
A Flexible POS Tagger Using an Automatically Acquired
Language Model*

L l u f s M h r q u e z

L S I - U P C

c/Jordi Girona 1-3
08034 Barcelona. Catalonia

lluism©isi, upc. es

L l u / s P a d r 6

L S I - U P C

c / J o r d i G i r o n a 1-3

08034 B a r c e l o n a . C a t a l o n i a

padro@isi, upc. es

A b s t r a c t

We present an algorithm that automati-
cally learns context constraints using sta-
tistical decision trees. We then use the ac-
quired constraints in a flexible POS tag-
ger. The tagger is able to use informa-
tion of any degree: n-grams, automati-
cally learned context constraints, linguis-
tically motivated manually written con-
straints, etc. The sources and kinds of con-
straints are unrestricted, and the language
model can be easily extended, improving
the results. The tagger has been tested and
evaluated on the WSJ corpus.

1 I n t r o d u c t i o n

In NLP, it is necessary to model the language in a
representation suitable for the task to be performed.
The language models more commonly used are based
on two main approaches: first, the linguistic ap-
proach, in which the model is written by a linguist,
generally in the form of rules or constraints (Vouti-
lainen and Jgrvinen, 1995). Second, the automatic
approach, in which the model is automatically ob-
tained from corpora (either raw or annotated) 1 , and
consists of n-grams (Garside et al., 1987; Cutting
et ah, 1992), rules (Hindle, 1989) or neural nets
(Schmid, 1994). In the automatic approach we can
distinguish two main trends: The low-level data
trend collects statistics from the training corpora in
the form of n-grams, probabilities, weights, etc. The
high level data trend acquires more sophisticated in-
formation, such as context rules, constraints, or de-
cision trees (Daelemans et al., 1996; M/~rquez and
Rodriguez, 1995; Samuelsson et al., 1996). The ac-
quisition methods range from supervised-inductive-
learning-from-example algorithms (Quinlan, 1986;

*This research has been partially funded by the Span-
ish Research Department (CICYT) and inscribed as
TIC96-1243-C03-02

I When the model is obtained from annotated corpora
we talk about supervised learning, when it is obtained
from raw corpora training is considered unsupervised.

A h a et al., 1991) to genetic algorithm strategies
(Losee, 1994), through the transformation-based
error-driven algorithm used in (Brill, 1995), Still
another possibility are the hybrid models, which try
to join the advantages of both approaches (Vouti-
lainen and Padr6, 1997).

We present in this paper a hybrid approach that
puts together both trends in automatic approach
and the linguistic approach. We describe a POS tag-
ger based on the work described in (Padr6, 1996),
that is able to use bi / t r igram information, auto-
matically learned context constraints and linguisti-
cally motivated manually written constraints. The
sources and kinds of constraints are unrestricted,
and the language model can be easily extended. The
structure of the tagger is presented in figure 1.

Language Model

. I~:.i:;:;~: I / le~ed | t wri.e. | . . .

l i.wco us
Figure h Tagger architecture.

Corpus

We also present a constraint-acquisition algo-
ri thm that uses statistical decision trees to learn con-
text constraints from annotated corpora and we use
the acquired constraints to feed the POS tagger.

The paper is organized as follows. In section 2 we
describe our language model, in section 3 we describe
the constraint acquisition algorithm, and in section
4 we expose the tagging algorithm. Descriptions of
the corpus used, the experiments performed and the
results obtained can be found in sections 5 and 6.

2 L a n g u a g e M o d e l

We will use a hybrid language model consisting of an
automatically acquired part and a linguist-written
part.

238

The automatical ly acquired part is divided in two
kinds of information: on the one hand, we have bi-
grams and trigrams collected from the annotated
training corpus (see section 5 for details). On the
other hand, we have context constraints learned
from the same training corpus using statistical deci-
sion trees, as described in section 3.

The linguistic part is very small - -s ince there were
no available resources to develop it fur ther - - and
covers only very few cases, but it is included to il-
lustrate the flexibility of the algorithm.

