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Abstract

In this work, we propose a novel con-
stituency parsing scheme. The model
predicts a vector of real-valued scalars,
named syntactic distances, for each split
position in the input sentence. The syn-
tactic distances specify the order in which
the split points will be selected, recur-
sively partitioning the input, in a top-down
fashion. Compared to traditional shift-
reduce parsing schemes, our approach is
free from the potential problem of com-
pounding errors, while being faster and
easier to parallelize. Our model achieves
competitive performance amongst single
model, discriminative parsers in the PTB
dataset and outperforms previous models
in the CTB dataset.

1 Introduction

Devising fast and accurate constituency pars-
ing algorithms is an important, long-standing
problem in natural language processing. Pars-
ing has been useful for incorporating linguistic
prior in several related tasks, such as relation
extraction, paraphrase detection (Callison-Burch,
2008), and more recently, natural language infer-
ence (Bowman et al., 2016) and machine transla-
tion (Eriguchi et al., 2017).

Neural network-based approaches relying
on dense input representations have recently
achieved competitive results for constituency
parsing (Vinyals et al., 2015; Cross and Huang,
2016; Liu and Zhang, 2017b; Stern et al., 2017a).
Generally speaking, either these approaches
produce the parse tree sequentially, by governing
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Figure 1: An example of how syntactic distances
(d1 and d2) describe the structure of a parse tree:
consecutive words with larger predicted distance
are split earlier than those with smaller distances,
in a process akin to divisive clustering.

the sequence of transitions in a transition-based
parser (Nivre, 2004; Zhu et al., 2013; Chen and
Manning, 2014; Cross and Huang, 2016), or use a
chart-based approach by estimating non-linear po-
tentials and performing exact structured inference
by dynamic programming (Finkel et al., 2008;
Durrett and Klein, 2015; Stern et al., 2017a).

Transition-based models decompose the struc-
tured prediction problem into a sequence of lo-
cal decisions. This enables fast greedy decoding
but also leads to compounding errors because the
model is never exposed to its own mistakes dur-
ing training (Daumé et al., 2009). Solutions to
this problem usually complexify the training pro-
cedure by using structured training through beam-
search (Weiss et al., 2015; Andor et al., 2016)
and dynamic oracles (Goldberg and Nivre, 2012;
Cross and Huang, 2016). On the other hand, chart-
based models can incorporate structured loss func-
tions during training and benefit from exact infer-
ence via the CYK algorithm but suffer from higher
computational cost during decoding (Durrett and
Klein, 2015; Stern et al., 2017a).

In this paper, we propose a novel, fully-parallel
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model for constituency parsing, based on the con-
cept of “syntactic distance”, recently introduced
by (Shen et al., 2017) for language modeling. To
construct a parse tree from a sentence, one can
proceed in a top-down manner, recursively split-
ting larger constituents into smaller constituents,
where the order of the splits defines the hierar-
chical structure. The syntactic distances are de-
fined for each possible split point in the sentence.
The order induced by the syntactic distances fully
specifies the order in which the sentence needs to
be recursively split into smaller constituents (Fig-
ure 1): in case of a binary tree, there exists a one-
to-one correspondence between the ordering and
the tree. Therefore, our model is trained to re-
produce the ordering between split points induced
by the ground-truth distances by means of a mar-
gin rank loss (Weston et al., 2011). Crucially, our
model works in parallel: the estimated distance
for each split point is produced independently
from the others, which allows for an easy paral-
lelization in modern parallel computing architec-
tures for deep learning, such as GPUs. Along with
the distances, we also train the model to produce
the constituent labels, which are used to build the
fully labeled tree.

Our model is fully parallel and thus does not
require computationally expensive structured in-
ference during training. Mapping from syntac-
tic distances to a tree can be efficiently done in
O(n log n), which makes the decoding compu-
tationally attractive. Despite our strong condi-
tional independence assumption on the output pre-
dictions, we achieve good performance for single
model discriminative parsing in PTB (91.8 F1) and
CTB (86.5 F1) matching, and sometimes outper-
forming, recent chart-based and transition-based
parsing models.

2 Syntactic Distances of a Parse Tree

In this section, we start from the concept of syn-
tactic distance introduced in Shen et al. (2017) for
unsupervised parsing via language modeling and
we extend it to the supervised setting. We propose
two algorithms, one to convert a parse tree into
a compact representation based on distances be-
tween consecutive words, and another to map the
inferred representation back to a complete parse
tree. The representation will later be used for su-
pervised training. We formally define the syntactic
distances of a parse tree as follows:

Algorithm 1 Binary Parse Tree to Distance
(∪ represents the concatenation operator of lists)

1: function DISTANCE(node)
2: if node is leaf then
3: d← []
4: c← []
5: t← [node.tag]
6: h← 0
7: else
8: childl, childr ← children of node
9: dl, cl, tl, hl ← Distance(childl)

10: dr, cr, tr, hr ← Distance(childr)
11: h← max(hl, hr) + 1
12: d← dl ∪ [h] ∪ dr

13: c← cl ∪ [node.label] ∪ cr
14: t← tl ∪ tr
15: end if
16: return d, c, t, h
17: end function

Definition 2.1. Let T be a parse tree that contains
a set of leaves (w0, ..., wn). The height of the low-
est common ancestor for two leaves (wi, wj) is
noted as d̃ij . The syntactic distances of T can be
any vector of scalars d = (d1, ..., dn) that satisfy:

sign(di − dj) = sign(d̃i−1i − d̃j−1j ) (1)

In other words, d induces the same rank-
ing order as the quantities d̃ji computed between
pairs of consecutive words in the sequence, i.e.
(d̃01, ..., d̃

n−1
n ). Note that there are n − 1 syntac-

tic distances for a sentence of length n.

