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Abstract 

Bernard Lang defines parsing as ~ cal- 
culation of the intersection of a FSA (the 
input) and a CFG. Viewing the input for 
parsing as a FSA rather than as a string 
combines well with some approaches in 
speech understanding systems, in which 
parsing takes a word lattice as input 
(rather than a word string). Furthermore, 
certain techniques for robust parsing can 
be modelled as finite state transducers. 

In this paper we investigate how we can 
generalize this approach for unification 
grammars. In particular we will concen- 
trate on how we might the calculation of 
the intersection of a FSA and a DCG. It 
is shown that existing parsing algorithms 
can be easily extended for FSA inputs. 
However, we also show that the termi- 
nation properties change drastically: we 
show that it is undecidable whether the in- 
tersection of a FSA and a DCG is empty 
(even if the DCG is off-line parsable). 

Furthermore we discuss approaches to 
cope with the problem. 

1 Introduction 

In this paper we are concerned with the syntactic 
analysis phase of a natural language understanding 
system. Ordinarily, the input of such a system is 
a sequence of words. However, following Bernard 
Lang we argue that it might be fruitful to take the 
input more generally as a finite state automaton (FSA) 
to model cases in which we are uncertain about the 
actual input. Parsing uncertain input might be nec- 
essary in case of ill-formed textual input, or in case 
of speech input. 

For example, if a natural language understand- 
ing system is interfaced with a speech recognition 
component, chances are that this c o ~ t  is un- 
certain about the actual string of words that has 
been uttered, and thus produces a word lattice of the 
most promising hypotheses, rather than a single se- 
quence of words. FSA of course generalizes such 
word lattices. 

As another example, certain techniques to deal 
with ill-formed input can be characterized as finite 
state transducers (Lang, 1989); the composition of 
an input string with such a finite state transducer 
results in a FSA that can then be input for syntac- 
tic parsing. Such an approach allows for the treat- 
ment of missing, extraneous, interchanged or mis- 
used words (Teitelbaum, 1973; Saito and Tomita, 
1988; Nederhof and Bertsch, 1994). 

Such techniques might be of use both in the case 
of written and spoken language input. In the latter 
case another possible application concerns the treat- 
ment of phenomena such as repairs (Carter, 1994). 

Note that we allow the input to be a full FSA 
(possibly including cycles, etc.) since some of the 
above-mentioned techniques indeed result in cy- 
cles. Whereas an ordinary word-graph always de- 
fines a finite language, a FSA of course can easily de- 
fine an infinite number of sentences. Cycles might 
emerge to treat unknown sequences of words, i.e. 
sentences with unknown parts of unknown lengths 
(Lang, 1988). 

As suggested by an ACL reviewer, one could 
also try to model haplology phenomena (such as 
t h e ' s  in English sentences like 'The chef at Joe's 
hat', where 'Joe's" is the name of a restaurant) 
using a finite state transducer. In a straightforward 
approach this would also lead to a finite-state 
automaton with cycles. 

It can be shown that the computation of the in- 
tersection of a FSA and a CFG requires only a rain- 
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imal generalization of existing parsing algorithms. 
We simply replace the usual string positions with 
the names of the states in the FSA. It is also straight- 
forward to show that the complexity of this process 
is cubic in the number of states of the FSA (in the 
case of ordinary parsing the number of states equals 
n + 1) (Lang, 1974; Billot and Lang, 1989) (assuming 
the right-hand-sides of grammar rules have at most 
two categories). 

In this paper we investigate whether the same 
techniques can be applied in case the grammar is 
a constraint-based grammar rather than a CFG. For 
specificity we will take the grammar to be a Defini te  
Clause G r a m m a r  (DCG) (Pereira and Warren, 1980). 
A DCG is a simple example of a family of constraint- 
based grammar formalisms that are widely used 
in natural language analysis (and generation). The 
main findings of this paper can be extended to other 
members of that family of constraint-based gram- 
mar formalisms. 

