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A b s t r a c t  

We present an algorithm that automati- 
cally learns context constraints using sta- 
tistical decision trees. We then use the ac- 
quired constraints in a flexible POS tag- 
ger. The tagger is able to use informa- 
tion of any degree: n-grams, automati- 
cally learned context constraints, linguis- 
tically motivated manually written con- 
straints, etc. The sources and kinds of con- 
straints are unrestricted, and the language 
model can be easily extended, improving 
the results. The tagger has been tested and 
evaluated on the WSJ corpus. 

1 I n t r o d u c t i o n  

In NLP, it is necessary to model the language in a 
representation suitable for the task to be performed. 
The language models more commonly used are based 
on two main approaches: first, the linguistic ap- 
proach, in which the model is written by a linguist, 
generally in the form of rules or constraints (Vouti- 
lainen and Jgrvinen, 1995). Second, the automatic 
approach, in which the model is automatically ob- 
tained from corpora (either raw or annotated) 1 , and 
consists of n-grams (Garside et al., 1987; Cutting 
et ah, 1992), rules (Hindle, 1989) or neural nets 
(Schmid, 1994). In the automatic approach we can 
distinguish two main trends: The low-level data 
trend collects statistics from the training corpora in 
the form of n-grams,  probabilities, weights, etc. The 
high level data  trend acquires more sophisticated in- 
formation, such as context rules, constraints, or de- 
cision trees (Daelemans et al., 1996; M/~rquez and 
Rodriguez, 1995; Samuelsson et al., 1996). The ac- 
quisition methods range from supervised-inductive- 
learning-from-example algorithms (Quinlan, 1986; 
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I When the model is obtained from annotated corpora 
we talk about supervised learning, when it is obtained 
from raw corpora training is considered unsupervised.  

A h a  et al., 1991) to genetic algorithm strategies 
(Losee, 1994), through the transformation-based 
error-driven algorithm used in (Brill, 1995), Still 
another possibility are the hybrid models, which try 
to join the advantages of both approaches (Vouti- 
lainen and Padr6, 1997). 

We present in this paper a hybrid approach that 
puts together both trends in automatic  approach 
and the linguistic approach. We describe a POS tag- 
ger based on the work described in (Padr6, 1996), 
that is able to use bi / t r igram information, auto- 
matically learned context constraints and linguisti- 
cally motivated manually written constraints. The 
sources and kinds of constraints are unrestricted, 
and the language model can be easily extended. The 
structure of the tagger is presented in figure 1. 

Language Model 

. I~:.i:;:;~: I / le~ed | t wri.e. | . . .  

l i.wco us 
Figure h Tagger architecture. 

Corpus 

We also present a constraint-acquisition algo- 
ri thm that uses statistical decision trees to learn con- 
text constraints from annotated corpora and we use 
the acquired constraints to feed the POS tagger. 

The paper is organized as follows. In section 2 we 
describe our language model, in section 3 we describe 
the constraint acquisition algorithm, and in section 
4 we expose the tagging algorithm. Descriptions of 
the corpus used, the experiments performed and the 
results obtained can be found in sections 5 and 6. 

2 L a n g u a g e  M o d e l  

We will use a hybrid language model consisting of an 
automatically acquired part and a linguist-written 
part. 
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The automatical ly acquired part is divided in two 
kinds of information: on the one hand, we have bi- 
grams and trigrams collected from the annotated 
training corpus (see section 5 for details). On the 
other hand, we have context constraints learned 
from the same training corpus using statistical deci- 
sion trees, as described in section 3. 

The linguistic part  is very small - -s ince there were 
no available resources to develop it fur ther - -  and 
covers only very few cases, but it is included to il- 
lustrate the flexibility of the algorithm. 

A sample rule of the linguistic part: 

i0.0 (XvauxiliarY.) 
(-[VBN IN , : JJ  JJS JJR])+  
<VBN> ; 

This rule states that  a tag past participle ( V B N )  is 
very compatible (10.0) with a left context consisting 
of a % v a u x i l i a r %  (previously defined macro which 
includes all forms of "have" and "be") provided that  
all the words in between don ' t  have any of the tags 
in the set [ V B N  I N  , : J J  J J S  J JR] .  Tha t  is, 
this rule raises the support  for the tag past partici- 
ple when there is an auxiliary verb to the left but 
only if there is not another candidate to be a past 
participle or an adjective inbetween. The tags [IN 
, :] prevent the rule from being applied when the 
auxiliary verb and the participle are in two different 
phrases (a comma, a colon or a preposition are con- 
sidered to mark the beginning of another phrase). 

