
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics-System Demonstrations, pages 74–79
Melbourne, Australia, July 15 - 20, 2018. c©2018 Association for Computational Linguistics

74

NCRF++: An Open-source Neural Sequence Labeling Toolkit

Jie Yang and Yue Zhang
Singapore University of Technology and Design

jie yang@mymail.sutd.edu.sg
yue zhang@sutd.edu.sg

Abstract

This paper describes NCRF++, a toolkit
for neural sequence labeling. NCRF++
is designed for quick implementation of
different neural sequence labeling models
with a CRF inference layer. It provides
users with an inference for building the
custom model structure through configu-
ration file with flexible neural feature de-
sign and utilization. Built on PyTorch1,
the core operations are calculated in batch,
making the toolkit efficient with the accel-
eration of GPU. It also includes the imple-
mentations of most state-of-the-art neural
sequence labeling models such as LSTM-
CRF, facilitating reproducing and refine-
ment on those methods.

1 Introduction

Sequence labeling is one of the most fundamental
NLP models, which is used for many tasks such as
named entity recognition (NER), chunking, word
segmentation and part-of-speech (POS) tagging.
It has been traditionally investigated using statis-
tical approaches (Lafferty et al., 2001; Ratinov
and Roth, 2009), where conditional random fields
(CRF) (Lafferty et al., 2001) has been proven as
an effective framework, by taking discrete features
as the representation of input sequence (Sha and
Pereira, 2003; Keerthi and Sundararajan, 2007).

With the advances of deep learning, neural se-
quence labeling models have achieved state-of-
the-art for many tasks (Ling et al., 2015; Ma
and Hovy, 2016; Peters et al., 2017). Features
are extracted automatically through network struc-
tures including long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997) and convolu-
tion neural network (CNN) (LeCun et al., 1989),

1http://pytorch.org/

##NetworkConfiguration##
use crf=True
word seq feature=LSTM
word seq layer=1
char seq feature=CNN
feature=[POS] emb dir=None emb size=10
feature=[Cap] emb dir=%(cap emb dir)
##Hyperparameters##
...

Figure 1: Configuration file segment

with distributed word representations. Similar to
discrete models, a CRF layer is used in many
state-of-the-art neural sequence labeling models
for capturing label dependencies (Collobert et al.,
2011; Lample et al., 2016; Peters et al., 2017).

There exist several open-source statistical CRF
sequence labeling toolkits, such as CRF++2, CRF-
Suite (Okazaki, 2007) and FlexCRFs (Phan et al.,
2004), which provide users with flexible means of
feature extraction, various training settings and de-
coding formats, facilitating quick implementation
and extension on state-of-the-art models. On the
other hand, there is limited choice for neural se-
quence labeling toolkits. Although many authors
released their code along with their sequence la-
beling papers (Lample et al., 2016; Ma and Hovy,
2016; Liu et al., 2018), the implementations are
mostly focused on specific model structures and
specific tasks. Modifying or extending can need
enormous coding.

In this paper, we present Neural CRF++
(NCRF++)3, a neural sequence labeling toolkit
based on PyTorch, which is designed for solv-
ing general sequence labeling tasks with effective
and efficient neural models. It can be regarded as
the neural version of CRF++, with both take the
CoNLL data format as input and can add hand-

2https://taku910.github.io/crfpp/
3Code is available at https://github.com/

jiesutd/NCRFpp.

http://pytorch.org/
https://taku910.github.io/crfpp/
https://github.com/jiesutd/NCRFpp
https://github.com/jiesutd/NCRFpp
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Figure 2: NCRF++ for sentence “I love Bruce Lee”. Green, red, yellow and blue circles represent
character embeddings, word embeddings, character sequence representations and word sequence repre-
sentations, respectively. The grey circles represent the embeddings of sparse features.

crafted features to CRF framework conveniently.
We take the layerwise implementation, which in-
cludes character sequence layer, word sequence
layer and inference layer. NCRF++ is:

• Fully configurable: users can design their
neural models only through a configuration file
without any code work. Figure 1 shows a seg-
ment of the configuration file. It builds a LSTM-
CRF framework with CNN to encode character
sequence (the same structure as Ma and Hovy
(2016)), plus POS and Cap features, within 10
lines. This demonstrates the convenience of de-
signing neural models using NCRF++.

