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Abstract

Classical non-neural dependency parsers put
considerable effort on the design of feature
functions. Especially, they benefit from infor-
mation coming from structural features, such
as features drawn from neighboring tokens
in the dependency tree. In contrast, their
BiLSTM-based successors achieve state-of-
the-art performance without explicit informa-
tion about the structural context. In this pa-
per we aim to answer the question: How much
structural context are the BiLSTM representa-
tions able to capture implicitly? We show that
features drawn from partial subtrees become
redundant when the BiLSTMs are used. We
provide a deep insight into information flow
in transition- and graph-based neural architec-
tures to demonstrate where the implicit infor-
mation comes from when the parsers make
their decisions. Finally, with model ablations
we demonstrate that the structural context is
not only present in the models, but it signifi-
cantly influences their performance.

1 Introduction

When designing a conventional non-neural parser
substantial effort is required to design a power-
ful feature extraction function. Such a function
(McDonald et al., 2005; Zhang and Nivre, 2011,
among others) is constructed so that it captures
as much structural context as possible. The con-
text allows the parser to make well-informed deci-
sions.1 It is encoded in features built from partial
subtrees and explicitly used by the models.

Recently, Kiperwasser and Goldberg (2016,
K&G) showed that the conventional feature ex-
traction functions can be replaced by modeling
the left- and right-context of each word with
BiLSTMs (Hochreiter and Schmidhuber, 1997;

1See Figure 1 for the concept of structural context, details
of the architectures will be described in Section 2.

Graves and Schmidhuber, 2005). Although the
proposed models do not use any conventional
structural features they achieve state-of-the-art
performance. The authors suggested that it is be-
cause the BiLSTM encoding is able to estimate the
missing information from the given features and
did not explore this issue further.

Since the introduction of the K&G architecture
BiLSTM-based parsers have become standard in
the field.2 Yet, it is an open question how much
conventional structural context the BiLSTMs rep-
resentations actually are able to capture implicitly.
Small architectures that ignore the structural con-
text are attractive since they come with lower time
complexity. But to build such architectures it is
important to investigate to what extent the explicit
structural information is redundant. For example,
K&G also proposed an extended feature set de-
rived from structural context, which has subse-
quently been re-implemented and used by others
without questioning its utility.

Inspired by recent work (Gaddy et al., 2018)
on constituency parsing we aim at understanding
what type of information is captured by the inter-
nal representations of BiLSTM-based dependency
parsers and how it translates into their impres-
sive accuracy. As our starting point we take the
K&G architecture and extend it with a second-
order decoder.3 We perform systematic analy-
ses on nine languages using two different archi-
tectures (transition-based and graph-based) across
two dimensions: with and without BiLSTM rep-
resentations, and with and without features drawn
from structural context.

2See results from the recent CoNLL 2018 shared task on
dependency parsing (Zeman et al., 2018) for a comparison of
various high-performing dependency parsers.

3To the best of our knowledge, this is the first BiLSTM-
based second-order dependency parser. Gómez-Rodrı́guez
et al. (2018) incorporate BiLSTM-based representations into
the third-order 1-Endpoint-Crossing parser of Pitler (2014).
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Figure 1: Schematic illustration of the K&G architecture of BiLSTM-based neural dependency parsers. Red
arrows mark the basic feature sets and blue show how to extend them with features drawn from structural context.

We demonstrate that structural features are use-
ful for neural dependency parsers but they become
redundant when BiLSTMs are used (Section 4).
It is because the BiLSTM representations trained
together with dependency parsers capture a signif-
icant amount of complex syntactic relations (Sec-
tion 5.1). We then carry out an extensive inves-
tigation of information flow in the parsing archi-
tectures and find that the implicit structural con-
text is not only present in the BiLSTM-based pars-
ing models, but also more diverse than when en-
coded in explicit structural features (Section 5.2).
Finally, we present results on ablated models to
demonstrate the influence of structural informa-
tion implicitly encoded in BiLSTM representa-
tions on the final parsing accuracy (Section 5.3).

