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Abstract

Research on summarization has mainly been
driven by empirical approaches, crafting sys-
tems to perform well on standard datasets with
the notion of information Importance remain-
ing latent. We argue that establishing the-
oretical models of Importance will advance
our understanding of the task and help to fur-
ther improve summarization systems. To this
end, we propose simple but rigorous defi-
nitions of several concepts that were previ-
ously used only intuitively in summarization:
Redundancy, Relevance, and Informativeness.
Importance arises as a single quantity naturally
unifying these concepts. Additionally, we pro-
vide intuitions to interpret the proposed quan-
tities and experiments to demonstrate the po-
tential of the framework to inform and guide
subsequent works.

1 Introduction

Summarization is the process of identifying the
most important information from a source to pro-
duce a comprehensive output for a particular user
and task (Mani, 1999). While producing readable
outputs is a problem shared with the field of Nat-
ural Language Generation, the core challenge of
summarization is the identification and selection
of important information. The task definition is
rather intuitive but involves vague and undefined
terms such as Importance and Information.

Since the seminal work of Luhn (1958), au-
tomatic text summarization research has focused
on empirical developments, crafting summariza-
tion systems to perform well on standard datasets
leaving the formal definitions of Importance la-
tent (Das and Martins, 2010; Nenkova and McKe-
own, 2012). This view entails collecting datasets,
defining evaluation metrics and iteratively select-
ing the best-performing systems either via super-
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vised learning or via repeated comparison of un-
supervised systems (Yao et al., 2017).

Such solely empirical approaches may lack
guidance as they are often not motivated by more
general theoretical frameworks. While these ap-
proaches have facilitated the development of prac-
tical solutions, they only identify signals correlat-
ing with the vague human intuition of Importance.
For instance, structural features like centrality and
repetitions are still among the most used proxies
for Importance (Yao et al., 2017; Kedzie et al.,
2018). However, such features just correlate with
Importance in standard datasets. Unsurprisingly,
simple adversarial attacks reveal their weaknesses
(Zopf et al., 2016).

We postulate that theoretical models of Impor-
tance are beneficial to organize research and guide
future empirical works. Hence, in this work, we
propose a simple definition of information im-
portance within an abstract theoretical framework.
This requires the notion of information, which has
received a lot of attention since the work from
Shannon (1948) in the context of communication
theory. Information theory provides the means to
rigorously discuss the abstract concept of informa-
tion, which seems particularly well suited as an
entry point for a theory of summarization. How-
ever, information theory concentrates on uncer-
tainty (entropy) about which message was chosen
from a set of possible messages, ignoring the se-
mantics of messages (Shannon, 1948). Yet, sum-
marization is a lossy semantic compression de-
pending on background knowledge.

In order to apply information theory to sum-
marization, we assume texts are represented by
probability distributions over so-called semantic
units (Bao et al., 2011). This view is compati-
ble with the common distributional embedding
representation of texts rendering the presented
framework applicable in practice. When applied



1060

to semantic symbols, the tools of information
theory indirectly operate at the semantic level
(Carnap and Bar-Hillel, 1953; Zhong, 2017).

Contributions:

• We define several concepts intuitively con-
nected to summarization: Redundancy, Rel-
evance and Informativeness. These concepts
have been used extensively in previous sum-
marization works and we discuss along the
way how our framework generalizes them.

• From these definitions, we formulate prop-
erties required from a useful notion of Im-
portance as the quantity unifying these con-
cepts. We provide intuitions to interpret the
proposed quantities.

• Experiments show that, even under simpli-
fying assumptions, these quantities corre-
lates well with human judgments making the
framework promising in order to guide future
empirical works.

2 Framework

2.1 Terminology and Assumptions

We call semantic unit an atomic piece of informa-
tion (Zhong, 2017; Cruse, 1986). We note Ω the
set of all possible semantic units.

A text X is considered as a semantic source
emitting semantic units as envisioned by Weaver
(1953) and discussed by Bao et al. (2011). Hence,
we assume that X can be represented by a proba-
bility distribution PX over the semantic units Ω.

Possible interpretations:
One can interpret PX as the frequency distribution
of semantic units in the text. Alternatively,
PX(ωi) can be seen as the (normalized) likelihood
that a text X entails an atomic information ωi
(Carnap and Bar-Hillel, 1953). Another inter-
pretation is to view PX(ωi) as the normalized
contribution (utility) of ωi to the overall meaning
of X (Zhong, 2017).

Motivation for semantic units:
In general, existing semantic information theo-
ries either postulate or imply the existence of se-
mantic units (Carnap and Bar-Hillel, 1953; Bao

et al., 2011; Zhong, 2017). For example, the The-
ory of Strongly Semantic Information produced by
Floridi (2009) implies the existence of semantic
units (called information units in his work). Build-
ing on this, Tsvetkov (2014) argued that the origi-
nal theory of Shannon can operate at the semantic
level by relying on semantic units.