• Flexible with features: human-defined fea-
tures have been proved useful in neural se-
quence labeling (Collobert et al., 2011; Chiu and
Nichols, 2016). Similar to the statistical toolkits,
NCRF++ supports user-defined features but using
distributed representations through lookup tables,
which can be initialized randomly or from exter-
nal pretrained embeddings (embedding directory:
emb dir in Figure 1). In addition, NCRF++ in-
tegrates several state-of-the-art automatic feature
extractors, such as CNN and LSTM for character
sequences, leading easy reproduction of many re-
cent work (Lample et al., 2016; Chiu and Nichols,
2016; Ma and Hovy, 2016).

• Effective and efficient: we reimplement sev-
eral state-of-the-art neural models (Lample et al.,
2016; Ma and Hovy, 2016) using NCRF++. Ex-
periments show models built in NCRF++ give
comparable performance with reported results in
the literature. Besides, NCRF++ is implemented

using batch calculation, which can be acceler-
ated using GPU. Our experiments demonstrate
that NCRF++ as an effective and efficient toolkit.
• Function enriched: NCRF++ extends the
Viterbi algorithm (Viterbi, 1967) to enable decod-
ing n best sequence labels with their probabilities.

Taking NER, Chunking and POS tagging as typ-
ical examples, we investigate the performance of
models built in NCRF++, the influence of human-
defined and automatic features, the performance
of nbest decoding and the running speed with the
batch size. Detail results are shown in Section 3.

2 NCRF++ Architecture

The framework of NCRF++ is shown in Figure 2.
NCRF++ is designed with three layers: a character
sequence layer; a word sequence layer and infer-
ence layer. For each input word sequence, words
are represented with word embeddings. The char-
acter sequence layer can be used to automatically
extract word level features by encoding the char-
acter sequence within the word. Arbitrary hand-
crafted features such as capitalization [Cap],
POS tag [POS], prefixes [Pre] and suffixes
[Suf] are also supported by NCRF++. Word
representations are the concatenation of word em-
beddings (red circles), character sequence encod-
ing hidden vector (yellow circles) and handcrafted
neural features (grey circles). Then the word se-
quence layer takes the word representations as in-
put and extracts the sentence level features, which
are fed into the inference layer to assign a label
to each word. When building the network, users
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only need to edit the configuration file to config-
ure the model structure, training settings and hy-
perparameters. We use layer-wised encapsulation
in our implementation. Users can extend NCRF++
by defining their own structure in any layer and in-
tegrate it into NCRF++ easily.

2.1 Layer Units
2.1.1 Character Sequence Layer
The character sequence layer integrates several
typical neural encoders for character sequence in-
formation, such as RNN and CNN. It is easy to se-
lect our existing encoder through the configuration
file (by setting char seq feature in Figure
1). Characters are represented by character em-
beddings (green circles in Figure 2), which serve
as the input of character sequence layer.
• Character RNN and its variants Gated Re-
current Unit (GRU) and LSTM are supported by
NCRF++. The character sequence layer uses
bidirectional RNN to capture the left-to-right and
right-to-left sequence information, and concate-
nates the final hidden states of two RNNs as the
encoder of the input character sequence.
• Character CNN takes a sliding window to cap-
ture local features, and then uses a max-pooling for
aggregated encoding of the character sequence.

2.1.2 Word Sequence Layer
Similar to the character sequence layer, NCRF++
supports both RNN and CNN as the word se-
quence feature extractor. The selection can be con-
figurated through word seq feature in Fig-
ure 1. The input of the word sequence layer is a
word representation, which may include word em-
beddings, character sequence representations and
handcrafted neural features (the combination de-
pends on the configuration file). The word se-
quence layer can be stacked, building a deeper fea-
ture extractor.
• Word RNN together with GRU and LSTM are
available in NCRF++, which are popular struc-
tures in the recent literature (Huang et al., 2015;
Lample et al., 2016; Ma and Hovy, 2016; Yang
et al., 2017). Bidirectional RNNs are supported
to capture the left and right contexted information
of each word. The hidden vectors for both direc-
tions on each word are concatenated to represent
the corresponding word.
• Word CNN utilizes the same sliding window as
character CNN, while a nonlinear function (Glo-
rot et al., 2011) is attached with the extracted fea-

tures. Batch normalization (Ioffe and Szegedy,
2015) and dropout (Srivastava et al., 2014) are also
supported to follow the features.