2 T h e  in t er sec t i on  o f  a CFG and  a F S A  

The calculation of the intersection of a CFG and 
a FSA is very simple (Bar-Hillel et al., 1961). The 
(context-free) grammar defining this intersection 
is simply constructed by keeping track of the 
state names in the non-terminal category sym- 
bols. For each rule 9[o -'-' X l . . . X .  there are 
ru les  (Xoqoq)  "-* ( X l q o q l ) ( X 2 q l q a )  ..  . ( X , q , - l q ) ,  
for all q0...q.. Furthermore for each transition 
6(qi, or) = qt  we have a rule (orqiqk) --~ or. Thus 
the intersection of a FSA and a CFG is a CFG that 
exactly derives all parse-trees. Such a grammar 
might be called the parse-forest grammar. 

Although this construction shows that the in- 
tersection of a FSA and a CFG is itself a CFG, it 
is not of practical interest. The reason is that this 

• construction typically yields an enormous arnount 
of rules that are 'useless'. In fact the (possibly enor- 
mously large) parse forest grammar might define 
an empty language (if the intersection was empty). 
Luckily "ordinary" recognizers/parsers for CFG can 
be easily generalized to construct this intersection 
yielding (in typical cases) a much smaller grammar. 
Checking whether the intersection is empty or not 
is then usually very simple as well: only in the 
latter case will the parser terminate succesfully. 

To illustrate how a parser can be generalized to 
accept a FSA as input we present a simple top-down 
parser. 

A context-free grarnxrmr is represented as a 
definite-clause specification as follows. We do not 

wish to define the sets of terminal and non-terminal 
symbols explicitly, these can be understood from 
the rules that are defined using the relation r u l e  / 2, 
and where symbols of the ~ are prefixed with 
'-' in the case of terminals and '+' in the case of 
non-terminals. The relation t o p / 1  defines the start 
symbol. The language L' = a " b "  is defined as: 

top (s) . 

rule(s, [-a,+s,-b]). rule(s, []) . 

In order to illustrate how ordinary parsers can be 
used to compute the intersection of a FSA and a 
CFG consider first the definite-clause specification 
of a top-down parser. This parser runs in polyno- 
mial time if implemented using Earle), deduction 
or XOLDT resolution (Warren, 1992). It is assumed 
that the input string is represented by the t r a n s  / 3 
predicate. 

parse (P0, P) :- 
top (Cat), parse (+Cat,P0,P). 

parse (-Cat, P0, P) :- 
trans ( P0, Cat, P ), 
side_effect(p(Cat,P0,P) --> Cat) . 

parse (+Cat, P0, P) :- 
rule (Cat, Ds}, 
parse_ds (Ds, P0, P, His ), 
side_effect(p(Cat,P0,P) --> His) . 

parse_ds([],P,P, []) . 
parse_ds([HlT],P0,P, [p(H, P0,Pl) [His]) :- 

parse(H, P0, Pl), 
parse_ds (T, PI, P,His) . 

The predicate side_effect is used to construct 
the parse forest grammar. The predicate always suc- 
coeds, and as a side-effect asserts that its argument 
is a rule of the parse forest grammar. For the sen- 
fence 'a a b b' we obtain the parse forest grammar: 
p ( s , 2 , 2 )  - - >  [ ] .  
p ( s , l , 3 )  - - >  

[ p ( - a ,  1 , 2 )  , p ( + s ,  2 , 2 )  , p ( - b ,  2 , 3 )  ] . 
p(s,0,4) --> 

[p(-a,0,1),p(+s,l,3),p(-b,3,4) ] . 
p(a,l,2) --> a. 
p(a,0,1) --> a. 
p(b,2,3) --> b. 
p(b,3,4) --> b. 

The reader easily verifies that indeed this grammar 
generates (a isomorphism of) the single parse tree 
of this example, assuming of course that the start 
symbol for this parse-forest grammar is p ( s ,  0 ,4  ). 
In the parse-forest grammar, complex symbols are 
non-terminals, atomic symbols are terminals. 