In particular, existing semantic information the-
ories imply the existence of semantic units in
formal semantics (Carnap and Bar-Hillel, 1953),
which treat natural languages as formal languages
(Montague, 1970). In general, lexical seman-
tics (Cruse, 1986) also postulates the existence of
elementary constituents called minimal semantic
constituents. For instance, with frame semantics
(Fillmore, 1976), frames can act as semantic units.

Recently, distributional semantics approaches
have received a lot of attention (Turian et al., 2010;
Mikolov et al., 2013b). They are based on the dis-
tributional hypothesis (Harris, 1954) and the as-
sumption that meaning can be encoded in a vec-
tor space (Turney and Pantel, 2010; Erk, 2010).
These approaches also search latent and indepen-
dent components that underlie the behavior of
words (Gábor et al., 2017; Mikolov et al., 2013a).

While different approaches to semantics postu-
late different basic units and different properties
for them, they have in common that meaning
arises from a set of independent and discrete
units. Thus, the semantic units assumption is
general and has minimal commitment to the actual
nature of semantics. This makes the framework
compatible with most existing semantic represen-
tation approaches. Each approach specifies these
units and can be plugged in the framework, e.g.,
frame semantics would define units as frames,
topic models (Allahyari et al., 2017) would define
units as topics and distributional representations
would define units as dimensions of a vector
space.

In the following paragraphs, we represent the
source document(s) D and a candidate summary
S by their respective distributions PD and PS .1

2.2 Redundancy

Intuitively, a summary should contain a lot of
information. In information-theoretic terms, the
amount of information is measured by Shannon’s

1We sometimes note X instead of PX when it is not am-
biguous
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entropy. For a summary S represented by PS :

H(S) = −
∑
ωi

PS(ωi) · log(PS(ωi)) (1)

H(S) is maximized for a uniform probability
distribution when every semantic unit is present
only once in S: ∀(i, j),PS(ωi) = PS(ωj). There-
fore, we define Redundancy, our first quantity rel-
evant to summarization, via entropy:

Red(S) = Hmax −H(S) (2)

Since Hmax = log |Ω| is a constant indepedent of
S, we can simply write: Red(S) = −H(S).

Redundancy in Previous Works:
By definition, entropy encompasses the notion of
maximum coverage. Low redundancy via maxi-
mum coverage is the main idea behind the use of
submodularity (Lin and Bilmes, 2011). Submodu-
lar functions are generalizations of coverage func-
tions which can be optimized greedily with guar-
antees that the result would not be far from optimal
(Fujishige, 2005). Thus, they have been used ex-
tensively in summarization (Sipos et al., 2012; Yo-
gatama et al., 2015). Otherwise, low redundancy is
usually enforced during the extraction/generation
procedures like MMR (Carbonell and Goldstein,
1998).

2.3 Relevance

Intuitively, observing a summary should reduce
our uncertainty about the original text. A sum-
mary approximates the original source(s) and this
approximation should incur a minimum loss of in-
formation. This property is usually called Rele-
vance.

Here, estimating Relevance boils down to com-
paring the distributions PS and PD, which is done
via the cross-entropy Rel(S,D) = −CE(S,D):

Rel(S,D) =
∑
ωi

PS(ωi) · log(PD(ωi)) (3)

The cross-entropy is interpreted as the average sur-
prise of observing S while expecting D. A sum-
mary with a low expected surprise produces a low
uncertainty about what were the original sources.
This is achieved by exhibiting a distribution of se-
mantic units similar to the one of the source docu-
ments: PS ≈ PD.

Furthermore, we observe the following connec-
tion with Redundancy:

KL(S||D) = CE(S,D)−H(S)

−KL(S||D) = Rel(S,D)−Red(S)
(4)

KL divergence is the information loss incurred by
using D as an approximation of S (i.e., the uncer-
tainty aboutD arising from observing S instead of
D). A summarizer that minimizes the KL diver-
gence minimizes Redundancy while maximizing
Relevance.

In fact, this is an instance of the Kullback
Minimum Description Principle (MDI) (Kull-
back and Leibler, 1951), a generalization of the
Maximum Entropy Principle (Jaynes, 1957): the
summary minimizing the KL divergence is the
least biased (i.e., least redundant or with highest
entropy) summary matching D. In other words,
this summary fits D while inducing a minimum
amount of new information. Indeed, any new
information is necessarily biased since it does not
arise from observations in the sources. The MDI
principle and KL divergence unify Redundancy
and Relevance.

Relevance in Previous Works:
Relevance is the most heavily studied aspect of
summarization. In fact, by design, most unsu-
pervised systems model Relevance. Usually, they
used the idea of topical frequency where the most
frequent topics from the sources must be extracted.
Then, different notions of topics and counting
heuristics have been proposed. We briefly discuss
these developments here.