A sample rule of the linguistic part:

i0.0 (XvauxiliarY.)
(-[VBN IN , : JJ JJS JJR])+
<VBN> ;

This rule states that a tag past participle (V B N) is
very compatible (10.0) with a left context consisting
of a % v a u x i l i a r % (previously defined macro which
includes all forms of "have" and "be") provided that
all the words in between don ' t have any of the tags
in the set [V B N I N , : J J J J S J JR] . Tha t is,
this rule raises the support for the tag past partici-
ple when there is an auxiliary verb to the left but
only if there is not another candidate to be a past
participle or an adjective inbetween. The tags [IN
, :] prevent the rule from being applied when the
auxiliary verb and the participle are in two different
phrases (a comma, a colon or a preposition are con-
sidered to mark the beginning of another phrase).

The constraint language is able to express the
same kind of patterns than the Constraint Gram-
mar formalism (Karlsson et al., 1995), although in a
different formalism. In addition, each constraint has
a compatibil i ty value that indicates its strength. In
the middle run, the system will be adapted to accept
CGs.

3 C o n s t r a i n t A c q u i s i t i o n

Choosing, from a set of possible tags, the proper syn-
tactic tag for a word in a particular context can be
seen as a problem of classification. Decision trees,
recently used in NLP basic tasks such as tagging
and parsing (McCarthy and Lehnert, 1995: Daele-
mans et al., 1996; Magerman, 1996), are suitable for
performing this task.

A decision tree is a n-ary branching tree that rep-
resents a classification rule for classifying the objects
of a certain domain into a set of mutually exclusive
classes. The domain objects are described as a set
of a t t r ibute-value pairs, where each attribute mea-
sures a relevant feature of an object taking a (ideally
small) set of discrete, mutually incompatible values.
Each non- terminal node of a decision tree represents
a question on (usually) one attribute. For each possi-
ble value of this attr ibute there is a branch to follow.
Leaf nodes represent concrete classes.

Classify a new object with a decision tree is simply
following the convenient path through the tree until
a leaf is reached.

Statistical decision trees only differs from common
decision trees in that leaf nodes define a conditional
probability distribution on the set of classes.

It is important to note that decision trees can be
directly translated to rules considering, for each path
from the root to a leaf, the conjunction of all ques-
tions involved in this path as a condition and the
class assigned to the leaf as the consequence. Statis-
tical decision trees would generate rules in the same
manner but assigning a certain degree of probability
to each answer.

So the learning process of contextual constraints
is performed by means of learning one statistical de-
cision tree for each class of POS ambiguity -~ and con-
verting them to constraints (rules) expressing com-
patibil i ty/incompatibil i ty of concrete tags in certain
contexts.

L e a r n i n g A l g o r i t h m

The algorithm we used for constructing the statisti-
cal decision trees is a non-incremental supervised
learning-from-examples algorithm of the T D I D T
(Top Down Induction of Decision Trees) family. It
constructs the trees in a top-down way, guided by
the distributional information of the examples, but
not on the examples order (Quinlan, 1986). Briefly.
the algorithm works as a recursive process that de-
parts from considering the whole set of examples at
the root level and constructs the tree i n a top-down
way branching at any non-terminal node according
to a certain selected attribute. The different val-
ues of this at tr ibute induce a part i t ion of the set
of examples in the corresponding subsets, in which
the process is applied recursively in order to gener-
ate the different subtrees. The recursion ends, in a
certain node, either when all (or almost all) the re-
maining examples belong to the same class, or when
the number of examples is too small. These nodes
are the leafs of the tree and contain the conditional
probability distribution, of its associated subset, of
examples, on the possible classes.

The heuristic function for selecting the most
useful at tr ibute at each step is of a cru-
cial importance in order to obtain simple trees,
since no backtracking is performed. There ex-
ist two main families of attr ibute-selecting func-
tions: information-based (Quinlan, 1986: Ldpez,
1991) and statistically--based (Breiman et al., 1984;
Mingers, 1989).

Training Set
For each class of POS ambiguity the initial exam-
ple set is built by selecting from the training corpus

Classes of ambiguity are determined by the groups
of possible tags for the words in the corpus, i.e, noun-
adjective, noun-adjective-verb, preposition-adverb, etc.

239

all the occurrences of the words belonging to this
ambiguity class. More particularly, the set of at-
tributes that describe each example consists of the
part-of-speech tags of the neighbour words, and the
information about the word itself (orthography and
the proper tag in its context). The window consid-
ered in the experiments reported in section 6 is 3
words to the left and 2 to the right. The follow-
ing are two real examples from the training set for
the words that can be preposition and adverb at the
same time (IN-RB conflict).