Next consider the definite clause specification 
of a FSA. We define the transition relation using 
the relation t r a n s / 3 .  For start states, the relation 
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Figure 1: A parse-tree extracted from the parse forest grammar 

start/1 should hold, and for final states the relation 
final/1 should hold. Thus the following FSA, defin- 
ing the regular language L = (aa)*b + (i.e. an even 
number of a's followed by at least one b) is given as: 

start(qO), final(q2). 

trans(qO,a,ql), trans(ql,a,qO). 
trans(qO,b, q2). trans(q2,b, q2). 

Interestingly, nothing needs to be changed to use 
the same parser for the computation of the intersec- 
tion of a FSA and a CFG. If our input 'sentence' now 
is the definition of t r a n s  / 3 as given above, we ob- 
tain the following parse forest granunar (where the 
start symbol is p ( s ,  q0, q2 ) ): 

p(s,qO,qO) --> [] .  
p ( s , q l , q l )  --> [] .  
p ( s ,q l , q2 )  --> 

[p (-a, ql,qO) ,p (+s,qO,qO) ,p (-b, q0,q2) ]. 
p (s ,q0,q2) --> 

[p (-a,  qO,ql) ,p (+s ,q l ,q2)  ,p (-b, q2,q2) ]. 
p ( s ,q l , q2 )  --> 

[p ( - a ,q l , q0 )  ,p (+s,q0,q2) ,p (-b,q2,q2) ]. 
p ( a , q 0 , q l )  --> a. 
p ( a , q l , q 0 )  --> a. 
p(b,q0,q2)  --> ]3. 
p(b,q2,q2)  --> ]3. 

Thus, even though we now use the same parser 
for an infinite set of input sentences (represented 
by the FSA) the parser still is able to come up 
with a parse forest grammar. A possible derivation 

for this grammar constructs the following (abbrevi- 
ated) parse tree in figure 1. Note that the construc- 
tion of Bar Hillel would have yielded a grammar 
with 88 rules. 

3 The intersect ion of  a D C G  and a FSA 

In this section we want  to generalize the ideas de- 
scribed above for CFG to DCG. 

First note that the problem of calculating the in- 
tersection of a DCG and a FSA can be solved triv- 
ially by a generalization of the construction by (Bar- 
Hillel et al., 1961). However, if we use that method 
we will end up (typically) with an enormously large 
forest grammar that is not even guaranteed to con- 
tain solutions *. Therefore, we are interested in 
methods that only generate a small subset of this; 
e.g. if the intersection is empty we want  an empty 
parse-forest grammar. 

The straightforward approach is to generalize ex- 
isting recognition algorithms. The same techniques 
that are used for calculating the intersection of a 
FSA and a CFG can be applied in the case of DCGs. 
In order to compute the intersection of a DCG and a 
FSA we assume that FSA are represented as before. 
DCGs are represented using the same notation we 
used for context-free grammars, but now of course 
the category symbols can be first-order terms of ar- 
bitrary complexity (note that without loss of gener- 
ality we don' t  take into account DCGs having exter- 

]In fact, the standard compilation of DCG into Prolog 
clauses does something similar using variables instead of 
actual state names. This also illustrates that this method 
is not very useful yet; all the work has still to be done. 
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Figure 2: Instance of a PCP problem. 
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Figure 3: Illustration of a solution for the PCP problem of figure 2. 

nal actions defined in curly braces). 

But if we use existing techniques for parsing 
DCGs, then we are also confronted with an undecid- 
ability problem: the recognition problem for DCGs 
is undecidable (Pereira and Warren, 1983). A for- 
tiori the problem of deciding whether the intersec- 
tion of a FSA and a DCG is empty or not is undecid- 
able. 

This undecidability result is usually circum- 
vented by considering subsets of DCGs which can 
be recognized effectively. For example, we can 
restrict the attention to DCGs of which the context- 
free skeleton does not contain cycles. Recognition 
for such 'off-line parsable' grammars is decidable 
(Pereira and Warren, 1983). 

Most existing constraint-based parsing algo- 
rithms will terminate for grammars that exhibit the 
property that for each string there is only a finite 
number of possible derivations. Note that off-line 
parsability is one possible way of ensuring that this 
is the case. 