Luhn (1958) introduced the simple but influen-
tial idea that sentences containing the most impor-
tant words are most likely to embody the original
document. Later, Nenkova et al. (2006) showed
experimentally that humans tend to use words ap-
pearing frequently in the sources to produce their
summaries. Then, Vanderwende et al. (2007) de-
veloped the system SumBasic, which scores each
sentence by the average probability of its words.

The same ideas can be generalized to n-grams.
A prominent example is the ICSI system (Gillick
and Favre, 2009) which extracts frequent bigrams.
Despite being rather simple, ICSI produces strong
and still close to state-of-the-art summaries (Hong
et al., 2014).

Different but similar words may refer to the
same topic and should not be counted separately.
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This observation gave rise to a set of important
techniques based on topic models (Allahyari et al.,
2017). These approaches cover sentence cluster-
ing (McKeown et al., 1999; Radev et al., 2000;
Zhang et al., 2015), lexical chains (Barzilay and
Elhadad, 1999), Latent Semantic Analysis (Deer-
wester et al., 1990) or Latent Dirichlet Alloca-
tion (Blei et al., 2003) adapted to summariza-
tion (Hachey et al., 2006; Daumé III and Marcu,
2006; Wang et al., 2009; Davis et al., 2012). Ap-
proaches like hLDA can exploit repetitions both
at the word and at the sentence level (Celikyilmaz
and Hakkani-Tur, 2010).

Graph-based methods form another particularly
powerful class of techniques to estimate the fre-
quency of topics, e.g., via the notion of centrality
(Mani and Bloedorn, 1997; Mihalcea and Tarau,
2004; Erkan and Radev, 2004). A significant body
of research was dedicated to tweak and improve
various components of graph-based approaches.
For example, one can investigate different simi-
larity measures (Chali and Joty, 2008). Also, dif-
ferent weighting schemes between sentences have
been investigated (Leskovec et al., 2005; Wan and
Yang, 2006).

Therefore, in existing approaches, the topics
(i.e., atomic units) were words, n-grams, sentences
or combinations of these. The general idea of pre-
ferring frequent topics based on various counting
heuristics is formalized by cross-entropy. Indeed,
requiring the summary to minimize the cross-
entropy with the source documents implies that
frequent topics in the sources should be extracted
first.

An interesting line of work is based on the as-
sumption that the best sentences are the ones that
permit the best reconstruction of the input docu-
ments (He et al., 2012). It was refined by a stream
of works using distributional similarities (Li et al.,
2015; Liu et al., 2015; Ma et al., 2016). There,
the atomic units are the dimensions of the vec-
tor spaces. This information bottleneck idea is
also neatly captured by the notion of cross-entropy
which is a measure of information loss. Alterna-
tively, (Daumé and Marcu, 2002) viewed summa-
rization as a noisy communication channel which
is also rooted in information theory ideas. (Wil-
son and Sperber, 2008) provide a more general and
less formal discussion of relevance in the context
of Relevance Theory (Lavrenko, 2008).

2.4 Informativeness

Relevance still ignores other potential sources of
information such as previous knowledge or pre-
conceptions. We need to further extend the con-
textual boundary. Intuitively, a summary is infor-
mative if it induces, for a user, a great change in
her knowledge about the world. Therefore, we
introduce K, the background knowledge (or pre-
conceptions about the task). K is represented by a
probability distribution PK over semantic units Ω.

Formally, the amount of new information con-
tained in a summary S is given by the cross-
entropy Inf(S,K) = CE(S,K):

Inf(S,K) = −
∑
ωi

PS(ωi) · log(PK(ωi)) (5)

For Relevance the cross-entropy between S and D
should be low. However, for Informativeness, the
cross-entropy between S andK should be high be-
cause we measure the amount of new information
induced by the summary in our knowledge.

Background knowledge is modeled by assign-
ing a high probability to known semantic units.
These probabilities correspond to the strength of
ωi in the user’s memory. A simple model could be
the uniform distribution over known information:
PK(ωi) is 1

n if the user knows ωi, and 0 otherwise.
However, K can control other variants of the
summarization task: A personalized Kp models
the preferences of a user by setting low probabili-
ties to the semantic units of interest. Similarly, a
queryQ can be encoded by setting low probability
to semantic units related to Q. Finally, there is
a natural formulation of update summarization.
Let U and D be two sets of documents. Update
summarization consists in summarizing D given
that the user has already seen U . This is modeled
by setting K = U , considering U as previous
knowledge.

Informativeness in Previous Works:
The modelization of Informativeness has received
less attention by the summarization community.
The problem of identifying stopwords originally
faced by Luhn (1958) could be addressed by
developments in the field of information re-
trieval using background corpora like TF·IDF
(Sparck Jones, 1972). Based on the same intu-
ition, Dunning (1993) outlined an alternative way
of identifying highly descriptive words: the log-
likelihood ratio test. Words identified with such
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techniques are known to be useful in news sum-
marization (Harabagiu and Lacatusu, 2005).