2 Parsing Model Architecture

Our graph- and transition-based parsers are based
on the K&G architecture (see Figure 1). The
architecture has subsequently been extended by,
e.g., character-based embeddings (de Lhoneux
et al., 2017) or attention (Dozat and Manning,
2016). To keep the experimental setup clean and
simple while focusing on the information flow in
the architecture, we abstain from these extensions.
We use the basic K&G architecture as our starting
point with a few minor changes outlined below.
For further details we refer the reader to Kiper-
wasser and Goldberg (2016).

2.1 Word Representations

In both transition- and graph-based architectures
input tokens are represented in the same way (see
level [1] in Figure 1). For a given sentence with
words [w1, . . . wn] and part-of-speech (POS) tags
[t1, . . . , tn] each word representation xi is built
from concatenating the embeddings of the word

and its POS tag:

xi = e(wi) ◦ e(ti)

The embeddings are initialized randomly at train-
ing time and trained together with the model.

The representations xi encode words in isola-
tion and do not contain information about their
context. For that reason they are passed to the Bi-
LSTM feature extractors (level [2] in Figure 1) and
represented by a BiLSTM representation

��
xi :

��
xi = BiLSTM(x1:n, i)

2.2 Transition-Based Parser
Transition-based parsers gradually build a tree by
applying a sequence of transitions. During train-
ing they learn a scoring function for transitions.
While decoding they search for the best action
given the current state and the parsing history.

Figure 1a illustrates the architecture of the
transition-based K&G parser. For every config-
uration c consisting of a stack, buffer, and a set
of arcs introduced so far, the parser selects a few
core items from the stack and buffer (red arrows in
the figure) as features. Next, it concatenates their
BiLSTM vectors and passes them to a multi-layer
perceptron (MLP) which assigns scores to all pos-
sible transitions. The highest scoring transition is
used to proceed to the next configuration.

Our implementation (denoted TBPARS) uses
the arc-standard decoding algorithm (Nivre, 2004)
extended with a SWAP transition (ASWAP, Nivre
(2009)) to handle non-projective trees. The sys-
tem applies arc transitions between the two top-
most items of the stack (denoted s0 and s1). We
use the lazy SWAP oracle by Nivre et al. (2009)
for training. Labels are predicted together with the
transitions. We experiment with two models with
different feature sets:
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TBMIN: is the simple architecture which does
not use structural features. Since Shi et al. (2017)
showed that the feature set {��

s0 ,
��
s1 ,

��

b0} is min-
imal for the arc-standard system (i.e., it suffers
almost no loss in performance in comparison to
larger feature sets but significantly out-performs a
feature set built from only two vectors) we apply
the same feature set to ASWAP. Later we analyze
if the set could be further reduced.

TBEXT: is the extended architecture. We use
the original extended feature set from K&G: {��

s0 ,
��
s1 ,

��
s2 ,

��

b0 ,
��
s0L,

��
s0R,

��
s1L,

��
s1R,

��
s2L,

��
s2R,

��

b0L},
where .L and .R denote left- and right-most child.

2.3 Graph-Based Parser

The K&G graph-based parser follows the struc-
tured prediction paradigm: while training it learns
a scoring function which scores the correct tree
higher than all the other possible ones. While
decoding it searches for the highest scoring tree
for a given sentence. The parser employs an arc-
factored approach (McDonald et al., 2005), i.e., it
decomposes the score of a tree to the sum of the
scores of its arcs.

