finally, tree automata can

4The recognizable sets of trees yield the context free
string languages, so MSO logics are limited to context
free power. However, the CLP extension discussed below
can be used to amplify the power of the formalism where
necessary.

4 6 9

be minimized by a construction which is, yet again,
a straightforward generalization of well known FSA
techniques.

T h e w e a k s e c o n d o r d e r t h e o r y o f t w o s u c c e s -
s o r f u n c t i o n s . One attraction of monadic second
order tree logics is that they give us a principled
means of generating automata from a constraint-
based theory. The connection allows the linguist
to specify ideas about natural language in a concise
manner in logic, while at the same time providing
a way of "compiling" those constraints into a form
which can be efficiently used in natural language pro-
cessing applications.

The translation is provided via the weak monadic
second order theory of two successor functions
(WS2S). The structure of two successor functions,
H2, has for its domain (N2) the infinite binary
branching tree. Standardly the language of WS2S is
based on two successor functions (left-daughter and
right-daughter), but, as Rogers (1994) shows, this
is intertranslatable with a language based on domi-
nance and precedence relations. Because we choose
the monadic second order language over whichever
of these two signatures is preferred, we can quan-
tify over sets of nodes in N2. So we can use these
sets to pick out arbitrarily large finite trees embed-
ded in N2. Second order variables can also be used
to pick out other properties of nodes, such as cate-
gory or other node-labeling features, and they can
be used to pick out higher order substructures such
as :~ projections or chains.

As usual, satisfiability of a formula in the language
of WS2S by Af2 is relative to an assignment function,
mapping individual variables to members of N2 (as
in first order logic) and mapping monadic predicate
variables to subsets of N2. Following Biichi (1960),
Doner (1970) and Thatcher and Wright (1968) show
that assignment functions for such formulas can be
coded by a labeling of the nodes in N2 in the follow-
ing way. First, we treat individual variables as set
variables which are constrained to be singleton sets
(we can define the singletonhood property in MSO
tree logic). So, without loss of generality, we can
think of the domain of the assignment function as
a sequence X z , . . . , X~ of the variables occurring in
the given formula. We choose our labeling alphabet
to be the set of length n bit strings: (0, 1} ~. Then,
for every node n E N2, if we intend to assign n to
the denotation of Xi, we indicate this by labeling n
with a bit string in which the ith bit is on. (In effect,
we are labelling every node with a list of the sets to
which it belongs.) Now every assignment function
we might need corresponds uniquely to a labeling

function over N2. What Doner, and Thatcher and
Wright (and, for strong $2S, Rabin) show is that
each formula in the language of WS2S corresponds
to a tree automaton which recognizes just the sat-
isfying "assignment labelings", and we can thereby
define a notion of "recognizable relation". So the
formula is satisfiable just in case the corresponding
automaton recognizes a nonempty language. Note
t h a t any language whose formulas can be converted
to automata in this way is therefore guaranteed to
be decidable, though whether it is as strong as the
language of WS2S must still be shown.

This approach to theorem-proving is rather dif-
ferent from more general techniques for higher-order
theorem proving in ways that the formalizer must
keep in mind. In particular, we are deciding mem-
bership in the theory of a fixed structure, Af2, and
not consequence of an explicit set of tree axioms.
So, for example, the parse tree shows up in the for-
malization as a second order variable, rather than
simply being a satisfying model (cf. Johnson (1994),
on "satisfiability-based" grammar formalisms).

As an example consider the following formula
denoting the relation of directed asymmetric c-
command 5 in the sense of Kayne (1994). We use the
tree logic signature of Rogers (1994), which, in a sec-
ond order setting, is interdefinable with the language
of multiple successor functions. Uppercase letters
denote second order variables, lowercase ones first
order variables, <~* reflexive domination, <~+ proper
domination and -4 proper precedence:

AC-Com(xl, x2)
% x c-commands y:

(Vz)[z <~+ x =# z <~+ y] A -~(x <1" y) A
% y does not c-command x:

4 + y z 4 + x] A 4 " x)) A

% x preceeds y:
x-~y

The corresponding tree automaton is shown in
Figure 2. On closer examination of the transitions,
we note that we just percolate the initial state as
long as we find only nodes which are neither xl nor
x2. From the initial state on both the left and the
right subtree we can either go to the state denoting
"found xl" (al) if we read symbol 10 or to the state
denoting "found x2" (a2) if we read symbol 01. We
can then percolate a2 as long as the other branch
does not immediately dominate xl . When we have

5This relation is not monadic, but reducible via syn-
tactic substitution to an MSO signature. In fact, we can
define relations of any arity as long as they are explicitly
presentable in MSO logic.