Furthermore, Conroy et al. (2006) proposed
to model background knowledge by a large ran-
dom set of news articles. In update summariza-
tion, Delort and Alfonseca (2012) used Bayesian
topic models to ensure the extraction of informa-
tive summaries. Louis (2014) investigated back-
ground knowledge for update summarization with
Bayesian surprise. This is comparable to the
combination of Informativeness and Redundancy
in our framework when semantic units are n-
grams. Thus, previous approaches to Informative-
ness generally craft an alternate background distri-
bution to model the a-priori importance of units.
Then, units from the document rare in the back-
ground are preferred, which is captured by max-
imizing the cross-entropy between the summary
and K. Indeed, unfrequent units in the back-
ground would be preferred in the summary be-
cause they would be surprising (i.e., informative)
to an average user.

2.5 Importance
Since Importance is a measure that guides which
choices to make when discarding semantic units,
we must devise a way to encode their relative im-
portance. Here, this means finding a probability
distribution unifyingD andK by encoding expec-
tations about which semantic units should appear
in a summary.

Informativeness requires a biased summary
(w.r.t. K) and Relevance requires an unbiased
summary (w.r.t. D). Thus, a summary should,
by using only information available in D, produce
what brings the most new information to a user
with knowledge K. This could formalize a com-
mon intuition in summarization that units frequent
in the source(s) but rare in the background are im-
portant.

Formally, let di = PD(ωi) be the probability of
the unit ωi in the source D. Similarly, we note
ki = PK(ωi). We seek a function f(di, ki) en-
coding the importance of unit ωi. We formulate
simple requirements that f should satisfy:

• Informativeness: ∀i 6= j, if di = dj and ki >
kj then f(di, ki) < f(dj , kj)

• Relevance: ∀i 6= j, if di > dj and ki = kj
then f(di, ki) > f(dj , kj)

• Additivity: I(f(di, ki)) ≡ αI(di) + βI(ki)

(I is the information measure from Shan-
non’s theory (Shannon, 1948))

• Normalization:
∑
i
f(di, ki) = 1

The first requirement states that, for two semantic
units equally represented in the sources, we prefer
the more informative one. The second requirement
is an analogous statement for Relevance. The third
requirement is a consistency constraint to preserve
additivity of the information measures (Shannon,
1948). The fourth requirement ensures that f is a
valid distribution.

Theorem 1. The functions satisfying the previous
requirements are of the form:

PD
K

(ωi) =
1

C
· d

α
i

kβi
(6)

C =
∑
i

dαi

kβi
, α, β ∈ R+ (7)

C is the normalizing constant. The parameters
α and β represent the strength given to Relevance
and Informativeness respectively which is made
clearer by equation (11). The proof is provided in
appendix B.

Summary scoring function:
By construction, a candidate summary should ap-
proximate PD

K
, which encodes the relative impor-

tance of semantic units. Furthermore, the sum-
mary should be non-redundant (i.e., high entropy).
These two requirements are unified by the Kull-
back MDI principle: The least biased summary
S∗ that best approximates the distribution PD

K
is

the solution of:

S∗ = argmax
S

θI = argmin
S

KL(S||PD
K

) (8)

Thus, we note θI as the quantity that scores sum-
maries:

θI(S,D,K) = −KL(PS , ||PD
K

) (9)

Interpretation of PD
K

:
PD

K
can be viewed as an importance-encoding dis-

tribution because it encodes the relative impor-
tance of semantic units and gives an overall target
for the summary.

For example, if a semantic unit ωi is promi-
nent in D (PD(ωi) is high) and not known in
K (PD(ωi) is low), then PD

K
(ωi) is very high,
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which means very desired in the summary. Indeed,
choosing this unit will fill the gap in the knowl-
edge K while matching the sources.

Figure 1 illustrates how this distribution be-
haves with respect to D and K (for α = β = 1).

Summarizability:
The target distribution PD

K
may exhibit different

properties. For example, it might be clear which
semantic units should be extracted (i.e., a spiky
probability distribution) or it might be unclear
(i.e., many units have more or less the same impor-
tance score). This can be quantified by the entropy
of the importance-encoding distribution:

HD
K

= H(PD
K

) (10)

Intuitively, this measures the number of possibly
good summaries. If HD

K
is low then PD

S
is

spiky and there is little uncertainty about which
semantic units to extract (few possible good
summaries). Conversely, if the entropy is high,
many equivalently good summaries are possible.

Interpretation of θI :
To better understand θI , we remark that it can be
expressed in terms of the previously defined quan-
tities:

θI(S,D,K) ≡ −Red(S) + αRel(S,D) (11)

+ βInf(S,K) (12)

Equality holds up to a constant term logC inde-
pendent from S. Maximizing θI is equivalent to
maximizing Relevance and Informativeness while
minimizing Redundancy. Their relative strength
are encoded by α and β.