Figure 1b shows the K&G graph-based archi-
tecture. At parsing time, every pair of words
〈xi, xj〉 yields a BiLSTM representation {��

xi ,
��
xj}

(red arrows in the figure) which is passed to MLP
to compute the score for an arc xi → xj . To find
the highest scoring tree we apply Eisner (1996)’s
algorithm. We denote this architecture GBMIN.
We note in passing that, although this decoding
algorithm is restricted to projective trees, it has
the advantage that it can be extended to incorpo-
rate non-local features while still maintaining ex-
act search in polynomial time.4

The above-mentioned simple architecture uses
a feature set of two vectors {

��

h ,
��

d }. We ex-
tend it and add information about structural con-
text. Specifically, we incorporate information
about siblings

��
s (blue arrows in the figure). The

model follows the second-order model from Mc-
Donald and Pereira (2006) and decomposes the
score of the tree into the sum of adjacent edge pair
scores. We use the implementation of the second-
order decoder from Zhang and Zhao (2015). We
denote this architecture GBSIBL.

4Replacing Eisner (1996)’s algorithm with the Chu-Liu-
Edmonds’s decoder (Chu and Liu, 1965; Edmonds, 1967)
which can predict non-projective arcs causes significant im-
provements only for the Ancient Greek treebank (1.02 LAS
on test set).

3 Experimental Setup

Data sets and preprocessing. We perform ex-
periments on a selection of nine treebanks from
Universal Dependencies (Nivre et al., 2016)
(v2.0): Ancient Greek PROIEL (grc), Arabic (ar),
Chinese (zh), English (en), Finnish (fi), Hebrew
(he), Korean (ko), Russian (ru) and Swedish (sv).
This selection was proposed by Smith et al. (2018)
as a sample of languages varying in language fam-
ily, morphological complexity, and frequencies of
non-projectivity (we refer to Smith et al. (2018)
for treebank statistics). To these 9, we add the En-
glish Penn Treebank (en-ptb) converted to Stan-
ford Dependencies.5 We use sections 2-21 for
training, 24 as development set and 23 as test set.

We use automatically predicted universal POS
tags in all the experiments. The tags are assigned
using a CRF tagger (Mueller et al., 2013). We an-
notate the training sets via 5-fold jackknifing.

Evaluation. We evaluate the experiments using
Labeled Attachment Score (LAS).6 We train mod-
els for 30 epochs and select the best model based
on development LAS. We follow recommenda-
tions from Reimers and Gurevych (2018) and re-
port averages and standard deviations from six
models trained with different random seeds. We
test for significance using the Wilcoxon rank-sum
test with p-value < 0.05.

Analysis is carried out on the development
sets in order not to compromise the test sets.
We present the results on the concatenation of
all the development sets (one model per lan-
guage). While the absolute numbers vary across
languages, the general trends are consistent with
the concatenation.

Implementation details. All the described
parsers were implemented with the DyNet library
(Neubig et al., 2017).7 We use the same hyperpa-
rameters as Kiperwasser and Goldberg (2016) and
summarize them in Table 2 in Appendix A.

5We use version 3.4.1 of the Stanford Parser from
http://nlp.stanford.edu/software/
lex-parser.shtml

6The ratio of tokens with a correct head and label to the
total number of tokens in the test data.

7The code can be found on the first author’s website.

http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
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avg. en-ptb ar en fi grc he ko ru sv zh

TBMIN 76.43 90.25 76.22 81.85† 72.51† 71.92† 79.41† 64.39 74.35† 80.11† 73.28†

TBEXT 75.56 90.25 75.77 80.50 71.47 70.32 78.62 63.88 73.82 78.80 72.17

GBMIN 77.74 91.40 77.25 82.53 74.37 73.48 80.83 65.47 76.43 81.22 74.47
GBSIBL 77.89 91.59 77.21 82.65 74.44 73.20 81.03 65.61 76.79† 81.42 74.95†

Table 1: Average (from six runs) parsing results (LAS) on test sets. †marks statistical significance (p-value < 0.05).
Corresponding standard deviations are provided in Table 3 in Appendix A.

4 Structural Features and BiLSTMs

4.1 Simple vs. Extended Architectures

We start by evaluating the performance of our four
models. The purpose is to verify that the simple
architectures will compensate for the lack of addi-
tional structural features and achieve comparable
accuracy to the extended ones.