The constraint language is able to express the 
same kind of patterns than the Constraint Gram- 
mar formalism (Karlsson et al., 1995), although in a 
different formalism. In addition, each constraint has 
a compatibil i ty value that  indicates its strength. In 
the middle run, the system will be adapted to accept 
CGs. 

3 C o n s t r a i n t  A c q u i s i t i o n  

Choosing, from a set of possible tags, the proper syn- 
tactic tag for a word in a particular context can be 
seen as a problem of classification. Decision trees, 
recently used in NLP basic tasks such as tagging 
and parsing (McCarthy and Lehnert, 1995: Daele- 
mans et al., 1996; Magerman, 1996), are suitable for 
performing this task. 

A decision tree is a n-ary branching tree that  rep- 
resents a classification rule for classifying the objects 
of a certain domain into a set of mutually exclusive 
classes. The domain objects are described as a set 
of a t t r ibute-value pairs, where each attribute mea- 
sures a relevant feature of an object taking a (ideally 
small) set of discrete, mutually incompatible values. 
Each non- terminal  node of a decision tree represents 
a question on (usually) one attribute. For each possi- 
ble value of this attr ibute there is a branch to follow. 
Leaf nodes represent concrete classes. 

Classify a new object with a decision tree is simply 
following the convenient path through the tree until 
a leaf is reached. 

Statistical decision trees only differs from common 
decision trees in that  leaf nodes define a conditional 
probability distribution on the set of  classes. 

It is important  to note that decision trees can be 
directly translated to rules considering, for each path 
from the root to a leaf, the conjunction of all ques- 
tions involved in this path as a condition and the 
class assigned to the leaf as the consequence. Statis- 
tical decision trees would generate rules in the same 
manner but assigning a certain degree of probability 
to each answer. 

So the learning process of contextual constraints 
is performed by means of learning one statistical de- 
cision tree for each class of POS ambiguity -~ and con- 
verting them to constraints (rules) expressing com- 
patibil i ty/incompatibil i ty of concrete tags in certain 
contexts. 

L e a r n i n g  A l g o r i t h m  

The algorithm we used for constructing the statisti- 
cal decision trees is a non-incremental  supervised 
learning-from-examples algorithm of the T D I D T  
(Top Down Induction of Decision Trees) family. It 
constructs the trees in a top-down way, guided by 
the distributional information of the examples, but 
not on the examples order (Quinlan, 1986). Briefly. 
the algorithm works as a recursive process that de- 
parts from considering the whole set of examples at 
the root level and constructs the tree i n a  top-down 
way branching at any non-terminal  node according 
to a certain selected attribute. The different val- 
ues of this at tr ibute induce a part i t ion of the set 
of examples in the corresponding subsets, in which 
the process is applied recursively in order to gener- 
ate the different subtrees. The recursion ends, in a 
certain node, either when all (or almost all) the re- 
maining examples belong to the same class, or when 
the number of examples is too small. These nodes 
are the leafs of the tree and contain the conditional 
probability distribution, of its associated subset, of 
examples, on the possible classes. 

The heuristic function for selecting the most 
useful at tr ibute at each step is of a cru- 
cial importance in order to obtain simple trees, 
since no backtracking is performed. There ex- 
ist two main families of attr ibute-selecting func- 
tions: information-based (Quinlan, 1986: Ldpez, 
1991) and statistically--based (Breiman et al., 1984; 
Mingers, 1989). 

Training Set 
For each class of POS ambiguity the initial exam- 
ple set is built by selecting from the training corpus 

Classes of ambiguity are determined by the groups 
of possible tags for the words in the corpus, i.e, noun- 
adjective, noun-adjective-verb, preposition-adverb, etc. 
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all the occurrences of the words belonging to this 
ambiguity class. More particularly, the set of at- 
tributes that describe each example consists of the 
part-of-speech tags of the neighbour words, and the 
information about the word itself (orthography and 
the proper tag in its context). The window consid- 
ered in the experiments reported in section 6 is 3 
words to the left and 2 to the right. The follow- 
ing are two real examples from the training set for 
the words that can be preposition and adverb at the 
same time (IN-RB conflict). 