This observation is not very helpful in establish- 
ing insights concerning interesting subclasses of 
DCGs for which termination can be guaranteed 
(in the case of FSA input). The reason is that there 
are now two sources of recursion: in the DCG and 
in the FSA (cycles). As we saw earlier: even for 
CFG it holds that there can be an infinite number 
of analyses for a given FSA (but in the CFG this of 
course does not imply undecidability). 

3.1 Intersection of FSA and off-line parsable 
DCG is undecidable 

I now show that the question whether  the intersec- 
tion of a FSA and an off-line parsable DCG is empty 
is undecidable. A yes-no problem is undecidable (cf. 
(Hopcroft and Ullman, 1979, pp.178-179)) if there is 
no algorithm that takes as its input an instance of 
the problem and determines whether  the answer to 
that instance is 'yes' or 'no'. An instance of a prob- 
lem consists of a particular choice of the parameters 
of that problem. 

I use Post's Correspondence Problem (PCP) as a 
well-known undecidable problem. I show that if the 
above mentioned intersection problem were decid- 
able, then we could solve the PCP too. The follow- 
ing definition and example of a PCP are taken from 
(Hopcroft and Ullman, 1979)[chapter 8.5]. 

An instance of PCP consists of two lists, A = 
vx. . .  vk and B = w l . . .  wk of strings over some al- 
phabet ~,,. Tl~s instance has a solution if there is any 
sequence of integers i l . . .  i,~, with m > 1, such that 

V i i ,  '0i2,  • • " ,  Vim ~ 'Wil ~ f~Li2, • " • ~ ~ i m  " 

The sequence i l ,  • • . ,  im is a solution to this instance 
of PCP. As an example, assume that :C = {0,1}. 
Furthermore, let A = (1, 10111, 10) and B = 
011, 10, 0). A solution to this instance of PCP is the 
sequence 2,1,1,3 (obtaining the sequence 10111Ul0). 
For an il lustration, cf. figure 3. 

Clearly there are PCP's that do not have a solu- 
tion. Assume again that E = {0, 1}. Furthermore 
let A = (1) and B = (0). Clearly this PCP does not 
have a solution. In general, however, the problem 
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trans (q0,x, q0) . start (q0) . final (q0) . 

top (s) . 

rule(s, [-r(X, [],X, [])]) . 

rule(r(A0,A,B0,B), [-r(A0,AI,B0,BI), 
-r(AI,A, BI,B)]). 

rule(r([llA], A, [I,I,IIB],B), [+x]) . 
rule(r([l,0,1,1,11A],A, [I,0]B], B),[+x]). 
rule(r([l,01A], A, [01B], B),[+x]). 

% FSA 

% start symbol DCG 

% require A's and B's match 

% combine two sequences of 
% blocks 

% block AI/BI 
% block A2/B2 
% block A3/B3 

Figure 4: The encoding for the PCP problem of figure 2. 

whether some PCP has a solution or not is not de- 
cidable. This result is proved by (Hopcroft and Ull- 
man, 1979) by showing that the halting problem for 
Turing Machines can be encoded as an instance of 
Post's Correspondence Problem. 

First I give a simple algorithm to encode any in- 
stance of a PCP as a pair, consisting of a FSA and an 
off-line parsable DCG, in such a way that the ques- 
tion whether there is a solution to this PCP is equiv- 
alent to the question whether the intersection of this 
FSA and DCG is empty. 

Encoding of PCP. 

1. For each I < i < k (k the length of lists A and 
B) define a DCG rule (the i - th member of A is 
al . . .  am, and the i - t h  member of B is b l . . .  b,): 
r([al . . .  a,~lA], A, [bl .. . b,  iB], B)  ~ [z]. 

2. Furthermore, there is a rule r (Ao ,A ,  Bo, B)  --+ 
r( Ao, A1, Bo, B1), r( A1, A, BI ,  B).  

3. Furthermore, there is a rule s ~ r (X ,  [],X, []). 
Also, s is the start category of the DCG. 

4. Finally, the FSA consists of a single state q 
which is both the start state and the final state, 
and a single transition ~(q, z) = q. This FSA 
generates =*. 