Table 1 shows the accuracy of all the parsers.
Comparing the simple and extended architectures
we see that dropping the structural features does
not hurt the performance, neither for transition-
based nor graph-based parsers. Figure 2 dis-
plays the accuracy relative to dependency length
in terms of recall.8 It shows that the differences
between models are not restricted to arcs of par-
ticular lengths.

In the case of graph-based models (GBMIN vs.
GBSIBL) adding the second-order features to a
BiLSTM-based parser improves the average per-
formance slightly. However, the difference be-
tween those two models is significant only for
two out of ten treebanks. For the transition-based
parser (TBMIN vs. TBEXT) a different effect can
be noticed – additional features cause a significant
loss in accuracy for seven out of ten treebanks.
One possible explanation might be that TBEXT

suffers more from error propagation than TBMIN.
The parser is greedy and after making the first mis-
take it starts drawing features from configurations
which were not observed during training. Since
the extended architecture uses more features than
the simple one the impact of the error propagation
might be stronger. This effect can be noticed in
Figure 2. The curves for TBMIN and TBEXT are
almost parallel for the short arcs but the perfor-
mance of TBEXT deteriorates for the longer ones,
which are more prone to error propagation (Mc-
Donald and Nivre, 2007).

8Dependency recall is defined as the percentage of correct
predictions among gold standard arcs of length l (McDonald
and Nivre, 2007).
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Figure 2: Dependency recall relative to arc length on
development sets. The corresponding plot for precision
shows similar trends (see Figure 7 in Appendix A).

4.2 Influence of BiLSTMs

We now investigate whether BiLSTMs are the rea-
son for models being able to compensate for lack
of features drawn from partial subtrees.

Transition-based parser. We train TBPARS in
two settings: with and without BiLSTMs (when
no BiLSTMs are used we pass vectors xi directly
to the MLP layer following Chen and Manning
(2014)) and with different feature sets. We start
with a feature set {s0} and consecutively add more
until we reach the full feature model of TBEXT.

Figure 3a displays the accuracy of all the trained
models. First of all, we notice that the models
without BiLSTMs (light bars) benefit from struc-
tural features. The biggest gains in the average
performance are visible after adding vectors s0L
(5.15 LAS) and s1R (1.12 LAS) . After adding s1R
the average improvements become modest.

Adding the BiLSTM representations changes
the picture (dark bars). First of all, as in the case of
arc-standard system (Shi et al., 2017), the feature

set {��
s0 ,

��
s1 ,

��

b0} is minimal for ASWAP: none of
the other structural features are able to improve the
performance of the parser but dropping b0 causes
a big drop of almost 6 LAS on average. Secondly,
the parsers which use BiLSTMs always have a big
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Figure 3: Parsing accuracy (average LAS over ten treebanks) with incremental extensions to the feature set.

advantage over the parsers which do not, regard-
less of the feature model used.

Graph-based parser. We train two models:
GBMIN and GBSIBL with and without BiLSTMs.
To ensure a fairer comparison with the models
without BiLSTMs we expand the basic feature
sets ({

��

h ,
��

d } and {
��

h ,
��

d ,
��
s }) with additional

surface features known from classic graph-based
parsers, such as distance between head and depen-
dent (dist), words at distance of 1 from heads and
dependents (h±1, d±1) and at distance±2. We fol-
low Wang and Chang (2016) and encode distance
as randomly initialized embeddings.