VB DT NN <"as" ,IN> DT JJ 

NN IN NN <"once",RB> VBN TO 

Approximately 90% of this set of examples is used 
for the construction of the tree. The remaining 10% 
is used as fresh test corpus for the pruning process. 

Attribute Selection Function 

For the experiments reported in section 6 we used a 
attribute selection function due to L6pez de Minta- 
ras (L6pez. 1991), which belongs to the information- 
based family. Roughly speaking, it defines a distance 
measure between partitions and selects for branch- 
ing the attribute that generates the closest partition 
to the correc* partaion, namely the one that joins 
together all the examples of the same class. 

Let X be aset of examples, C the set of classes and 
Pc(X)  the partition of X according to the values of 
C. The selected attribute will be the one that gen- 
erates the closest partition of X to Pc(X).  For that 
we need to define a distance measure between parti- 
tions. Let PA(X) be the partition of X induced by 
the values of attribute A. The average information 
of such partition is defined as follows: 

I(PA(X)) = - ~ ,  p(X,a) log,.p(X,a), 
aEPa(X) 

where p(X. a) is the probability for an element of X 
belonging to the set a which is the subset of X whose 
examples have a certain value for the attribute .4, 
and it is estimated bv the ratio ~ This average 

• I X l  ' 

information measure reflects the randomness of dis- 
tribution of the elements of X between the classes of 
the partition induced by .4.. If we consider now the 
intersection between two different partitions induced 
by attributes .4 and B we obtain 

I (PA(X)  N PB(X))= 

- E Z p(X. aMb) log,.p(X, aAb). 
aEP.a(A'} bEPB;XI 

Conditioned information of PB(X) given PA(X)  iS 

I (PB(X) IPA(X) )  = 

I( PA(X)  M Ps (X) )  - I (P~(X))  = 

- Z Z p(X, nb) log, p(X'anb) 
p(X,a)  

a ~ P a ( X  ~, b E P B t X  ~ 

It is easy to show that the measure 

d(Pa(.Y). PB(X)) = 

[(Ps(X)iPA(X)) + I (PA(X) IPB(X) )  

is a distance. Normalizing we obtain 

d(PA(X) .PB( , \ ' ) )  
d.,v(Pa(X). PB(.V)) = 

I ( P a ( X ) a P B ( X ) )  " 

with values in [0,1]. 
So the selected attribute will be that one that min- 

imizes the measure: d.v(Pc(X), PA(X)). 

Branching Strategy 
Usual TDIDT algorithms consider a branch for each 
value of the selected attribute. This strategy is not 
feasible when the number of values is big (or even in- 
finite). In our case the greatest number of values for 
an attribute is 45 -- the tag set size-- which is con- 
siderably big (this means that the branching factor 
could be 45 at every level of the tree 3). Some s.vs- 
terns perform a previous recasting of the attributes 
in order to have only binary-valued attributes and to 
deal with binary trees (Magerman, 1996). This can 
always be done but the resulting features lose their 
intuition and direct interpretation, and explode in 
number. We have chosen a mixed approach which 
consist of splitting for all values and afterwards join- 
ing the resulting subsets into groups for which we 
have not enough statistical evidence of being differ- 
ent distributions. This statistical evidence is tested 
with a X ~" test at a 5% level of significance. In order 
to avoid zero probabilities the following smoothing 
is performed. In a certain set of examples, the prob- 
ability of a tag ti is estimated by 

I~,l+-~ 
ri(4) = ,+~ 

where m is the number of possible tags and n the 
number of examples. 

Additionally. all the subsets that don't imply a 
reduction in the classification error are joined to- 
gether in order to have a bigger set of examples to 
be treated in the following step of the tree construc- 
tion. The classification error of a certain node is 
simply: I - maxt<i<m (t)(ti)). 

Experiments reported in (.\I&rquez 
and Rodriguez. 1995) show that in this way more 
compact and predictive trees are obtained. 

Pruning the Tree 

Decision trees that correctly classify all examples of 
the training set are not always the most predictive 
ones. This is due to the phenomenon known as o,'er- 
fitting. It occurs when the training set has a certain 
amount of misclassified examples, which is obviously 
the case of our training corpus (see section 5). If we 

3In real cases the branching factor is much lower since 
not all tags appear always in all positions of the context. 
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force the learning algorithm to completely classify 
the examples then the resulting trees would fit also 
the noisy examples. 