2.1.3 Inference Layer
The inference layer takes the extracted word se-
quence representations as features and assigns la-
bels to the word sequence. NCRF++ supports both
softmax and CRF as the output layer. A linear
layer firstly maps the input sequence representa-
tions to label vocabulary size scores, which are
used to either model the label probabilities of each
word through simple softmax or calculate the label
score of the whole sequence.
• Softmax maps the label scores into a probabil-
ity space. Due to the support of parallel decod-
ing, softmax is much more efficient than CRF and
works well on some sequence labeling tasks (Ling
et al., 2015). In the training process, various loss
functions such as negative likelihood loss, cross
entropy loss are supported.
• CRF captures label dependencies by adding
transition scores between neighboring labels.
NCRF++ supports CRF trained with the sentence-
level maximum log-likelihood loss. During the
decoding process, the Viterbi algorithm is used to
search the label sequence with the highest proba-
bility. In addition, NCRF++ extends the decoding
algorithm with the support of nbest output.

2.2 User Interface

NCRF++ provides users with abundant network
configuration interfaces, including the network
structure, input and output directory setting, train-
ing settings and hyperparameters. By editing a
configuration file, users can build most state-of-
the-art neural sequence labeling models. On the
other hand, all the layers above are designed as
“plug-in” modules, where user-defined layer can
be integrated seamlessly.

2.2.1 Configuration
• Networks can be configurated in the three
layers as described in Section 2.1. It con-
trols the choice of neural structures in character
and word levels with char seq feature and
word seq feature, respectively. The infer-
ence layer is set by use crf. It also defines the
usage of handcrafted features and their properties
in feature.
• I/O is the input and output file directory
configuration. It includes training dir,
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Models NER chunking POS
F1-value F1-value Acc

Nochar+WCNN+CRF 88.90 94.23 96.99
CLSTM+WCNN+CRF 90.70 94.76 97.38
CCNN+WCNN+CRF 90.43 94.77 97.33
Nochar+WLSTM+CRF 89.45 94.49 97.20
CLSTM+WLSTM+CRF 91.20 95.00 97.49
CCNN+WLSTM+CRF 91.35 95.06 97.46
Lample et al. (2016) 90.94 – 97.51
Ma and Hovy (2016) 91.21 – 97.55
Yang et al. (2017) 91.20 94.66 97.55
Peters et al. (2017) 90.87 95.00 –

Table 1: Results on three benchmarks.

dev dir, test dir, raw dir, pretrained
character or word embedding (char emb dim
or word emb dim), and decode file directory
(decode dir).
• Training includes the loss function
(loss function), optimizer (optimizer)4

shuffle training instances train shuffle and
average batch loss ave batch loss.
• Hyperparameter includes most of the param-
eters in the networks and training such as learn-
ing rate (lr) and its decay (lr decay), hidden
layer size of word and character (hidden dim
and char hidden dim), nbest size (nbest),
batch size (batch size), dropout (dropout),
etc. Note that the embedding size of each hand-
crafted feature is configured in the networks con-
figuration (feature=[POS] emb dir=None
emb size=10 in Figure 1).

2.2.2 Extension
Users can write their own custom modules on all
three layers, and user-defined layers can be inte-
grated into the system easily. For example, if a
user wants to define a custom character sequence
layer with a specific neural structure, he/she only
needs to implement the part between input char-
acter sequence indexes to sequence representa-
tions. All the other networks structures can be
used and controlled through the configuration file.
A README file is given on this.

3 Evaluation

3.1 Settings
To evaluate the performance of our toolkit, we
conduct the experiments on several datasets. For
NER task, CoNLL 2003 data (Tjong Kim Sang

4Currently NCRF++ supports five optimizers:
SGD/AdaGrad/AdaDelta/RMSProp/Adam.

Features P R F
Baseline WLSTM+CRF 80.44 87.88 89.15

Human Feature
+POS 90.61 89.28 89.94
+Cap 90.74 90.43 90.58
+POS+Cap 90.92 90.27 90.59

Auto Feature
+CLSTM 91.22 91.17 91.20
+CCNN 91.66 91.04 91.35

Table 2: Results using different features.

and De Meulder, 2003) with the standard split
is used. For the chunking task, we perform ex-
periments on CoNLL 2000 shared task (Tjong
Kim Sang and Buchholz, 2000), data split is fol-
lowing Reimers and Gurevych (2017). For POS
tagging, we use the same data and split with Ma
and Hovy (2016). We test different combinations
of character representations and word sequence
representations on these three benchmarks. Hy-
perparameters are mostly following Ma and Hovy
(2016) and almost keep the same in all these exper-
iments5. Standard SGD with a decaying learning
rate is used as the optimizer.