Figure 3b displays the accuracy of all the trained
models with incremental extensions to their fea-
ture sets. First of all, we see that surface fea-
tures (dist, h±1, d±1, h±2, d±2) are beneficial
for the models without BiLSTM representations
(light bars). The improvements are visible for both
parsers, with the smallest gains after adding h±2,
d±2 vectors: on average 0.35 LAS for GBSIBL

and 0.83 LAS for GBMIN.
As expected, adding BiLSTMs changes the pic-

ture. Since the representations capture surface
context, they already contain a lot of informa-
tion about words around heads and dependents and
adding features h±1, d±1 and h±2, d±2 does not
influence the performance. Interestingly, introduc-
ing dist is also redundant which suggests that ei-
ther BiLSTMs are aware of the distance between
tokens or they are not able to use this information
in a meaningful way. Finally, even after adding all
the surface features the models which do not em-
ploy BiLSTMs are considerably behind the ones
which do.

Comparing GBMIN (blue) with GBSIBL (red)

we see that adding information about structural
context through second-order features is benefi-
cial when the BiLSTM are not used (light bars):
the second-order GBSIBL has an advantage over
GBMIN of 0.81 LAS even when both of the mod-
els use all the additional surface information (last
group of bars on the plot). But this advantage
drops down to insignificant 0.07 LAS when the
BiLSTMs are incorporated.

We conclude that, for both transition- and
graph-based parsers, BiLSTMs not only compen-
sate for absence of structural features but they also
encode more information than provided by the
manually designed feature sets.

5 Implicit Structural Context

Now that we have established that structural fea-
tures are indeed redundant for models which em-
ploy BiLSTMs we examine the ways in which the
simple parsing models (TBMIN and GBMIN) im-
plicitly encode information about partial subtrees.

5.1 Structure and BiLSTM Representations

We start by looking at the BiLSTM representa-
tions. We know that the representations are capa-
ble of capturing syntactic relations when they are
trained on a syntactically related task, e.g, number
prediction task (Linzen et al., 2016). We evaluate
how complicated those relations can be when the
representations are trained together with a depen-
dency parser.

To do so, we follow Gaddy et al. (2018) and use
derivatives to estimate how sensitive a particular
part of the architecture is with respect to changes
in input. Specifically, for every vector

��
x we mea-

sure how it is influenced by every word represen-
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Figure 4: The average impact of tokens on BiLSTM vectors trained with dependency parser with respect to the
surface distance and the structural (gold-standard) relation between them.

tation xi from the sentence. If the derivative of
��
x

with respect to xi is high then the word xi has a
high influence on the vector. We compute the l2-
norm of the gradient of

��
x with respect to xi and

normalize it by the sum of norms of all the words
from the sentence calling this measure impact:

impact(
��
x , i) = 100×

||∂
��
x

∂xi
||∑

j ||
∂

��
x

∂xj
||

For every sentence from the development set
and every vector

��
xi we calculate the impact of

every representation xj from the sentence on the
vector

��
xi . We bucket those impact values accord-

ing to the distance between the representation and
the word. We then use the gold-standard trees to
divide every bucket into five groups: correct heads
of xi, children (i.e., dependents) of xi, grandpar-
ents (i.e., heads of heads), siblings, and other.

Figure 4 shows the average impact of tokens
at particular positions. Similarly as shown by
Gaddy et al. (2018) even words 15 and more posi-
tions away have a non-zero effect on the BiLSTM
vector. Interestingly, the impact of words which
we know to be structurally close to xi is higher.
For example, for the transition-based parser (Fig-
ure 4a) at positions ±5 an average impact is lower
than 2.5%, children and siblings of xi have a
slightly higher impact, and the heads and grand-
parents around 5%. For the graph-based parser
(Figure 4b) the picture is similar with two notice-
able differences. The impact of heads is much
stronger for words 10 and more positions apart.
But it is smaller than in the case of transition-based
parser when the heads are next to xi.

We conclude that the BiLSTMs are indeed in-
fluenced by the distance, but when trained with a
dependency parser they also capture a significant
amount of non-trivial syntactic relations.

5.2 Structure and Information Flow

Now that we know that the representations encode
structural information we ask how this information
influences the decisions of the parser.