Finally, H(S), CE(S,D) and CE(S,K) are
the three independent components of Importance.

It is worth noting that each previously defined
quantity: Red, Rel and Inf are measured in bits
(using base 2 for the logarithm). Then, θI is also
an information measure expressed in bits. Shan-
non (1948) initially axiomatized that information
quantities should be additive and therefore θI aris-
ing as the sum of other information quantities is
unsurprising. Moreover, we ensured additivity
with the third requirement of PD

K
.

2.6 Potential Information
Relevance relates S and D, Informativeness re-
lates S and K, but we can also connect D and K.

Intuitively, we can extract a lot of new information
from D only when K and D are different.

With the same argument laid out for Informa-
tiveness, we can define the amount of potential in-
formation as the average surprise of observing D
while already knowing K. Again, this is given by
the cross-entropy PIK(D) = CE(D,K):

PIK(D) = −
∑
ωi

PD(ωi) · log(PK(ωi)) (13)

Previously, we stated that a summary should aim,
using only information from D, to offer the max-
imum amount of new information with respect to
K. PIK(D) can be understood as Potential In-
formation or maximum Informativeness, the max-
imum amount of new information that a summary
can extract fromD while knowingK. A summary
S cannot extract more than PIK(D) bits of infor-
mation (if using only information from D).

3 Experiments

3.1 Experimental setup
To further illustrate the workings of the formula,
we provide examples of experiments done with a
simplistic choice for semantic units: words. Even
with simple assumptions θI is a meaningful quan-
tity which correlates well with human judgments.

Data:
We experiment with standard datasets for two dif-
ferent summarization tasks: generic and update
multi-document summarization.

We use two datasets from the Text Analysis
Conference (TAC) shared task: TAC-2008 and
TAC-2009.2 In the update part, 10 new documents
(B documents) are to be summarized assuming
that the first 10 documents (A documents) have
already been seen. The generic task consists in
summarizing the initial document set (A).

For each topic, there are 4 human reference
summaries and a manually created Pyramid set
(Nenkova et al., 2007). In both editions, all
system summaries and the 4 reference summaries
were manually evaluated by NIST assessors for
readability, content selection (with Pyramid) and
overall responsiveness. At the time of the shared
tasks, 57 systems were submitted to TAC-2008
and 55 to TAC-2009.

2http://tac.nist.gov/2009/
Summarization/, http://tac.nist.gov/2008/

http://tac.nist.gov/2009/Summarization/
http://tac.nist.gov/2009/Summarization/
http://tac.nist.gov/2008/
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(a) ditribution PD (b) distribution PK (c) distribution PD
K

Figure 1: figure 1a represents an example distribution of sources, figure 1b an example distribution of background
knowledge and figure 1c is the resulting target distribution that summaries should approximate.

Setup and Assumptions:
To keep the experiments simple and focused on il-
lustrating the formulas, we make several simplis-
tic assumptions. First, we choose words as se-
mantic units and therefore texts are represented as
frequency distributions over words. This assump-
tion was already employed by previous works us-
ing information-theoretic tools for summarization
(Haghighi and Vanderwende, 2009). While it is
limiting, this remains a simple approximation let-
ting us observe the quantities in action.
K,α and β are the parameters of the theory

and their choice is subject to empirical investiga-
tion. Here, we make simple choices: for update
summarization, K is the frequency distribution
over words in the background documents (A). For
generic summarization, K is the uniform proba-
bility distribution over all words from the source
documents. Furthermore, we use α = β = 1.

3.2 Correlation with humans
First, we measure how well the different quantities
correlate with human judgments. We compute the
score of each system summary according to each
quantity defined in the previous section: Red,Rel,
Inf , θI(S,D,K). We then compute the correla-
tions between these scores and the manual Pyra-
mid scores. Indeed, each quantity is a summary
scoring function and could, therefore, be evaluated
based on its ability to correlate with human judg-
ments (Lin and Hovy, 2003). Thus, we also report
the performances of the summary scoring func-
tions from several standard baselines: Edmund-
son (Edmundson, 1969) which scores sentences
based on 4 methods: term frequency, presence of
cue-words, overlap with title and position of the
sentence. LexRank (Erkan and Radev, 2004) is a
popular graph-based approach which scores sen-
tences based on their centrality in a sentence sim-
ilarity graph. ICSI (Gillick and Favre, 2009) ex-
tracts a summary by solving a maximum coverage

problem considering the most frequent bigrams
in the source documents. KL and JS (Haghighi
and Vanderwende, 2009) which measure the di-
vergence between the distribution of words in the
summary and in the sources. Furthermore, we
report two baselines from Louis (2014) which
account for background knowledge: KLback and
JSback which measure the divergence between the
distribution of the summary and the background
knowledgeK. Further details concerning baseline
scoring functions can be found in appendix A.