470

,4 = (A ,~ ,ao ,F ,a) ,
A = {ao,al,a2,a3,a4},

= {11, 10, 01, 00}
F = {a3},

 (ao,a0,00) = a0 (a0,a0, 10) = a l
 (a0,a0,01) = a2 (a0,a2,00) =
 (a0, a 3 , 0 0) = a3 (a2, a0, 00) =
 (al, a : , 00) = a3 a0 ,00) =

all other transitions are to a4

Figure 2: The automaton for AC-Com(x l , x2)

al on the left subtree and a2 on the right one, we go
to the final state aa which again can be percolated
as long as empty symbols are read. Clearly, the au-
tomaton recognizes all trees which have the desired
c-command relation between the two nodes. It com-
pactly represents the (infinite) number of possible
satisfying assignments.

The proof of the decidability of WS2S furnishes
a technique for deriving such automata for recog-
nizable relations effectively. (In fact the above au-
tomaton was constructed by a simple implementa-
tion of such a compiler which we have running at the
University of Tiibingen. See Morawietz and Cornell
(1997).) The proof is inductive. In the base case,
relations defined by atomic formulas are shown to
be recognizable by brute force. Then the induction
is based on the closure properties of the recognizable
sets, so that logical operators correspond to automa-
ton constructions in the following way: conjunction
and negation just use the obvious corresponding au-
tomaton operations and existential quantification is
implemented w~th the projection construction. The
inductive nature of the proof allows us a fairly free
choice of signature, as long as our atomic relations
are recognizable. We could, for example, investi-
gate theories in which asymmetric c-command was
the only primitive, or asymmetric c-command plus
dominance, for example.

The projection construction, as noted above,
yields nondeterministic automata as output, and
the negation construction requires deterministic au-
tomata as input, so the subset construction must be
used every time a negated existential quantifier is en-
countered. The corresponding exponential blowup
in the state space is the main cause of the non-
elementary complexity of the construction. Since
a quantifier prefix of the form 3 - . . 3V. . .V3 . . . is
equivalent to 3 . . . 3 7 3 - - - 3 7 3 . - - we see that the
stack of exponents involved is determined by the
number of quantifier alternations.

It is obviously desirable to keep the automata as
small as possible. In our own prototype, we min-
imize the outputs of all of our automata construc-
tions. Note that this gives us another way of deter-
mining satisfiability, since the minimal automaton
recognizing the empty language is readily detectable:
its only state is the initial state, and it is not final.

3 D e f i n i n g C o n s t r a i n t s w i t h
A u t o m a t a

An obvious goal for the use of the discussed ap-
proach would be the (offline) generation of a tree
automaton representing an entire grammar. That
is, in principle, if we can formalize a grammar in
an MSO tree logic, we can apply these compilation
techniques to construct an automaton which recog-
nizes all and only the valid parse trees. 6 In this set-
ting, the parsing problem becomes the problem of
conjoining an automaton recognizing the input with
the grammar automaton, with the result being an
automaton which recognizes all and only the valid
parse trees. For example, assume that we have an
automaton Gram(X) such that X is a well-formed
tree, and suppose we want to recognize the input
John sees Mary. Then we conjoin a description of
the input with the grammar automaton as given be-
low.

(3x, y , z E X)[x E John A y E Sees A z E Mary A
x -< y -< z A Gram(X)]

The recognition problem is just the problem of deter-
mining whether or not the resulting automaton rec-
ognizes a nonempty language. Since the automaton
represents the parse forest, we can run it to generate
parse trees for this particular input.

Unfortunately, as we have already noted, the
problem of generating a tree automaton from an
arbitrary MSO formula is of non-elementary com-
plexity. Therefore, it seems unlikely that a formal-
ization of a realistic principle-based grammar could
be compiled into a tree automaton before the heat
death of the universe. (The formalization of ideas
from Relativized Minimality (Pdzzi 1990) presented
in Rogers (1994) fills an entire chapter without spec-
ifying even the beginning of a full lexicon, for ex-
ample.) Nonetheless there are a number of ways
in which these compilation techniques remain use-
ful. First, though the construction of a grammar
automaton is almost certainly infeasible for realis-
tic grammars, the construction of a grammar-and-
input automaton--which is a very much smaller

6This is reminiscent of approaches associated with
Bernard Lang. See van Noord (1995) and references
therein.