First, we investigate how much structural infor-
mation flows into the final layer of the network.
When we look back at the architecture in Fig-
ure 1 we see that when the final MLP scores pos-
sible transitions or arcs it uses only feature vec-

tors {��
s0 ,

��
s1 ,

��

b0} or {
��

h ,
��

d }. But thanks to the
BiLSTMs the vectors encode information about
other words from the sentence. We examine from
which words the signal is the strongest when the
parser makes the final decision.

We extend the definition of impact to capture
how a specific word representation xi influences
the final MLP score sc (we calculate the derivative
of sc with respect to xi). We parse every develop-
ment sentence. For every predicted transition/arc
we calculate how much its score sc was affected
by every word from the sentence. We group im-
pacts of words depending on their positions.

Transition-based parser. For the transition-
based parser we group tokens according to their
positions in the configuration. For example, for
the decision in Figure 1a impact(sc, 1) would be
grouped as s1 and impact(sc, j) as s0R.

In Figure 5a we plot the 15 positions with the
highest impact and the number of configurations
they appear in (gray bars). As expected, s0, s1, and
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(s), grandparents (g), h,d±i tokens at distance ±i
from h or d which are none of h, d, c, s, or g.

Figure 5: Positions with the highest impact on the MLP scores (blue crosses) and their frequency (gray bars).

b0 have the highest influence on the decision of the
parser. The next two positions are s1R and s0L.
Interestingly, those are the same positions which
used as features caused the biggest gains in perfor-
mance for the models which did not use BiLSTMs
(see Figure 3a). They are much less frequent than
b1 but when they are present the model is strongly
influenced by them. After b1 we can notice posi-
tions which are not part of the manually designed
extended feature set of TBEXT, such as s0L (left
children of s0 that are not the leftmost).

Graph-based parser. For the graph-based
parser we group tokens according to their position
in the full predicted tree. We then bucket the
impacts into: heads (h), dependents (d), children
(i.e., dependents of dependents) (c), siblings (s),
and grandparents (i.e., heads of heads) (g). Words
which do not fall into any of those categories
are grouped according to their surface distance
from heads and dependents. For example, h±2

are tokens two positions away from the head
which do not act as dependent, child, sibling, or
grandparent.

Figure 5b presents 10 positions with the high-
est impact and the number of arcs for which they
are present (gray bars). As expected, heads and
dependents have the highest impact on the scores
of arcs, much higher than any of the other tokens.
Interestingly, among the next three bins with the
highest impact are children and siblings. Children
are less frequent than structurally unrelated tokens
at distance 1 (h±1, d±1), and much less frequent
than h±2 or d±2 but they influence the final scores
more. The interesting case is siblings – they not
only have a strong average impact but they are also

very frequent, suggesting that they are very impor-
tant for the parsing accuracy.

The results above show that the implicit struc-
tural context is not only present in the models, but
also more diverse than when incorporated through
conventional explicit structural features.

5.3 Structure and Performance

Finally, we investigate if the implicit structural
context is important for the performance of the
parsers. To do so, we take tokens at structural po-
sitions with the highest impact and train new ab-
lated models in which the information about those
tokens is dropped from the BiLSTM layer. For
example, while training an ablated model without
s0L, for every configuration we re-calculate all the
BiLSTM vectors as if s0L was not in the sentence.
When there is more than one token at a specific
position, for example s0L or c (i.e., children of the
dependent), we pick a random one to drop. That
way every ablated model looses information about
at most one word.

We note that several factors can be responsi-
ble for drops in performance of the ablated mod-
els. For example, the proposed augmentation dis-
torts distance between tokens which might have
an adverse impact on the trained representations.
Therefore, in the following comparative analysis
we interpret the obtained drops as an approxima-
tion of how much particular tokens influence the
performance of the models.