The usual solutions to this problem are: l) Prune 
the tree. either during the construction process 
(Quinlan. 1993) or afterwards (Mingers, 1989); 2) 
Smooth the conditional probability distributions us- 
ing fresh corpus a (Magerman, 1996). 

Since another important, requirement of our prob- 
lem is to have small trees we have implemented 
a post-pruning technique. In a first step the 
tree is completely expanded and afterwards it is 
pruned following a minimal cost-complexity crite- 
rion (Breiman et al.. 1984). Roughly speaking this 
is a process that iteratively cut those subtrees pro- 
ducing only marginal benefits in accuracy, obtaining 
smaller trees at each step. The trees of this sequence 
are tested using a, comparatively small, fresh part  of 
the training set in order to decide which is the one 
with the highest degree of accuracy on new exam- 
ples. Experimental tests (M&rquez and Rodriguez, 
1995) have shown that the pruning process reduces 
tree sizes at about 50% and improves their accuracy 
in a 2-5%. 

An Ezample 

Finally, we present a real example of the simple ac- 
quired contextual constraints for the conflict I N - R B  
(preposition-adverb). 

P(IN)=0.$1 ] Pnorprobability 
P(RB)=0.19 [ di~tnbunon 

T 

. . .  ~ d n g h l m ~ g  er s U-"< 
C,,.dm,,.wl: P ( I N ) = 0 . 0 1 3  ' ' ' probuiJilm 
di.~tnbut.m P~RB~0.987 

Figure 2: Example of a decision tree branch, 

The tree branch in figure 2 is translated into the 
following constraints: 

- 5 . 8 1  <["as . . . .  As"],IN> ([RB'I) ([IN]); 
2.366 <["as . . . .  As"],RS> ([RB]) ([IN]); 

which express the compatibility (either positive or 
negative) of the word-tag pair in angle brackets with 
the given context. The compatibility value for each 
constraint is the mutual information between the tag 
and the context (Cover and Thomas,  1991). It is 
directly" computed from the probabilities in the tree. 

~Of course, this can be done only in the case of sta- 
tistical decision trees. 

4 T a g g i n g  A l g o r i t h m  

Usual tagging algorithms are either n -g ram oriented 
-such as Viterbi algorithm (Viterbi. 1967)- or ad-  
hoc for every case when they must  deal with more 
complex information. 

We use relaxation labelling as a tagging algorithm. 
Relaxation labelling is a generic name for a family 
of iterative algorithms which perform function opti- 
mization, based on local information. See (Torras. 
1989) for a summary. Its most remarkable feature is 
that  it can deal with any kind of constraints, thus the 
model can be improved by adding any constraints 
available and it makes the tagging algorithm inde- 
pendent of the complexity of the model. 

The algorithm has been applied to part-of-speech 
tagging (Padr6, 1996), and to shallow parsing 
(Voutilainen and Padro. 1997). 

The algorithm is described as follows: 
Let. V = {Vl.t'2 . . . . .  v,} be a set of variables 

(words). 
Let ti = {t].t~ . . . . .  t~,}  be the set of possible 

labels (POS tags) for variable vi. 
Let C S  be a set of constraints between the labels 

of the variables. Each constraint C E C S  states a 
"compatibility value" C, for a combination of pairs 
variable-label. Any number of variables may be in- 
volved in a constraint. 

The aim of the algorithm is to find a weighted 
labelling 5 such that "global consistency" is maxi- 
mized. Maximizing "global consistency" is defined 

i is as maximizing for all vi, ~ i  P} x Sii, where pj 
the weight for label j in variable vi and Sij the sup- 
port received by the same combination. The support 
for the pair variable-label expresses how compatible 
that  pair is with the labels of neighbouring variables. 
according to the constraint set. It is a vector opti- 
mization and doesn't maximize only the sum of the 
supports of all variables. It finds a weighted labelling 
such that any other choice wouldn't  increase the sup- 
port for any variable. 

The support is defined as the sum of the influence 
of every constraint on a label. 

c.. Z I n f ( r )  
r 6 R , j  

where: 
l~ij is the set of constraints on label j for variable 
i, i.e. the constraints formed by any combination of 
variable-label pairs that includes the pair (ci. t i ). 
I n f ( r )  = C, x p~'t,"n) x . . .  x ,v~(m).. . is the prod- 

uct of the current weights ~ for the labels appearing 

5A weighted labelling is a weight assignment for each 
label of each variable such that the weights for the labels 
of the same variable add up to one. 