VB DT NN <"as" ,IN> DT JJ

NN IN NN <"once",RB> VBN TO

Approximately 90% of this set of examples is used
for the construction of the tree. The remaining 10%
is used as fresh test corpus for the pruning process.

Attribute Selection Function

For the experiments reported in section 6 we used a
attribute selection function due to L6pez de Minta-
ras (L6pez. 1991), which belongs to the information-
based family. Roughly speaking, it defines a distance
measure between partitions and selects for branch-
ing the attribute that generates the closest partition
to the correc* partaion, namely the one that joins
together all the examples of the same class.

Let X be aset of examples, C the set of classes and
Pc(X) the partition of X according to the values of
C. The selected attribute will be the one that gen-
erates the closest partition of X to Pc(X). For that
we need to define a distance measure between parti-
tions. Let PA(X) be the partition of X induced by
the values of attribute A. The average information
of such partition is defined as follows:

I(PA(X)) = - ~ , p(X,a) log,.p(X,a),
aEPa(X)

where p(X. a) is the probability for an element of X
belonging to the set a which is the subset of X whose
examples have a certain value for the attribute .4,
and it is estimated bv the ratio ~ This average

• I X l '

information measure reflects the randomness of dis-
tribution of the elements of X between the classes of
the partition induced by .4.. If we consider now the
intersection between two different partitions induced
by attributes .4 and B we obtain

I (PA(X) N PB(X))=

- E Z p(X. aMb) log,.p(X, aAb).
aEP.a(A'} bEPB;XI

Conditioned information of PB(X) given PA(X) iS

I (PB(X) IPA(X)) =

I(PA(X) M Ps (X)) - I (P~(X)) =

- Z Z p(X, nb) log, p(X'anb)
p(X,a)

a ~ P a (X ~, b E P B t X ~

It is easy to show that the measure

d(Pa(.Y). PB(X)) =

[(Ps(X)iPA(X)) + I (PA(X) IPB(X))

is a distance. Normalizing we obtain

d(PA(X) .PB(, \ '))
d.,v(Pa(X). PB(.V)) =

I (P a (X) a P B (X)) "

with values in [0,1].
So the selected attribute will be that one that min-

imizes the measure: d.v(Pc(X), PA(X)).

Branching Strategy
Usual TDIDT algorithms consider a branch for each
value of the selected attribute. This strategy is not
feasible when the number of values is big (or even in-
finite). In our case the greatest number of values for
an attribute is 45 -- the tag set size-- which is con-
siderably big (this means that the branching factor
could be 45 at every level of the tree 3). Some s.vs-
terns perform a previous recasting of the attributes
in order to have only binary-valued attributes and to
deal with binary trees (Magerman, 1996). This can
always be done but the resulting features lose their
intuition and direct interpretation, and explode in
number. We have chosen a mixed approach which
consist of splitting for all values and afterwards join-
ing the resulting subsets into groups for which we
have not enough statistical evidence of being differ-
ent distributions. This statistical evidence is tested
with a X ~" test at a 5% level of significance. In order
to avoid zero probabilities the following smoothing
is performed. In a certain set of examples, the prob-
ability of a tag ti is estimated by

I~,l+-~
ri(4) = ,+~

where m is the number of possible tags and n the
number of examples.

Additionally. all the subsets that don't imply a
reduction in the classification error are joined to-
gether in order to have a bigger set of examples to
be treated in the following step of the tree construc-
tion. The classification error of a certain node is
simply: I - maxt<i<m (t)(ti)).

Experiments reported in (.\I&rquez
and Rodriguez. 1995) show that in this way more
compact and predictive trees are obtained.

Pruning the Tree

Decision trees that correctly classify all examples of
the training set are not always the most predictive
ones. This is due to the phenomenon known as o,'er-
fitting. It occurs when the training set has a certain
amount of misclassified examples, which is obviously
the case of our training corpus (see section 5). If we

3In real cases the branching factor is much lower since
not all tags appear always in all positions of the context.

240

force the learning algorithm to completely classify
the examples then the resulting trees would fit also
the noisy examples.

The usual solutions to this problem are: l) Prune
the tree. either during the construction process
(Quinlan. 1993) or afterwards (Mingers, 1989); 2)
Smooth the conditional probability distributions us-
ing fresh corpus a (Magerman, 1996).