We measure the correlations with Kendall’s τ , a
rank correlation metric which compares the orders
induced by both scored lists. We report results for
both generic and update summarization averaged
over all topics for both datasets in table 1.

In general, the modelizations of Relevance
(based only on the sources) correlate better with
human judgments than other quantities. Metrics
accounting for background knowledge work bet-
ter in the update scenario. This is not surprising as
the background knowledge K is more meaningful
in this case (using the previous document set).

We observe that JS divergence gives slightly
better results than KL. Even though KL is more
theoretically appealing, JS is smoother and usually
works better in practice when distributions have
different supports (Louis and Nenkova, 2013).

Finally, θI significantly3 outperforms all base-
lines in both the generic and the update case.
Red, Rel and Inf are not particularly strong on
their own, but combined together they yield a
strong summary scoring function θI . Indeed,
each quantity models only one aspect of content
selection, only together they form a strong signal
for Importance.

3at 0.01 with significance testing done with a t-test to
compare two means
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We need to be careful when interpreting these
results because we made several strong assump-
tions: by choosing n-grams as semantic units and
by choosing K rather arbitrarily. Nevertheless,
these are promising results. By investigating bet-
ter text representations and more realistic K, we
should expect even higher correlations.

We provide a qualitative example on one topic
in appendix C with a visualization of PD

K
in

comparison to reference summaries.

Generic Update

ICSI .178 .139
Edm. .215 .205
LexRank .201 .164

KL .204 .176
JS .225 .189
KLback .110 .167
JSback .066 .187

Red .098 .096
Rel .212 .192
Inf .091 .086

θI .294 .211

Table 1: Correlation of various information-theoretic
quantities with human judgments measured by
Kendall’s τ on generic and update summarization.

3.3 Comparison with Reference Summaries

Intuitively, the distribution PD
K

should be similar
to the probability distribution PR of the human-
written reference summaries.

To verify this, we scored the system summaries
and the reference summaries with θI and checked
whether there is a significant difference between
the two lists.4 We found that θI scores reference
summaries significantly higher than system
summaries. The p−value, for the generic case,
is 9.2e−6 and 1.1e−3 for the update case. Both
are much smaller than the 1e−2 significance
level. Therefore, θI is capable of distinguishing
systems summaries from human written ones. For
comparison, the best baseline (JS) has the fol-
lowing p−values: 8.2e−3 (Generic) and 4.5e−2
(Update). It does not pass the 1e−2 significance
level for the update scenario.

4with standard t-test for comparing two related means.

4 Conclusion and Future Work

In this work, we argued for the development of
theoretical models of Importance and proposed
one such framework. Thus, we investigated a
theoretical formulation of the notion of Impor-
tance. In a framework rooted in information the-
ory, we formalized several summary-related quan-
tities like: Redundancy, Relevance and Informa-
tiveness. Importance arises as the notion unify-
ing these concepts. More generally, Importance
is the measure that guides which choices to make
when information must be discarded. The intro-
duced quantities generalize the intuitions that have
previously been used in summarization research.

Conceptually, it is straightforward to build a
system out of θI once a semantic units represen-
tation and a K have been chosen. A summarizer
intends to extract or generate a summary maximiz-
ing θI . This fits within the general optimization
framework for summarization (McDonald, 2007;
Peyrard and Eckle-Kohler, 2017b; Peyrard and
Gurevych, 2018)

The background knowledge and the choice of
semantic units are free parameters of the theory.
They are design choices which can be explored
empirically by subsequent works. Our experi-
ments already hint that strong summarizers can
be developed from this framework. Characters,
character n-grams, morphemes, words, n-grams,
phrases, and sentences do not actually qualify as
semantic units. Even though previous works who
relied on information theoretic motivation (Lin
et al., 2006; Haghighi and Vanderwende, 2009;
Louis and Nenkova, 2013; Peyrard and Eckle-
Kohler, 2016) used some of them as support for
probability distributions, they are neither atomic
nor independent. It is mainly because they are sur-
face forms whereas semantic units are abstract and
operate at the semantic level. However, they might
serve as convenient approximations. Then, inter-
esting research questions arise like Which gran-
ularity offers a good approximation of semantic
units? Can we automatically learn good approx-
imations? N-grams are known to be useful, but
other granularities have rarely been considered to-
gether with information-theoretic tools.

For the background knowledge K, a promising
direction would be to use the framework to actu-
ally learn it from data. In particular, one can apply
supervised techniques to automatically search for
K, α and β: finding the values of these parame-
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ters such that θI has the best correlation with hu-
man judgments. By aggregating over many users
and many topics one can find a generic K: what,
on average, people consider as known when sum-
marizing a document. By aggregating over differ-
ent people but in one domain, one can uncover a
domain-specificK. Similarly, by aggregating over
many topics for one person, one would find a per-
sonalized K.