471

machine- -may not be. We discuss techniques based
on constraint logic programming that are applicable
to that problem in the next section.

Another use for such a compiler is suggested by
the standard divide-and-conquer strategy for prob-
lem solving: instead of compiling an entire gram-
mar formula, we isolate interesting subformulas, and
a t tempt to compile them. Tree automata repre-
sent properties of trees and there are many such
properties less complex than global well-formedness
which are nonetheless important to establish for
parse trees. In particular, where the definition of
a property of parse trees involves negation or quan-
tification, including quantification over sets of nodes,
it may be easier to express this in an MSO tree logic,
compile the resulting formula, and use the resulting
automaton as a filter on parse trees originally gen-
erated by other means (e.g., by a covering phrase
structure grammar) .

At the moment, at least, the question of which
grammatical properties can be compiled in a reason-
able t ime is largely empirical. It is made even more
difficult by the lack of high quality software tools.
This situation should be alleviated in the near future
when work on MONA++ at the University of Aarhus
is completed; the usefulness of its older sister MONA
(Henriksen et al. 1995), which works on strings and
FSA's, has been well demonstrated in the computer
science literature. In the meantime, for tests, we are
using a comparatively simple implementation of our
own. Even with very low-power tools, however, we
can construct au tomata for interesting grammatical
constraints.

For example, recall the definition of asymmetric c-
command and its associated automaton in Figure 2.
In linguistic applications, we generally use versions
of c-command which are restricted to be local, in the
sense that no element of a certain type is allowed
to intervene. The general form of such a locality
condition LC might then be formalized as follows.

LC(x,y)
AC-Comm(x, y) A

% there does not exist z with property P:
(-~3z)[z E P A

% such that it intervenes between x and y:
(3 w) [w x A w ,a + z A z y]]

Here property P is meant to be the property iden-
tifying a relevant intervener for the relation meant
to hold between x and y. Note that this property
could include that some other node be the left suc-
cessor of z with certain properties, that is, this gen-
eral scheme fits cases where the intervening item is

not itself directly on the path between x and y. This
formula was compiled by us and yields the automa-
ton in Figure 3. Here the first bit position indicates
membership in P, the second is for x and the third
for y.

A = (A,E, ao,F,a) ,
A = {no, al , a2, a3, a4 },

F = { a 3 } ,

a(ao,ao,O00) = ao a(ao,ao, 100) = ao
a(ao,ao,OlO) -- a2 (~(ao,ao,l l0) = a2
a(ao, ao, 001) = al a(ao, ao, 101) = al
a (ao ,a l ,000) -- al ~(ao,a3,000) = a3
a(ao,a3,100) = a3 ~(al ,ao,000) = al
Ol(a2, al , 000) = a 3 a(a2, al , I00) = a 3

o~(a3, ao, 000) = a3 a(a3, ao, 100) = a3
all other transitions are to at

Figure 3: Automaton for local c-command.

This automaton could in turn be implemented it-
self as Prolog code, and considered to be an op-
timized implementation of the given specification.
Note in particular the role of the compiler as an op-
timizer. It outputs a minimized automaton, and the
minimal automaton is a unique (up to isomorphism)
definition of the given relation. Consider again the
definition of AC-Command in the previous section.
It is far from the most compact and elegant formula
defining that relation. There exist much smaller for-
mulas equivalent to that definition, and indeed some
are suggested by the very structure of the automa-
ton. That formula was chosen because it is an ex-
tremely straightforward formalization of the prose
definition of the relation. Nonetheless, the automa-
ton compiled from a much cleverer formalization
would still be essentially the same. So no particular
degree of cleverness is assumed on the part of the
formalizer; optimization is done by the compiler. 7

4 M S O L o g i c a n d C o n s t r a i n t L o g i c

P r o g r a m m i n g

The automaton for a grammar formula is presum-
ably quite a lot larger than the parse-forest automa-
ton, that is, the automaton for the grammar con-
joined with the input description. So it makes sense
to search for ways to construct the parse-forest au-
tomaton which do not require the prior construction
of an entire grammar automaton. In this section we
consider how we might do this by by the embedding

7The structure of the formula does often have an ef-
fect on the time required by the compiler; in that sense
writing MSO formalizations is still Logic Programming.