Since another important, requirement of our prob-
lem is to have small trees we have implemented
a post-pruning technique. In a first step the
tree is completely expanded and afterwards it is
pruned following a minimal cost-complexity crite-
rion (Breiman et al.. 1984). Roughly speaking this
is a process that iteratively cut those subtrees pro-
ducing only marginal benefits in accuracy, obtaining
smaller trees at each step. The trees of this sequence
are tested using a, comparatively small, fresh part of
the training set in order to decide which is the one
with the highest degree of accuracy on new exam-
ples. Experimental tests (M&rquez and Rodriguez,
1995) have shown that the pruning process reduces
tree sizes at about 50% and improves their accuracy
in a 2-5%.

An Ezample

Finally, we present a real example of the simple ac-
quired contextual constraints for the conflict I N - R B
(preposition-adverb).

P(IN)=0.$1] Pnorprobability
P(RB)=0.19 [di~tnbunon

T

. . . ~ d n g h l m ~ g er s U-"<
C,,.dm,,.wl: P (I N) = 0 . 0 1 3 ' ' ' probuiJilm
di.~tnbut.m P~RB~0.987

Figure 2: Example of a decision tree branch,

The tree branch in figure 2 is translated into the
following constraints:

- 5 . 8 1 <["as As"],IN> ([RB'I) ([IN]);
2.366 <["as As"],RS> ([RB]) ([IN]);

which express the compatibility (either positive or
negative) of the word-tag pair in angle brackets with
the given context. The compatibility value for each
constraint is the mutual information between the tag
and the context (Cover and Thomas, 1991). It is
directly" computed from the probabilities in the tree.

~Of course, this can be done only in the case of sta-
tistical decision trees.

4 T a g g i n g A l g o r i t h m

Usual tagging algorithms are either n -g ram oriented
-such as Viterbi algorithm (Viterbi. 1967)- or ad-
hoc for every case when they must deal with more
complex information.

We use relaxation labelling as a tagging algorithm.
Relaxation labelling is a generic name for a family
of iterative algorithms which perform function opti-
mization, based on local information. See (Torras.
1989) for a summary. Its most remarkable feature is
that it can deal with any kind of constraints, thus the
model can be improved by adding any constraints
available and it makes the tagging algorithm inde-
pendent of the complexity of the model.

The algorithm has been applied to part-of-speech
tagging (Padr6, 1996), and to shallow parsing
(Voutilainen and Padro. 1997).

The algorithm is described as follows:
Let. V = {Vl.t'2 v,} be a set of variables

(words).
Let ti = {t].t~ t~,} be the set of possible

labels (POS tags) for variable vi.
Let C S be a set of constraints between the labels

of the variables. Each constraint C E C S states a
"compatibility value" C, for a combination of pairs
variable-label. Any number of variables may be in-
volved in a constraint.

The aim of the algorithm is to find a weighted
labelling 5 such that "global consistency" is maxi-
mized. Maximizing "global consistency" is defined

i is as maximizing for all vi, ~ i P} x Sii, where pj
the weight for label j in variable vi and Sij the sup-
port received by the same combination. The support
for the pair variable-label expresses how compatible
that pair is with the labels of neighbouring variables.
according to the constraint set. It is a vector opti-
mization and doesn't maximize only the sum of the
supports of all variables. It finds a weighted labelling
such that any other choice wouldn't increase the sup-
port for any variable.

The support is defined as the sum of the influence
of every constraint on a label.

c.. Z I n f (r)
r 6 R , j

where:
l~ij is the set of constraints on label j for variable
i, i.e. the constraints formed by any combination of
variable-label pairs that includes the pair (ci. t i).
I n f (r) = C, x p~'t,"n) x . . . x ,v~(m).. . is the prod-

uct of the current weights ~ for the labels appearing

5A weighted labelling is a weight assignment for each
label of each variable such that the weights for the labels
of the same variable add up to one.

Gp~(rn) is the weight assigned to label k for variable
r at time m.

2 4 1

in the constraint except (vi, t}) (representing how
applicable the constraint is in the current context)
multiplied by Cr which is the constraint compatibil-
ity value (stating how compatible the pair is with the
context).

Briefly, what the algorithm does is:

i. Start with a random weight assignment r.