These consistute promising research directions
for future works.
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Hal Daumé III and Daniel Marcu. 2006. Bayesian
Query-Focused Summarization. In Proceedings of
the 21st International Conference on Computational
Linguistics and the 44th annual meeting of the Asso-
ciation for Computational Linguistics, pages 305–
312. Association for Computational Linguistics.

Sashka T. Davis, John M. Conroy, and Judith D.
Schlesinger. 2012. OCCAMS–An Optimal Com-
binatorial Covering Algorithm for Multi-document
Summarization. In Proceeding of the 12th Inter-
national Conference on Data Mining Workshops
(ICDMW), pages 454–463. IEEE.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by Latent Semantic Analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Jean-Yves Delort and Enrique Alfonseca. 2012. Du-
alSum: A Topic-model Based Approach for Update
Summarization. In Proceedings of the 13th Confer-
ence of the European Chapter of the Association for
Computational Linguistics, pages 214–223.

Ted Dunning. 1993. Accurate Methods for the Statis-
tics of Surprise and Coincidence. Computational
linguistics, 19(1):61–74.

H. P. Edmundson. 1969. New Methods in Automatic
Extracting. Journal of the Association for Comput-
ing Machinery, 16(2):264–285.

https://doi.org/10.14569/IJACSA.2017.081052
https://doi.org/10.14569/IJACSA.2017.081052
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
https://doi.org/10.1145/290941.291025
http://hdl.handle.net/1721.1/4821
http://hdl.handle.net/1721.1/4821
http://www.aclweb.org/anthology/P10-1084
http://www.aclweb.org/anthology/P10-1084
http://www.aclweb.org/anthology/P10-1084
http://www.aclweb.org/anthology/P/P06/P06-2020
http://www.aclweb.org/anthology/P/P06/P06-2020
http://www.aclweb.org/anthology/P/P06/P06-2020
https://doi.org/10.3115/1073083.1073159
https://doi.org/10.3115/1073083.1073159
http://dl.acm.org/citation.cfm?id=2380816.2380845
http://dl.acm.org/citation.cfm?id=2380816.2380845
http://dl.acm.org/citation.cfm?id=2380816.2380845
https://doi.org/10.1145/321510.321519
https://doi.org/10.1145/321510.321519


1068

Katrin Erk. 2010. What is Word Meaning, Really?
(and How Can Distributional Models Help Us De-
scribe It?). In Proceedings of the 2010 workshop on
geometrical models of natural language semantics,
pages 17–26. Association for Computational Lin-
guistics.
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A Details about Baseline Scoring
Functions

In the paper, we compare the summary scoring
function θI against the summary scoring func-
tions derived from several summarizers following
the methodology from Peyrard and Eckle-Kohler
(2017a). Here, we give explicit formulation of the
baseline scoring functions.
Edmundson: (Edmundson, 1969)
Edmundson (1969) presented a heuristic which
scores sentences according to 4 different features:

• Cue-phrases: It is based on the hypothesis
that the probable relevance of a sentence is
affected by the presence of certain cue words
such as ’significant’ or ’important’. Bonus
words have positive weights, stigma words
have negative weights and all the others have
no weight. The final score of the sentence is
the sum of the weights of its words.

• Key: High-frequency content words are be-
lieved to be positively correlated with rele-
vance (Luhn, 1958). Each word receives a
weight based on its frequency in the docu-
ment if it is not a stopword. The score of the
sentence is also the sum of the weights of its
words.

• Title: It measures the overlap between the
sentence and the title.

• Location: It relies on the assumption that
sentences appearing early or late in the source
documents are more relevant.

By combining these scores with a linear combi-
nation, we can recognize the objective function:

θEdm.(S) =
∑
s∈S

α1 · C(s) + α2 ·K(s) (14)

+ α3 · T (s) + α4 · L(s) (15)

The sum runs over sentences and C,K, T and L
output the sentence scores for each method (Cue,
Key, Title and Location).

ICSI: (Gillick and Favre, 2009)
A global linear optimization that extracts a sum-
mary by solving a maximum coverage problem
of the most frequent bigrams in the source doc-
uments. ICSI has been among the best systems in
a classical ROUGE evaluation (Hong et al., 2014).

Here, the identification of the scoring function is
trivial because it was originally formulated as an
optimization task. If ci is the i-th bigram selected
in the summary and wi is its weight computed
from D, then:

θICSI(S) =
∑
ci∈S

ci · wi (16)

LexRank: (Erkan and Radev, 2004)
This is a well-known graph-based approach. A
similarity graph G(V,E) is constructed where V
is the set of sentences and an edge eij is drawn
between sentences vi and vj if and only if the
cosine similarity between them is above a given
threshold. Sentences are scored according to their
PageRank score in G. Thus, θLexRank is given by:

θLexRank(S) =
∑
s∈S

PRG(s) (17)

Here, PR is the PageRank score of sentence s.