472

of the MSO constraint language into a constraint
logic programming scheme. The constraint base is
an automaton which represents the incremental ac-
cumulation of knowledge about the possible valua-
tions of variables. As discussed before, automata
are a way to represent even infinite numbers of valu-
ations with finite means, while still allowing for the
efficient extraction of individual valuations. We in-
crementally add information to this constraint base
by applying and solving clauses with their associated
constraints. That is, we actually use the compiler on
line as the constraint solver. Some obvious advan-
tages include that we can still use our succinct and
flexible constraint language, but gain (a) a more ex-
pressive language, since we now can include induc-
tive definitions of relations, and (b) a way of guid-
ing the compilation process by the specification of
appropriate programs.

We define a relational extension TC(WS2S) of
our constraint language following the HShfeld and
Smolka scheme (HShfeld and Smolka 1988). From
the scheme we get a sound and complete, but now
only semi-decidable, operational interpretation of a
definite clause-based derivation process. The result-
ing structure is an extension of the underlying con-
straint structure with the new relations defined via
fixpoints.

As usual, a definite clause is an implication with
an atom as the head and a body consisting of a sat-
isfiable MSO constraint and a (possibly empty) con-
junction of atoms. A derivation step consists of two
parts: goal reduction, which substitutes the body
of a goal for an appropriate head, and constraint
solving, which means in our case that we have to
check the satisfiability of the constraint associated
with the clause in conjunction with the current con-
straint store. For simplicity we assume a standard
left-to-right, depth-first interpreter for the execution
of the programs. The solution to a search branch of
a program is a satisfiable constraint, represented in
"solved form" as an automaton. Note that automata
do make appropriate solved forms for systems of con-
straints: minimized automata are normal forms, and
they allow for the direct and efficient recovery of par-
ticular solutions.

Intuitively, we have a language which has an op-
erational interpretation similar to Prolog with the
differences that we interpret it not on the Herbrand
universe but on N2, that we use MS0 constraint
solving instead of unification and that we can use
defined (linguistic) primitives directly.

The resulting system is only semi-decidable, due
to the fact that the extension permits monadic sec-
ond order variables to appear in recursively defined

clauses. So if we view the inductively defined rela-
tions as part of an augmented signature, this sig-
nature contains relations on sets. These allow the
specification of undecidable relations; for example,
Morawietz (1997) shows how to encode the PCP. If
we limit ourselves to just singleton variables in any
directly or indirectly recursive clause, every relation
we define stays within the capacity of MSO logic, s
since, if they are first order inductively definable,
they are explicitly second order definable (Rogers
1994). Since this does not take us beyond the power
of MSO logic and natural language is known not to
be context-free, the extra power of TC(WS2S) offers
a way to get past the context-free boundary.

To demonstrate how we now split the work be-
tween the compiler and the CLP interpreter, we
present a simple example. Consider the following
naive specification of a lexicon: 9

Lexicon(x) ~ : ~ (x E Sees A x E V A . . .)

V (x E J o h n A x E N A . . .)
Y (x E M a r y A x E N A . . .)

We have specified a set called Lexicon via a disjunc-
tive specification of lexical labels, e.g. Sees , and the
appropriate combination of features, e.g.V. Naively,
at least, every feature we use must have its own bit
position, since in the logic we treat features as set
variables. So, the alphabet size with the encoding
as bitstrings will be at least 2 IAlphabet[. It is immedi-
ately clear that the compilation of such an automa-
ton is extremely unattractive, if at all feasible.

We can avoid having to compile the whole lexi-
con by having separate clauses for each lexical en-
try in the CLP extension. Notational conventions
will be that constraints associated with clauses are
written in curly brackets and subgoals in the body
are separated by &'s. Note that relations defined in
TC(WS2S) are written lowercase.

lexicon(x) t--- {x E Sees A x E V A . . . }
lexicon(x) +-- {x E John A x E N A . . . }
lexicon(x) e - - { x E M a r y A x E N A . . . }

This shifts the burden of handling disjunctions to the
interpreter. The intuitive point should be clear: it

8Relations on individuals describe sets which are ex-
pressible as monadic predicates.