2. Compute the support value for each label of
each variable.

3. Increase the weights of the labels more compat-
ible with the context (support greater than 0)
and decrease those of the less compatible labels
(support less than 0) s, using the updating func-
tion:

i (m + 1) = p~(m) × (1 + s~j)
PJ I~,

Zp~(m) x (i + Sit:)
k=l

where - l < S i j <_+1

4. If a stopping/convergence criterion 9 is satisfied,
stop, otherwise go to step 2.

The cost of the algorithm is proportional to the
product of the number of words by the number of
constraints.

5 D e s c r i p t i o n o f t h e c o r p u s

We used the Wall Street Journal corpus to train and
test the system. We divided it in three parts: 1,100
Kw were used as a training set, 20 Kw as a model-
tuning set, and 50 Kw as a test set.

The tag set size is 45 tags. 36.4% of the words in
the corpus are ambiguous, and the ambiguity ratio
is 2.44 tags/word over the ambiguous words, 1.52
overall.

We used a lexicon derived from training corpora,
that contains all possible tags for a word, as well
as their lexical probabilities. For the words in test
corpora not appearing in the train set, we stored
all possible tags, but no lexical probability (i.e. we
assume uniform distribution) l°.

The noise in the lexicon was filtered by manually
checking the lexicon entries for the most frequent 200
words in the corpus 11 to eliminate the tags due to
errors in the training set. For instance the original

ZWe use lexical probabilities as a starting point.
SNegative values for support indicate incompatibility.
9We use the criterion of stopping when there are no

more changes, although more sophisticated heuristic pro-
cedures are also used to stop relaxation processes (Ek-
lundh and Rosenfeld, 1978; Richards et hi. , 1981).

1°That is, we assumed a morphological analyzer that
provides all possible tags for unknown words.

l~The 200 most frequent words in the corpus cover
over half of it.

lexicon entry (numbers indicate frequencies in the
training corpus) for the very common word the was

~he CD i DT 47715 JJ 7 NN I NNP 6 VBP 1

since it appears in the corpus with the six differ-
ent tags: CD (cardinal), DT (determiner), JJ (ad-
jective), NN (noun). NNP (proper noun) and VBP
(verb-personal form). It is obvious that the only
correct reading for the is determiner.

The training set was used to estimate bi / t r igram
statistics and to perform the constraint learning.

The model-tuning set was used to tune the algo-
rithm parameterizations, and to write the linguistic
part of the model.

The resulting models were tested in the fresh test
set.

6 E x p e r i m e n t s a n d r e s u l t s

The whole WSJ corpus contains 241 different classes
of ambiguity. The 40 most representative classes t-"
were selected for acquiring the corresponding deci-
sion trees. That produced 40 trees totaling up to
2995 leaf nodes, and covering 83.95% of the ambigu-
ous words. Given that each tree branch produces as
many constraints as tags its leaf involves, these trees
were translated into 8473 context constraints.

We also extracted the 1404 bigram restrictions
and the 17387 trigram restrictions appearing in the
training corpus.

Finally, the model-tuning set was tagged using
a bigram model. The most common errors com-
mited by the bigram tagger were selected for manu-
ally writing the sample linguistic part of the model,
consisting of a set of 20 hand-written constraints.

From now on C will stands for the set of acquired
context constraints. B for the bigram model, T for
th.e trigram model, and H for the hand-written con-
straints. Any combination of these letters will indi-
cate the joining of the corresponding models (BT,
BC, B T C , etc.).

In addition, ML indicates a baseline model con-
raining no constraints (this will result in a most-
likely tagger) and H M M stands for a hidden
Markov model bigram tagger (Elworthy, 1992).

We tested the tagger on the 50 Kw test set using
all the combinations of the language models. Results
are reported below.

The effect of the acquired rules on the number of
errors for some of the most common cases is shown
in table 1. XX/Y'Y stands for an error consisting
of a word tagged ~t%_" when it should have been XX.
Table 2 contains the meaning of all the involved tags.

Figures in table 1 show that in all cases the learned
constraints led to an improvement.

It is remarkable that when using C alone, the
number of errors is lower than with any bigram

12In terms of number of examples.