Transition-based parser. Figure 6a presents the
drops in the parsing performance for the ab-
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Figure 6: The performance drops when tokens at particular positions are removed from the BiLSTM encoding.
The red line marks average LAS of uninterrupted model. Feature sets of both models are highlighted in green.

lated models.9 First of all, removing the vectors

{��
s0 ,

��
s1 ,

��

b0} (marked in green on the plot) only
from the BiLSTM layer (although they are still
used as features) causes visible drops in perfor-
mance. One explanation might be that when the
vector

��
s0 is recalculated without knowledge of s1

the model loses information about the distance be-
tween them. Secondly, we can notice that other
drops depend on both the impact and frequency
of positions. The biggest declines are visible af-
ter removing s0L and s1R – precisely the posi-
tions which we found to have the highest impact
on the parsing decisions. Interestingly, the posi-
tions which were not a part of the TBEXT feature
set, such as s0L or s1R, although not frequent are
important for the performance.

Graph-based parser. Corresponding results for
the graph-based parser are presented in Figure 6b
(we use gold-standard trees as the source of infor-
mation about structural relations between tokens).
The biggest drop can be observed for ablated mod-
els without siblings. Clearly, information coming
from those tokens implicitly into MLP is very im-
portant for the final parsing accuracy. The next
two biggest drops are caused by lack of children
and grandparents. As we showed in Figure 5b
children, although less frequent, have a stronger
impact on the decision of the parser. But dropping
grandparents also significantly harms the models.

We conclude that information about partial sub-
trees is not only present when the parser makes

9It is worth noting that not all of the models suffer from
the ablation. For example, dropping vectors s2R causes al-
most no harm. This suggests that re-calculating the represen-
tations multiple times does not have a strong negative effect
on training.

final decisions but also strongly influences those
decisions. Additionally, the deteriorated accuracy
of the ablated models shows that the implicit struc-
tural context can not be easily compensated for.

6 Related Work

Feature extraction. Kiperwasser and Goldberg
(2016) and Cross and Huang (2016) first applied
BiLSTMs to extract features for transition-based
dependency parsers. The authors demonstrated
that an architecture using only a few positional
features (four for the arc-hybrid system and three
for arc-standard) is sufficient to achieve state-of-
the-art performance. Shi et al. (2017) showed that
this number can be further reduced to two fea-
tures for arc-hybrid and arc-eager systems. De-
creasing the size of the feature set not only al-
lows for construction of lighter and faster neu-
ral networks (Wang and Chang, 2016; Vilares
and Gómez-Rodrı́guez, 2018) but also enables the
use of exact search algorithms for several projec-
tive (Shi et al., 2017) and non-projective (Gómez-
Rodrı́guez et al., 2018) transition systems. A sim-
ilar trend can be observed for graph-based de-
pendency parsers. State-of-the-art models (Kiper-
wasser and Goldberg, 2016; Dozat and Manning,
2016) typically use only two features of heads
and dependents, possibly also incorporating their
distance (Wang and Chang, 2016). Moreover,
Wang and Chang (2016) show that arc-factored
BiLSTM-based parsers can compete with conven-
tional higher-order models in terms of accuracy.

None of the above mentioned efforts address the
question how dependency parsers are able to com-
pensate for the lack of structural features. The
very recent work by de Lhoneux et al. (2019)
looked into this issue from a different perspec-
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tive than ours – composition. They showed that
composing the structural context with recursive
networks as in Dyer et al. (2015) is redundant
for the K&G transition-based architecture. The
authors analyze components of the BiLSTMs to
show which of them (forward v. backward LSTM)
is responsible for capturing subtree information.