Gp~(rn) is the weight assigned to label k for variable 
r at time m. 
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in the constraint except (vi, t}) (representing how 
applicable the constraint is in the current context) 
multiplied by Cr which is the constraint compatibil- 
ity value (stating how compatible the pair is with the 
context). 

Briefly, what the algorithm does is: 

i. Start with a random weight assignment r. 

2. Compute the support value for each label of 
each variable. 

3. Increase the weights of the labels more compat- 
ible with the context (support greater than 0) 
and decrease those of the less compatible labels 
(support less than 0) s, using the updating func- 
tion: 

i (m + 1) = p~(m) × (1 + s~j) 
PJ I~, 

Zp~(m ) x (i + Sit:) 
k=l 

where - l < S i j  <_+1 

4. If a stopping/convergence criterion 9 is satisfied, 
stop, otherwise go to step 2. 

The cost of the algorithm is proportional to the 
product of the number of words by the number of 
constraints. 

5 D e s c r i p t i o n  o f  t h e  c o r p u s  

We used the Wall Street Journal corpus to train and 
test the system. We divided it in three parts: 1,100 
Kw were used as a training set, 20 Kw as a model-  
tuning set, and 50 Kw as a test set. 

The tag set size is 45 tags. 36.4% of the words in 
the corpus are ambiguous, and the ambiguity ratio 
is 2.44 tags/word over the ambiguous words, 1.52 
overall. 

We used a lexicon derived from training corpora, 
that contains all possible tags for a word, as well 
as their lexical probabilities. For the words in test 
corpora not appearing in the train set, we stored 
all possible tags, but no lexical probability (i.e. we 
assume uniform distribution) l°. 

The noise in the lexicon was filtered by manually 
checking the lexicon entries for the most frequent 200 
words in the corpus 11 to eliminate the tags due to 
errors in the training set. For instance the original 

ZWe use lexical probabilities as a starting point. 
SNegative values for support indicate incompatibility. 
9We use the criterion of stopping when there are no 

more changes, although more sophisticated heuristic pro- 
cedures are also used to stop relaxation processes (Ek- 
lundh and Rosenfeld, 1978; Richards et hi. , 1981). 

1°That is, we assumed a morphological analyzer that 
provides all possible tags for unknown words. 

l~The 200 most frequent words in the corpus cover 
over half of it. 

lexicon entry (numbers indicate frequencies in the 
training corpus) for the very common word the was 

~he CD i DT 47715 JJ 7 NN I NNP 6 VBP 1 

since it appears in the corpus with the six differ- 
ent tags: CD (cardinal), DT (determiner), JJ (ad- 
jective), NN (noun). NNP (proper noun) and VBP 
(verb-personal form). It is obvious that the only 
correct reading for the is determiner. 

The training set was used to estimate bi / t r igram 
statistics and to perform the constraint learning. 

The model-tuning set was used to tune the algo- 
rithm parameterizations, and to write the linguistic 
part of the model. 

The resulting models were tested in the fresh test 
set. 

6 E x p e r i m e n t s  a n d  r e s u l t s  

The whole WSJ corpus contains 241 different classes 
of ambiguity. The 40 most representative classes t-" 
were selected for acquiring the corresponding deci- 
sion trees. That  produced 40 trees totaling up to 
2995 leaf nodes, and covering 83.95% of the ambigu- 
ous words. Given that each tree branch produces as 
many constraints as tags its leaf involves, these trees 
were translated into 8473 context constraints. 

We also extracted the 1404 bigram restrictions 
and the 17387 trigram restrictions appearing in the 
training corpus. 

Finally, the model-tuning set was tagged using 
a bigram model. The most common errors com- 
mited by the bigram tagger were selected for manu- 
ally writing the sample linguistic part  of the model, 
consisting of a set of 20 hand-written constraints. 

From now on C will stands for the set of acquired 
context constraints. B for the bigram model, T for 
th.e trigram model, and H for the hand-written con- 
straints. Any combination of these letters will indi- 
cate the joining of the corresponding models (BT,  
BC,  B T C ,  etc.). 

In addition, ML indicates a baseline model con- 
raining no constraints (this will result in a most- 
likely tagger) and H M M  stands for a hidden 
Markov model bigram tagger (Elworthy, 1992). 