242

J J /NN+NN/JJ
VBD/VBN+VBN/VBD
IN/RB+RB/IN
VB/VBP+VBP/VB
NN/NNP+NNP/NN
NNP/NNPS+NNPS/NNP
"'that" 187
Total

ML C B
73+137 70+94 73+112

176+190 71+66 88+69
31+132 40+69 66+107

128+147 30+26 49+43
70+11 44+12 72+17
45+14 37+19 45+13

53 66

BC
69+102

63+56
43+17
32+27
45+16
46+15

45

T I TC
57+103 [61+95

56+57 55+57
77+68 47+67
31+32 32+18
69+27 50+18
54+12 51+12

60 I 40

B T [BTC
67+101 t 62+93

65+60 59+61
65+98 46-z-83
28+32 ') ' ' '} .8,--3.
71+20 62+t.5
53+14 51+14

57 . 45

1341 it 631 II 82°1 630 II 7o3! 603 731 ~s51 i

Table 1: Number of some common errors commited by each model

NN
JJ
VBD
VBN
RB
IN
VB
VBP
NNP
NNPS

Noun [I ambiguous
Adjective B 91.35%
Verb - past. tense T 91.82%
'verb - past participle BT 91.92%
Adverb
Preposition B C 91.96%
Verb - base form C 92.72%
Verb - personal form TC 92.82%
Proper noun BTC 92.55%

Plural proper noun Table 4: Results of our

Table 2: Tag meanings of constraint kinds

and /o r tr igram model, that is, the acquired model
performs better than the others estimated from the
same training corpus.

We also find that the cooperation of a bigram or
t r igram model with the acquired one, produces even
better results. This is not true in the cooperation
of bigrams and trigrams with acquired constraints
(B T C) , in this case the synergy is not enough to get
a better joint result. This might be due to the fact
that the noise in B and T adds up and overwhelms
the context constraints.

The results obtained by the baseline taggers can
be found in table 3 and the results obtained using all
the learned constraints together with the b i / t r igram
models in table 4.

] ambiguous I overall

ML [85.31%194.66%
HMM 91.75% 97.00%

Table 3: Results of the baseline taggers

On the one hand. the results in tables 3 and 4
show that our tagger performs slightly worse than a
HMM tagger in the same conditions 13, that is, when
using only bigram information.

13Hand analysis of the errors commited by the algo-
rithm suggest that the worse results may be due to noise
in the training and test corpora, i.e., relaxation algo-
rithm seems to be more noise-sensitive than a Markov
model. Further research is required on this point.

overall

96.86%
97.03%
97.06%

97.08%
97.36%
97.39%
97.29%

tagger using every combination

On the other hand, those results also show that
since our tagger is more flexible than a HMM, it can
easily accept more complex information to improve
its results up to 97.39% without modifying the algo-
rithm.

I I ambigu°us
H 86.41%
BH 91.88%
TH 92.04%

B T H 92.32%

CH 91.97%
BCH 92.76%
TCH 92.98%
BTCH 92.71%

overall

95.06%
97.05%
97.11%
97.21%

97.08%
97.37%
97.45%
97.35%

Table .5: Results of our tagger using every combination
of constraint kinds and hand written constraints

Table 5 shows the results adding the hand written
constraints. The hand written set is very small and
only covers a few common error cases. That pro-
duces poor results when using them alone (H). but
they are good enough to raise the results given by
the automatical ly acquired models up to 97.-15%.

Although the improvement obtained might seem
small, it must be taken into .account that we are
moving very close to the best achievable result with
these techniques.

First, some ambiguities can only be solved with
semantic information, such as the Noun-Adjective
ambiguity for word principal in the phrase lhe prin-
cipal office. It could be an adjective, meaning the

243

main office, or a noun, meaning the school head of-
rice,

Second, the WSJ corpus contains noise (mistagged
words) that affects both the training and the test
sets. The noise in the training set produces noisy
-and so less precise- models. In the test set, it pro-
duces a wrong estimation of accuracy, since correct
answers are computed as wrong and vice-versa.

For instance, verb participle forms are sometimes
tagged as such (VBIV) and also as adjectives (J J) in
other sentences with no structural differences:

• . . . failing_VBG ~o_TO voluntarily_KB
submit_VB the_DT reques~ed_VBN
informa%ion.NN . . .

• . . . a_DT large_JJ sample_NN of_IN
married_JJ women_NNS with_IN at_II~
l eas t_JJS one_CD child..gN . . .