9Here and in the following we treat free variables as
being stored in a global table so that we do not have
to present them in each and every constraint. In par-
ticular, without this lexicon would have the additional
arguments Sees, V, John, N, Mary and all free vari-
ables appearing in the other definitions.

473

is not the case that every constraint in the grammar
has to be expressed in one single tree automaton.
We need only compile into the constraint store those
which are really needed. Note that this is true even
for variables appearing in the global table. In the
CLP extension the appearance in the table is not
coupled to the appearance in the constraint store.
Only those are present in both which are part of the
constraint in an applied clause.

We can also use offline compiled modules in a
T~(WS2S) parsing program. As a source of simple
examples, we draw on the definitions from the lec-
tures on P&P parsing presented in Johnson (1995).
In implementing a program such as Johnson's sim-
plified parse relat ion--see Figure 4- -we can in prin-
ciple define any of the subgoals in the body either
via precompiled au tomata (so they are essentially
treated as facts), or else providing them with more
standard definite clause definitions.

parse(Words, Tree)
{Tree(Words)} &
yield(Words, Tree) &
xbar(Tree) &
ecp(Tree)

Figure 4: parse as in Johnson (1995)

In more detail, Words denotes a set of nodes la-
beled according to the input description. Our initial
constraint base, which can be automatically gener-
ated from a Prolog list of input words, is the corre-
sponding tree automaton. The associated constraint
Tree is easily compilable and serves as the initializa-
tion for our parse tree. The yield and ecp predicates
can easily be explicitly defined and, if practically
compilable (which is certainly the case for yield),
could then be treated as facts. The xbar predicate,
on the other hand, is a disjunctive specification of
licensing conditions depending on different features
and configurations, e.g., whether we are faced with
a binary-, unary- or non-branching structure, which
is bet ter expressed as several separate rules. In fact,
since we want the lexicon to be represented as sev-
eral definite clauses, we cannot have xbar as a sim-
ple constraint. This is due to the limitation of the
constraints which appear in the definite clauses to
(pure) MSO constraints.

We now have another well-defined way of using the
offiine compiled modules. This, at least, separates
the actual processing issues (e.g., parse) from the
linguistically motivated modules (e.g., ecp). One can
now see that with the relational extension, we can
not only use those modules which are compilable di-

rectly, but also guide the compilation procedure. In
effect this means interleaving the intersection of the
grammar and the input description such that only
the minimal amount of information to determine the
parse is incrementally stored in the constraint base.

Furthermore, the language of 7~(WS2S) is suffi-
ciently close to standard Prolog-like programming
languages to allow the transfer of techniques and
approaches developed in the realm of P&P-based
parsing. In other words, it needs only little effort
to translate a Prolog program to a T~(WS2S) one.

5 C o n c l u s i o n s a n d O u t l o o k

In this paper we presented a first step towards the re-
alization of a system using automata-based theorem-
proving techniques to implement linguistic process-
ing and theory verification. Despite the staggering
complexity bound the success of and the continu-
ing work on these techniques in computer science
promises a useable tool to test formalization of gram-
mars. The advantages are readily apparent. The
direct use of a succinct and flexible description lan-
guage together with an environment to test the for-
malizations with the resulting finite, deterministic
tree automata offers a way of combining the needs
of both formalization and processing. And further-
more, the CLP extension offers an even more power-
ful language which allows a clear separation of pro-
cessing and specification issues while retaining the
power and flexibility of the original. Since it allows
the control of the generation process, the addition
of information to the constraint base is dependent
on the input which keeps the number of variables
smaller and by this the automata more compact.

Nevertheless it remains to be seen how far the
system can be advanced with the use of an opti-
mized theorem-prover. The number of variables our
current prototype can handle lies between eight and
eleven. 1° This is not enough to compile or test all
interesting aspects of a formalization. So further
work will definitly involve the optimization of the
prototype implementation, while we await the devel-
opment of more sophisticated tools like MONA++.
It seems to be promising to improve the (very ba-
sic) CLP interpreter, too. The HShfeld and Smolka
scheme allows the inclusion of existential quantifi-
cation into the relational extension. We intend to
use this to provide the theoretical background of
the implementation of a garbage collection proce-
dure which projects variables from the constraint
store which are either local to a definite clause or

Z°Note that this corresponds to 256 to 2048 different
bitstrings.