We tested the tagger on the 50 Kw test set using 
all the combinations of the language models. Results 
are reported below. 

The effect of the acquired rules on the number of 
errors for some of the most common cases is shown 
in table 1. XX/Y'Y stands for an error consisting 
of a word tagged ~t%_" when it should have been XX. 
Table 2 contains the meaning of all the involved tags. 

Figures in table 1 show that in all cases the learned 
constraints led to an improvement. 

It is remarkable that when using C alone, the 
number of errors is lower than with any bigram 

12In terms of number of examples. 
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J J /NN+NN/JJ  
VBD/VBN+VBN/VBD 
IN/RB+RB/IN 
VB/VBP+VBP/VB 
NN/NNP+NNP/NN 
NNP/NNPS+NNPS/NNP 
"'that" 187 
Total 

ML C B 
73+137 70+94 73+112 

176+190 71+66 88+69 
31+132 40+69 66+107 

128+147 30+26 49+43 
70+11 44+12 72+17 
45+14 37+19 45+13 

53 66 

BC 
69+102 

63+56 
43+17 
32+27 
45+16 
46+15 

45 

T I TC 
57+103 [ 61+95 

56+57 55+57 
77+68 47+67 
31+32 32+18 
69+27 50+18 
54+12 51+12 

60 I 40 

B T [  BTC 
67+101 t 62+93 

65+60 59+61 
65+98 46-z-83 
28+32 ') ' ' '} .8,--3. 
71+20 62+t.5 
53+14 51+14 

57 . 45 

1341 it 631 II 82°1 630 II 7o3! 603 731 ~s51 i 

Table 1: Number of some common errors commited by each model 

NN 
JJ 
VBD 
VBN 
RB 
IN 
VB 
VBP 
NNP 
NNPS 

Noun [ I ambiguous 
Adjective B 91.35% 
Verb - past. tense T 91.82% 
'verb - past participle BT 91.92% 
Adverb 
Preposition B C 91.96% 
Verb - base form C 92.72% 
Verb - personal form TC 92.82% 
Proper noun BTC 92.55% 

Plural proper noun Table 4: Results of our 

Table 2: Tag meanings of constraint kinds 

and /o r  tr igram model, that  is, the acquired model 
performs better than the others estimated from the 
same training corpus. 

We also find that the cooperation of a bigram or 
t r igram model with the acquired one, produces even 
better results. This is not true in the cooperation 
of bigrams and trigrams with acquired constraints 
( B T C ) ,  in this case the synergy is not enough to get 
a better joint result. This might be due to the fact 
that  the noise in B and T adds up and overwhelms 
the context constraints. 

The results obtained by the baseline taggers can 
be found in table 3 and the results obtained using all 
the learned constraints together with the b i / t r igram 
models in table 4. 

] ambiguous I overall 

ML [ 85.31%194.66% 
HMM 91.75% 97.00% 

Table 3: Results of the baseline taggers 

On the one hand. the results in tables 3 and 4 
show that  our tagger performs slightly worse than a 
HMM tagger in the same conditions 13, that is, when 
using only bigram information. 

13Hand analysis of the errors commited by the algo- 
rithm suggest that the worse results may be due to noise 
in the training and test corpora, i.e., relaxation algo- 
rithm seems to be more noise-sensitive than a Markov 
model. Further research is required on this point. 

overall 

96.86% 
97.03% 
97.06% 

97.08% 
97.36% 
97.39% 
97.29% 

tagger using every combination 

On the other hand, those results also show that 
since our tagger is more flexible than a HMM, it can 
easily accept more complex information to improve 
its results up to 97.39% without modifying the algo- 
rithm. 

I I ambigu°us 
H 86.41% 
BH 91.88% 
TH 92.04% 

B T H  92.32% 

CH 91.97% 
BCH 92.76% 
TCH 92.98% 
BTCH 92.71% 

overall 

95.06% 
97.05% 
97.11% 
97.21% 

97.08% 
97.37% 
97.45% 
97.35% 

Table .5: Results of our tagger using every combination 
of constraint kinds and hand written constraints 

Table 5 shows the results adding the hand written 
constraints. The hand written set is very small and 
only covers a few common error cases. That  pro- 
duces poor results when using them alone (H). but 
they are good enough to raise the results given by 
the automatical ly acquired models up to 97.-15%. 