Another structure not coherently tagged are noun
chains when the nouns are ambiguous and can be

• also adjectives:

• ... Mr._NNP Hahn_NNP ,_, the_DT
62-year-old_JJ chairman_NN and_CC

chief_NN executive_JJ officer_NN of_IN
Georgia-Pacific_~NP Corp._NNP . . .

• . . . Burger_NgP King_~NP
's_POS chief_JJ ezecutive_NN officer_NN ,_,
Barry_NNP Gibbons_NNP ,_, stars_VBZ
inlN ads_NNS saying_VBG ...

• ... and_CC Barrett_NNP B._NNP
Weekes_NNP ,_, chairma~t-NN ,_,

president_NN and_CC chief_JJ ezecutive_JJ
officer_NN . _.

• ... the_DT compaay_NN includes_VBZ
NeiI_NNP Davenport_NNP ,_, 47_CD ,_,
president_NN and_CC chief_NN ezecu~ive_NN
officer_NN ;_:

All this makes that the performance cannot reach
100%, and that an accurate analysis of the noise in
WS3 corpus should be performed to estimate the
actual upper bound that a tagger can achieve on
these data. This issue will be addressed in further
work.

7 C o n c l u s i o n s

We have presented an automatic constraint learning
algorithm based on statistical decision trees.

We have used the acquired constraints in a par t -
of-speech tagger that allows combining any kind of
constraints in the language model.

The results obtained show a clear improvement in
the performance when the automatically acquired
constraints are added to the model. That indicates
that relaxation labelling is a flexible algorithm able
to combine properly different information kinds, and

that the constraints acquired by the learning algo-
rithm capture relevant context information that was
not included in the n-gram models.

It is difficult to compare the results to other works,
since the accuracy varies greatly depending on the
corpus, the tag set, and the lexicon or morphological
analyzer used. The more similar conditions reported
in previous work are those experiments performed
on the WSJ corpus: (Brill, 1992) reports 3-4% er-
ror rate, and (Daelemans et al., 1996) report 96.7%
accuracy. We obtained a 97.39% accuracy with tri-
grams plus automatically acquired constraints, and
97.45% when hand written constraints were added.

8 F u r t h e r W o r k

Further work is still to be done in the following di-
rections:

• Perform a thorough analysis of the noise in
the WSJ corpus to determine a realistic upper

• bound for the performance that can be expected
from a POS tagger.

On the constraint learning algorithm:

• Consider more complex context features, such
as non-limited distance or barrier rules in the
style of (Samuelsson et al., 1996).

• Take into account morphological, semantic and
other kinds of information.

• Perform a global smoothing to deal with low-
frequency ambiguity classes.

On the tagging algorithms

• Study the convergence properties of the algo-
rithm to decide whether the lower results at
convergence are produced by the noise in the
corpus.

• Use back-off techniques to minimize inter-
ferences between statistical and learned con-
straints.

• Use the algorithm to perform simultaneously
POS tagging and word sense disambiguation,
to take advantage of cross influences between
both kinds of information.

R e f e r e n c e s

D.W. Aha, D. Kibler and M. Albert. 1991 Instance-
based learning algorithms. In Machine Learning.
7:37-66. Belmont, California.

L. Breiman, J.H. Friedman, R.A. Olshen and
C.J. Stone. 1984 Classification and Regression
Trees. The Wadsworth Statistics/Probability Se-
ries. Wadsworth International Group, Behnont,
California.

244

E. Brill. 1992 A Simple Rule-Based Part-of-Speech.
In Proceedings of the Third Conference on Applied
Natural Language Processing. ACL.

E. Brill. 1995 Unsupervised Learning of Disam-
biguation Rules for Part-of-speech Tagging. In
Proceedings of 3rd Workshop on Very Large Cor-
pora. Massachusetts.

T.M. Cover and J.A. Thomas (Editors) 1991 Ele-
ments of information theory. John Wiley & Sons.

D. Cutting, J. Kupiec, J. Pederson and P. Sibun.
1992 A Practical Part-of-Speech Tagger. In Pro-
ceedings of the Third Conference on Applied Nat-
ural Language Processing., ACL.

J. Eklundh and A. Rosenfeld. 1978 Convergence
Properties of Relaxation Labelling. Technical Re-
port no. 701. Computer Science Center. Univer-
sity of Maryland.