474

explicitly marked for projection in the program so
that the constraint store can be kept as small as
possible.

6 Acknowledgements

This work has been supported by the project A8
of the SFB 340 of the Deutsche Forschungsgemein-
schaft. We wish especially to thank Uwe MSnnich
and Jim Rogers for discussions and advice. Needless
to say, any errors and infelicities which remain are
ours alone.

R e f e r e n c e s

Ayari, A., Basin, D. and Podelski, A. (1997). LISA:
A specification language based on WS2S, Ms, Uni-
versit~it Freiburg. Submitted to CSL'97.

Basin, D. and Klarlund, N. (1995). Hardware
verification using monadic second-order logic,
Computer-Aided Verification (CAV '95), LNCS
939, Springer, pp. 31-41.

Biehl, M., Klarlund, N. and Rauhe, T. (1996). Algo-
rithms for guided tree automata, Proc. WIA '96,
LNCS, Springer-Verlag.

Biichi, J. R. (1960). Weak second-order arithmetic
and finite automata, Zeitschrift fiir mathematis-
ehe Logik und Grundlagen der Mathematik 6: 66-
92.

Doner, J. (1970). Tree acceptors and some of their
applications, Journal of Computer and System
Sciences 4: 406-451.

Frank, R. and Vijay-Shanker, K. (1995). C-
command and grammatical primitives, Presenta-
tion at the 18th GLOW Colloquium. University
of Troms0.

G@cseg, F. and Steinby, M. (1984). Tree Automata,
Akad~miai Kiad6, Budapest.

Henriksen, J. G., Jensen, J., J¢rgensen, M., Klar-
lund, N., Paige, R., Rauhe, T. and Sandhol, A.
(1995). MONA: Monadic second-order logic in
practice, in Brinksma, Cleaveland, Larsen, Mar-
garia and Steffen (eds), TACAS '95, LNCS 1019,
Springer, pp. 89-110.

HShfeld, M. and Smolka, G. (1988). Definite rela-
tions over constraint languages, LILOG Report 53,
IBM Deutschland, Stuttgart, Germany.

Johnson, M. (1994). Two ways of formalizing gram-
mars, Linguistics and Philosophy 17: 221-248.

Johnson, M. (1995). Constraint-based natural lan-
guage parsing, ESSLLI '95, Barcelona, Course
notes.

Kayne, R. S. (1994). The Antisymmetry of Syntax,
MIT Press, Cambridge, Mass. and London, Eng-
land.

Kelb, P., Margaria, T., Mendler, M. and Gsot-
tberger, C. (1997). MOSEL: A flexible toolset for
monadic second-order logic, in E. Brinksma (ed.),
TACAS '97.

Morawietz, F. (1997). Monadic second order logic,
tree automata and constraint logic programming,
Arbeitspapiere des SFB 340 86, SFB 340, Univer-
sit~t Tiibingen.

Morawietz, F. and Cornell, T. L. (1997). On the
recognizability of relations over a tree definable in
a monadic second order tree description language,
Arbeitspapiere des SFB 340 85, SFB 340, Univer-
sit,it Tfibingen.

Niehren, J. and Podelski, A. (1992). Feature au-
tomata and recognizable sets of feature trees, in
M.-C. Gandel and J.-P. Jouannaud (eds), Pro-
ceedings of the 4th International Joint Conference
on Theory and Practice of Software Development,
Springer, LNCS 668, pp. 356-375.

Rabin, M. O. (1969). Decidability of second-order
theories and automata on infinite trees, Transac-
tions of the AMS 141: 1-35.

Rizzi, L. (1990). Relativized Minimality, MIT Press.

Rogers, J. (1994). Studies in the Logic of Trees with
Applications to Grammar Formalisms, PhD the-
sis, University of Delaware. CS-Technical Report
No. 95-04.

Rogers, J. (1996). A model-theoretic framework for
theories of syntax, Proc. of the 34th Annual Meet-
ing of the ACL, Santa Cruz, USA.

Thatcher, J. W. and Wright, J. B. (1968). Gener-
alized finite automata theory with an application
to a decision problem of second-order logic, Math-
ematical Systems Theory 2(1): 57-81.

van Noord, G. (1995). The intersection of finite state
automata and definite clause grammars, Proc. of
the 33th Annual Meeting of the ACL, Boston.

475