KL-Greedy: (Haghighi and Vanderwende, 2009)
In this approach, the summary should minimize
the Kullback-Leibler (KL) divergence between the
word distribution of the summary S and the word
distribution of the documents D (i.e., θKL =
−KL):

θKL(S) = −KL(S||D) (18)

= −
∑
g∈S

PS(g) log
PS(g)

PD(g)
(19)

PX(w) represents the frequency of the word (or
n-gram) w in the text X . The minus sign indicates
that KL should be lower for better summaries. In-
deed, we expect a good system summary to exhibit
a similar probability distribution of n-grams as the
sources.

Alternatively, the Jensen-Shannon (JS) diver-
gence can be used instead of KL. Let M be the
average word frequency distribution of the candi-
date summary S and the source documents D dis-
tribution:

∀g ∈ S, PM (g) =
1

2
(PS(g) + PD(g)) (20)

Then, the formula for JS is given by:

θJS(S) = −JS(S||D) (21)

=
1

2
(KL(S||M) +KL(D||M)) (22)
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Within our framework, the KL divergence acts
as the unification of Relevance and Redundancy
when semantic units are bigrams.

B Proof of Theorem 1

Let Ω be the set of semantic units. The nota-
tion ωi represents one unit. Let PT , and PK be
the text representations of the source documents
and background knowledge as probability distri-
butions over semantic units.

We note ti = PT (ωi), the probability of the
unit ωi in the source T . Similarly, we note ki =
PK(ωi). We seek a function f unifying T and K
such that: f(ωi) = f(ti, ki).

We remind the simple requirements that f
should satisfy:

• Informativeness: ∀i 6= j, if ti = tj and ki >
kj then f(ti, ki) < f(tj , kj)

• Relevance: ∀i 6= j, if ti > tj and ki = kj
then f(ti, ki) > f(tj , kj)

• Additivity: I(f(ti, ki)) ≡ αI(ti)+βI(ki) (I
is the information measure from Shannon’s
theory (Shannon, 1948))

• Normalization:
∑
i
f(ti, ki) = 1

Theorem 1 states that the functions satisfying
the previous requirements are:

P T
K

(ωi) =
1

C
· t

α
i

kβi

C =
∑
i

tαi

kβi
, α, β ∈ R+

(23)

with C the normalizing constant.

Proof. The information function defined by Shan-
non (1948) is the logarithm: I = log. Then, the
Additivity criterion can be written:

log(f(ti, ki)) = α log(ti) + β log(ki) +A (24)

with A a constant independent of ti and ki
Since log is monotonous and increasing, the In-

formativeness and Additivity criteria can be com-
bined:

∀i 6= j, if ti = tj and ki > kj then:

log f(ti, ki) < log f(tj , kj)

α log(ti) + β log(ki) < α log(tj) + β log(kj)

β log(ki) < β log(kj)

But ki > kj , therefore:

β < 0

For clarity, we can now use −β with β ∈ R+.
Similarly, we can combine the Relevance and

Additivity criteria: ∀i 6= j, if ti > tj and ki = kj
then:

log f(ti, ki) > log f(tj , kj)

α log(ti) + β log(ki) > α log(tj) + β log(kj)

α log(ti) > α log(tj)

But ti > tj , therefore:

α > 0

Then, we have the following form from the Ad-
ditivity criterion:

log f(ti, ki) = α log(ti)− β log(ki) +A

f(ti, ki) = eAe[α log(ti)−β log(ki)]

f(ti, ki) = eA
tαi

kβi
x

Finally, the Normalization constraint specifies
the constant eA:

C =
1

eA

and C =
∑
i

tαi

kβi

then: A = − log(
∑
i

tαi

kβi
)

C Example

As an example, for one selected topic of TAC-
2008 update track, we computed the PD

K
and com-

pare it to the distribution of the 4 reference sum-
maries.

We report the two distributions together in fig-
ure 2. For visibility, only the top 50 words accord-
ing to PD

K
are considered. However, we observe
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Figure 2: Example of PD
K

in comparison to the word distribution of reference summaries for one topic of TAC-2008
(D0803).

a good match between the distribution of the ref-
erence summaries and the ideal distribution as de-
fined by PD

K
.

Furthermore, the most desired words according
to PD

K
make sense. This can be seen by looking

at one of the human-written reference summary of
this topic:

Reference summary for topic D0803
China sacrificed coal mine safety in its
massive demand for energy. Gas explo-
sions, flooding, fires, and cave-ins cause
most accidents. The mining industry is
riddled with corruption from mining of-
ficials to owners. Officials are often ille-
gally invested in mines and ignore safety
procedures for production. South Africa
recently provided China with informa-
tion on mining safety and technology
during a conference. China is begin-
ning enforcement of safety regulations.
Over 12,000 mines have been ordered
to suspend operations and 4,000 others
ordered closed. This year 4,228 miners
were killed in 2,337 coal mine accidents.
China’s mines are the most dangerous
worldwide.