3.2 Results

Table 1 shows the results of six CRF-based mod-
els with different character sequence and word
sequence representations on three benchmarks.
State-of-the-art results are also listed. In this table,
“Nochar” suggests a model without character se-
quence information. “CLSTM” and “CCNN” rep-
resent models using LSTM and CNN to encode
character sequence, respectively. Similarly, “WL-
STM” and “WCNN” indicate that the model uses
LSTM and CNN to represent word sequence, re-
spectively.

As shown in Table 1, “WCNN” based mod-
els consistently underperform the “WLSTM”
based models, showing the advantages of LSTM
on capturing global features. Character in-
formation can improve model performance sig-
nificantly, while using LSTM or CNN give
similar improvement. Most of state-of-the-art
models utilize the framework of word LSTM-
CRF with character LSTM or CNN features
(correspond to “CLSTM+WLSTM+CRF” and
“CCNN+WLSTM+CRF” of our models) (Lample
et al., 2016; Ma and Hovy, 2016; Yang et al., 2017;
Peters et al., 2017). Our implementations can
achieve comparable results, with better NER and

5We use a smaller learning rate (0.005) on CNN based
word sequence representation.
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Figure 3: Oracle performance with nbest.

chunking performances and slightly lower POS
tagging accuracy. Note that we use almost the
same hyperparameters across all the experiments
to achieve the results, which demonstrates the ro-
bustness of our implementation. The full experi-
mental results and analysis are published in Yang
et al. (2018).

3.3 Influence of Features

We also investigate the influence of different fea-
tures on system performance. Table 2 shows the
results on the NER task. POS tag and capital in-
dicator are two common features on NER tasks
(Collobert et al., 2011; Huang et al., 2015; Strubell
et al., 2017). In our implementation, each POS
tag or capital indicator feature is mapped as 10-
dimension feature embeddings through randomly
initialized feature lookup table 6. The feature em-
beddings are concatenated with the word embed-
dings as the representation of the corresponding
word. Results show that both human features
[POS] and [Cap] can contribute the NER sys-
tem, this is consistent with previous observations
(Collobert et al., 2011; Chiu and Nichols, 2016).
By utilizing LSTM or CNN to encode character
sequence automatically, the system can achieve
better performance on NER task.

3.4 N best Decoding

We investigate nbest Viterbi decoding
on NER dataset through the best model
“CCNN+WLSTM+CRF”. Figure 3 shows
the oracle entity F1-values and token accuracies
with different nbest sizes. The oracle F1-value

6feature=[POS] emb dir=None emb size=10
aaaafeature=[Cap] emb dir=None emb size=10
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Figure 4: Speed with batch size.

rises significantly with the increasement of nbest
size, reaching 97.47% at n = 10 from the baseline
of 91.35%. The token level accuracy increases
from 98.00% to 99.39% in 10-best. Results show
that the nbest outputs include the gold entities and
labels in a large coverage, which greatly enlarges
the performance of successor tasks.

3.5 Speed with Batch Size
As NCRF++ is implemented on batched calcula-
tion, it can be greatly accelerated through paral-
lel computing through GPU. We test the system
speeds on both training and decoding process on
NER dataset using a Nvidia GTX 1080 GPU. As
shown in Figure 4, both the training and the decod-
ing speed can be significantly accelerated through
a large batch size. The decoding speed reaches sat-
uration at batch size 100, while the training speed
keeps growing. The decoding speed and training
speed of NCRF++ are over 2000 sentences/second
and 1000 sentences/second, respectively, demon-
strating the efficiency of our implementation.

4 Conclusion

We presented NCRF++, an open-source neural
sequence labeling toolkit, which has a CRF ar-
chitecture with configurable neural representation
layers. Users can design custom neural models
through the configuration file. NCRF++ supports
flexible feature utilization, including handcrafted
features and automatically extracted features. It
can also generate nbest label sequences rather than
the best one. We conduct a series of experiments
and the results show models built on NCRF++
can achieve state-of-the-art results with an effi-
cient running speed.
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