D. Elworthy. 1993 Part-of-Speech and Phrasal
Tagging. Technical report, SPRIT BRA-7315 Ac-
quilex II, Working Paper WP #10.

W. Daelemans, J. Zavrel, P. Berck and S. Gillis.
1996 MTB: A Memory-Based Part-of-Speech
Tagger Generator. In Proceedings of ~th Work-
shop on Very Large Corpora. Copenhagen, Den-
mark.

R. Garside, G. Leech and G. Sampson (Editors)
1987 The Computational Analysis of English.
London and New York: Longman.

D. Hindle. 1989 Acquiring disambiguation rules
from text. In Proceedings ACL'89.

F. Karlsson 1990 Constraint Grammar as a Frame-
work for Parsing Running Text. In H. Karlgren
(ed.), Papers presented to the 13th International
Conference on Computational Linguistics, Vol. 3.
Helsinki. 168-173.

F. Karlsson, A. Voutilainen, J. Heikkil~ and
A. Anttila. (Editors) 1995 Constraint Grammar:
A Language-Independent System for Parsing Un-
restricted Tezt. Mouton de Gruyter, Berlin and
New York.

R. L6pez. 1991 A Distance-Based Attribute Selec-
tion Measure for Decision Tree Induction. Ma-
chine Learning. Kluwer Academic.

R.M. Losee. 1994 Learning Syntactic Rules and
Tags with Genetic Algorithms for Information
Retrieval and Filtering: An Empirical Basis for
Grammatical Rules. Information Processing &
Management, May.

M. Magerman. 1996 Learning Grammatical Struc-
ture Using Statistical Decision-Trees. In Lecture
Notes in Artificial Intelligence 11~7. Grammatical
Inference: Learning Syntax from Sentences. Pro-
ceedings ICGI-96. Springer.

L. M£rquez and H. Rodriguez. 1995 Towards Learn-
ing a Constraint Grammar from Annotated Cor-
pora Using Decision Trees. ESPRIT BRA-7315
Acquilex II, Working Paper.

J.F. McCarthy and W.G. Lehnert. 1995 Using De-
cision Trees for Coreference Resolution. In Pro-
ceedings of l~th International Joint Conference on
Artificial Intelligence (IJCAI'95).

J. Mingers. 1989 An Empirical Comparison of Se-
lection Measures for Decision-Tree Induction. In
Machine Learning. 3:319-342.

J. Mingers. 1989 An Empirical Comparison of Prun-
ing Methods for Decision-Tree Induction. In Ma-
chine Learning. 4:227-243.

L. Padr6. 1996 POS Tagging Using Relaxation
Labelling. In Proceedings of 16th International
Conference on Computational Linguistics. Copen-
hagen, Denmark.

J.R. Quinlan. 1986 Induction of Decision Trees. In
Machine Learning. 1:81-106.

J.R. Quinlan. 1993 C4.5: Programs for Machine
Learning. San Mateo, CA. Morgan Kaufmann.

3. Richards, D. Landgrebe and P. Swain. 1981 On
the accuracy of pixel relaxation labelling. IEEE
Transactions on System, Man and Cybernetics.
Vol. SMC-11

C. Samuelsson, P. Tapanainen and A. Voutilainen.
1996 Inducing Constraint Grammars. In Pro-
ceedings of the 3rd International Colloquium on
Grammatical Inference.

H. Schmid 1994 Part-of-speech tagging with neu-
ral networks. In Proceedings of 15th International
Conference on Computational Linguistics. Kyoto,
Japan.

C. Torras. 1989 Relaxation and Neural Learning:
Points of Convergence and Divergence. Journal
of Parallel and Distributed Computing. 6:217-244

A.J. Viterbi. 1967 Error bounds for convolutional
codes and an asymptotically optimal decoding al-
gorithm. In IEEE Transactions on Information
Theory. pg 260-269, April.

A. Voutilainen and T. J~rvinen. 1995 Specifying
a shallow grammatical representation for parsing
purposes. In Proceedings of the 7th meeting of the
European Association for Computational Linguis-
tics. 210-214.

A. Voutilainen and L. Padr6. 1997 Developing a
Hybrid NP Parser. In Proceedings of ANLP'97.

245