Although the improvement obtained might seem 
small, it must be taken into .account that we are 
moving very close to the best achievable result with 
these techniques. 

First, some ambiguities can only be solved with 
semantic information, such as the Noun-Adjective 
ambiguity for word principal in the phrase lhe prin- 
cipal office. It could be an adjective, meaning the 
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main office, or a noun, meaning the school head of- 
rice, 

Second, the WSJ corpus contains noise (mistagged 
words) that affects both the training and the test 
sets. The noise in the training set produces noisy 
-and so less precise- models. In the test set, it pro- 
duces a wrong estimation of accuracy, since correct 
answers are computed as wrong and vice-versa. 

For instance, verb participle forms are sometimes 
tagged as such (VBIV) and also as adjectives (J  J) in 
other sentences with no structural differences: 

• . . .  failing_VBG ~o_TO voluntarily_KB 
submit_VB the_DT reques~ed_VBN 
informa%ion.NN . . . 

• . . .  a_DT large_JJ sample_NN of_IN 
married_JJ women_NNS with_IN at_II~ 
l eas t_JJS  one_CD child..gN . . .  

Another structure not coherently tagged are noun 
chains when the nouns are ambiguous and can be 

• also adjectives: 

• ... Mr._NNP Hahn_NNP ,_, the_DT 
62-year-old_JJ chairman_NN and_CC 

chief_NN executive_JJ officer_NN of_IN 
Georgia-Pacific_~NP Corp._NNP . . .  

• . . .  Burger_NgP King_~NP 
's_POS chief_JJ ezecutive_NN officer_NN ,_, 
Barry_NNP Gibbons_NNP ,_, stars_VBZ 
inlN ads_NNS saying_VBG ... 

• ... and_CC Barrett_NNP B._NNP 
Weekes_NNP ,_, chairma~t-NN ,_, 

president_NN and_CC chief_JJ ezecutive_JJ 
officer_NN . _. 

• ... the_DT compaay_NN includes_VBZ 
NeiI_NNP Davenport_NNP ,_, 47_CD ,_, 
president_NN and_CC chief_NN ezecu~ive_NN 
officer_NN ;_: 

All this makes that the performance cannot reach 
100%, and that an accurate analysis of the noise in 
WS3 corpus should be performed to estimate the 
actual upper bound that a tagger can achieve on 
these data. This issue will be addressed in further 
work. 

7 C o n c l u s i o n s  

We have presented an automatic constraint learning 
algorithm based on statistical decision trees. 

We have used the acquired constraints in a par t -  
of-speech tagger that allows combining any kind of 
constraints in the language model. 

The results obtained show a clear improvement in 
the performance when the automatically acquired 
constraints are added to the model. That indicates 
that relaxation labelling is a flexible algorithm able 
to combine properly different information kinds, and 

that the constraints acquired by the learning algo- 
rithm capture relevant context information that was 
not included in the n-gram models. 

It is difficult to compare the results to other works, 
since the accuracy varies greatly depending on the 
corpus, the tag set, and the lexicon or morphological 
analyzer used. The more similar conditions reported 
in previous work are those experiments performed 
on the WSJ corpus: (Brill, 1992) reports 3-4% er- 
ror rate, and (Daelemans et al., 1996) report 96.7% 
accuracy. We obtained a 97.39% accuracy with tri- 
grams plus automatically acquired constraints, and 
97.45% when hand written constraints were added. 

8 F u r t h e r  W o r k  

Further work is still to be done in the following di- 
rections: 

• Perform a thorough analysis of the noise in 
the WSJ corpus to determine a realistic upper 

• bound for the performance that can be expected 
from a POS tagger. 

On the constraint learning algorithm: 

• Consider more complex context features, such 
as non-limited distance or barrier rules in the 
style of (Samuelsson et al., 1996). 

• Take into account morphological, semantic and 
other kinds of information. 

• Perform a global smoothing to deal with low- 
frequency ambiguity classes. 

On the tagging algorithms 

• Study the convergence properties of the algo- 
rithm to decide whether the lower results at 
convergence are produced by the noise in the 
corpus. 

• Use back-off techniques to minimize inter- 
ferences between statistical and learned con- 
straints. 

• Use the algorithm to perform simultaneously 
POS tagging and word sense disambiguation, 
to take advantage of cross influences between 
both kinds of information. 
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