RNNs and syntax. Recurrent neural networks,
which BiLSTMs are a variant of, have been re-
peatedly analyzed to understand whether they can
learn syntactic relations. Such analyses differ
in terms of: (1) methodology they employ to
probe what type of knowledge the representa-
tions learned and (2) tasks on which the rep-
resentations are trained on. Shi et al. (2016)
demonstrated that sequence-to-sequence machine-
translation systems capture source-language syn-
tactic relations. Linzen et al. (2016) showed
that when trained on the task of number agree-
ment prediction the representations capture a non-
trivial amount of grammatical structure (although
recursive neural networks are better at this task
than sequential LSTMs (Kuncoro et al., 2018)).
Blevins et al. (2018) found that RNN representa-
tions trained on a variety of NLP tasks (includ-
ing dependency parsing) are able to induce syn-
tactic features (e.g., constituency labels of par-
ent or grandparent) even without explicit supervi-
sion. Finally, Conneau et al. (2018) designed a set
of tasks probing linguistic knowledge of sentence
embedding methods.

Our work contributes to this line of research in
two ways: (1) from the angle of methodology,
we show how to employ derivatives to pinpoint
what syntactic relations the representations learn;
(2) from the perspective of tasks, we demonstrate
how BiLSTM-based dependency parsers take ad-
vantage of structural information encoded in the
representations. In the case of constituency pars-
ing Gaddy et al. (2018) offer such an analysis. The
authors show that their BiLSTM-based models im-
plicitly learn the same information which was con-
ventionally provided to non-neural parsers, such
as grammars and lexicons.

7 Discussion and Conclusion

We examined how the application of BiLSTMs in-
fluences the modern transition- and graph-based
parsing architectures. The BiLSTM-based parsers
can compensate for the lack of traditional struc-
tural features. Specifically, the features drawn

from partial subtrees become redundant because
the parsing models encode them implicitly.

The main advantage of BiLSTMs comes with
their ability to capture not only surface but
also syntactic relations. When the represen-
tations are trained together with a parser they
encode structurally-advanced relations such as
heads, children, or even siblings and grandparents.
This structural information is then passed directly
(through feature vectors) and indirectly (through
BiLSTMs encoding) to MLP and is used for scor-
ing transitions and arcs. Finally, the implicit struc-
tural information is important for the final parsing
decisions: dropping it in ablated models causes
their performance to deteriorate.

The introduction of BiLSTMs into dependency
parsers has an additional interesting consequence.
The classical transition- and graph-based depen-
dency parsers have their strengths and limitations
due to the trade-off between the richness of fea-
ture functions and the inference algorithm (Mc-
Donald and Nivre, 2007). Our transition- and
graph-based architectures use the same word rep-
resentations. We showed that those representa-
tions trained together with the parsers capture syn-
tactic relations in a similar way. Moreover, the
transition-based parser does not incorporate struc-
tural features through the feature set. And the
graph-based parser makes use of far away surface
tokens but also structurally related words. Evi-
dently, the employment of BiLSTM feature ex-
tractors blurs the difference between the two ar-
chitectures. The one clear advantage of the graph-
based parser is that it performs global inference
(but exact search algorithms are already being ap-
plied to projective (Shi et al., 2017) and non-
projective (Gómez-Rodrı́guez et al., 2018) transi-
tion systems). Therefore, an interesting question
is if integrating those two architectures can still be
beneficial for the parsing accuracy as in Nivre and
McDonald (2008). We leave this question for fu-
ture work.
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A Appendix

Word embedding dimension 100
POS tag embedding dimension 20
Hidden units in MLP 100
BiLSTM layers 2
BiLSTM dimensions 125
α for word dropout 0.25
Trainer Adam
Non-lin function tanh

Table 2: Hyperparameters for the parsers.

en-ptb ar en fi grc he ko ru sv zh

TBMIN 0.237 0.323 0.207 0.163 0.382 0.391 0.740 0.282 0.295 0.398
TBEXT 0.211 0.191 0.176 0.323 0.472 0.454 0.456 0.408 0.257 0.267

GBMIN 0.146 0.179 0.212 0.157 0.340 0.269 0.300 0.228 0.379 0.408
GBSIBL 0.103 0.186 0.149 0.219 0.372 0.229 0.163 0.169 0.195 0.441

Table 3: Standard deviation for results in Table 1.
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Figure 7: Dependency precision relative to arc length on development sets.