Observe that the DCG is off-line parsable. 
The underlying idea of the algorithm is really 

very simple. For each pair of strings from the lists 
A and B there will be one lexical entry (deriving the 
terminal z) where these strings are represented by a 
difference-list encoding. Furthermore there is a gen- 
eral combination rule that simply concatenates A- 
strings and concatenates B-strings. Finally the rule 
for s states that in order to construct a succesful top 
category the A and B lists must match. 

The resulting DCG, FSA pair for the example PCP 
is given in figure 4: 

Proposition The question whether the intersec- 
tion of a FSA and an off-line parsable DCG is empty 
is undecidable. 

Proo£ Suppose the problem was decidable. In that 
case there would exist an algorithm for solving the 
problem. This algorithm could then be used to solve 
the PCP, because a PCP ~r has a solution if and only 
if its encoding given above as a FSA and an off-line 
parsable DCG is not empty. The PCP problem how- 
ever is known to be undecidable. Hence the inter- 
section question is undecidable too. 

3.2 What to do? 

The following approaches towards the undecidabil- 
ity problem can be taken: 

• limit the power of the FSA 

• limit the power of the DCG 

• compromise completeness 

• compromise soundness 

These approaches are discussed now in turn. 

Limit the FSA Rather than assuming the input for 
parsing is a FSA in its full generality, we might as- 
sume that the input is an ordinary word graph (a 
FSA without cycles). 

Thus the techniques for robust processing that 
give rise to such cycles cannot be used. One exam- 
ple is the processing of an unknown sequence of 
words, e.g. in case there is noise in the input and 
it is not clear how many words have been uttered 
during this noise. It is not clear to me right now 
what  we loose (in practical terms) if we give up 
such cycles. 

Note that it is easy to verify that the question 
whether the intersection of a word-graph and an off- 
line parsable DCG is empty or not is decidable since 
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it reduces to checking whether the DCG derives one 
of a finite number of strings. 

Limit the DCG Another approach is to limit the 
size of the categories that are being employed. This 
is the GPSG and F-TAG approach. In that case we 
are not longer dealing with DCGs but rather with 
CFGs (which have been shown to be insufficient in 
general for the description of natural languages). 

Compromi~ completeness Completeness in this 
context means: the parse forest grammar contains 
all possible parses. It is possible to compromise 
here, in such a way that the parser is guaranteed to 
terminate, but sometimes misses a few parse-trees. 

For example, if we assume that each edge in the 
FSA is associated with a probability it is possible to 
define a threshold such that each partial result that 
is derived has a probability higher than the thres- 
hold. Thus, it is still possible to have cycles in the 
FSA, but anytime the cycle is 'used' the probabil- 
ity decreases and if too many cycles are encountered 
the threshold will cut off that derivation. 

Of course this implies that sometimes the in- 
tersection is considered empty by this procedure 
whereas in fact the intersection is not. For any thres- 
hold it is the case that the intersection problem of 
off-line parsable DCGs and FSA is decidable. 

Compromise soundness Soundness in this con- 
text should be understood as the property that all 
parse trees in the parse forest grammar are valid 
parse trees. A possible way to ensure termination 
is to remove all constraints from the DCG and parse 
according to this context-free skeleton. The result- 
ing parse-forest grammar will be too general most 
of the times. 

A practical variation can be conceived as fol- 
lows. From the DCG we take its context-free skele- 
ton. This skeleton is obtained by removing the con- 
straints from each of the grammar rules. Then we 
compute the intersection of the skeleton with the in- 
put FSA. This results in a parse forest grammar. Fi- 
nally, we add the corresponding constraints from 
the DCG to the grammar rules of the parse forest 
gral'nrrlaro 

This has the advantage that the result is still 
sound and complete, although the size of the parse 
forest grammar is not optimal (as a consequence it is 
not guaranteed that the parse forest grammar con- 
tains a parse tree). Of course it is possible to experi- 
ment with different ways of taking the context-free 
skeleton (including as much information as possible 
/ useful). 
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