Example 2.1. Consider the tree in Fig. 1 for which
d̃01 = 2, d̃12 = 1. An example of valid syntactic
distances for this tree is any d = (d1, d2) such
that d1 > d2.

Given this definition, the parsing model pre-
dicts a sequence of scalars, which is a more nat-
ural setting for models based on neural networks,
rather than predicting a set of spans. For compari-
son, in most of the current neural parsing methods,
the model needs to output a sequence of transi-
tions (Cross and Huang, 2016; Chen and Manning,
2014).

Let us first consider the case of a binary parse
tree. Algorithm 1 provides a way to convert it to a
tuple (d, c, t), where d contains the height of the
inner nodes in the tree following a left-to-right (in
order) traversal, c the constituent labels for each
node in the same order and t the part-of-speech
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(a) Boxes in the bottom are words and their corresponding POS tags pre-
dicted by an external tagger. The vertical bars in the middle are the syn-
tactic distances, and the brackets on top of them are labels of constituents.
The bottom brackets are the predicted unary label for each words, and the
upper brackets are predicted labels for other constituent. (b) The corresponding inferred grammar tree.

Figure 2: Inferring the parse tree with Algorithm 2 given distances, constituent labels, and POS tags.
Starting with the full sentence, we pick split point 1 (as it is assigned to the larger distance) and assign
label S to span (0,5). The left child span (0,1) is assigned with a tag PRP and a label NP, which produces
an unary node and a terminal node. The right child span (1,5) is assigned the label ∅, coming from
implicit binarization, which indicates that the span is not a real constituent and all of its children are
instead direct children of its parent. For the span (1,5), the split point 4 is selected. The recursion of
splitting and labeling continues until the process reaches a terminal node.

Algorithm 2 Distance to Binary Parse Tree

1: function TREE(d,c,t)
2: if d = [] then
3: node← Leaf(t)
4: else
5: i← argmaxi(d)
6: childl ← Tree(d<i, c<i, t<i)
7: childr ← Tree(d>i, c>i, t≥i)
8: node← Node(childl, childr, ci)
9: end if

10: return node
11: end function

(POS) tags of each word in the left-to-right order.
d is a valid vector of syntactic distances satisfying
Definition 2.1.

Once a model has learned to predict these vari-
ables, Algorithm 2 can reconstruct a unique bi-
nary tree from the output of the model (d̂, ĉ, t̂).
The idea in Algorithm 2 is similar to the top-down
parsing method proposed by Stern et al. (2017a),
but differs in one key aspect: at each recursive call,
there is no need to estimate the confidence for ev-
ery split point. The algorithm simply chooses the
split point i with the maximum d̂i, and assigns to
the span the predicted label ĉi. This makes the

running time of our algorithm to be inO(n log n),
compared to theO(n2) of the greedy top-down al-
gorithm by (Stern et al., 2017a). Figure 2 shows an
example of the reconstruction of parse tree. Alter-
natively, the tree reconstruction process can also
be done in a bottom-up manner, which requires the
recursive composition of adjacent spans according
to the ranking induced by their syntactic distance,
a process akin to agglomerative clustering.

One potential issue is the existence of unary
and n-ary nodes. We follow the method proposed
by Stern et al. (2017a) and add a special empty
label ∅ to spans that are not themselves full con-
stituents but simply arise during the course of im-
plicit binarization. For the unary nodes that con-
tains one nonterminal node, we take the common
approach of treating these as additional atomic la-
bels alongside all elementary nonterminals (Stern
et al., 2017a). For all terminal nodes, we deter-
mine whether it belongs to a unary chain or not
by predicting an additional label. If it is predicted
with a label different from the empty label, we
conclude that it is a direct child of a unary con-
stituent with that label. Otherwise if it is predicted
to have an empty label, we conclude that it is a
child of a bigger constituent which has other con-
stituents or words as its siblings.



1174

An n-ary node can arbitrarily be split into bi-
nary nodes. We choose to use the leftmost split
point. The split point may also be chosen based
on model prediction during training. Recover-
ing an n-ary parse tree from the predicted binary
tree simply requires removing the empty nodes
and split combined labels corresponding to unary
chains.

Algorithm 2 is a divide-and-conquer algorithm.
The running time of this procedure is O(n log n).
However, the algorithm is naturally adapted for
execution in a parallel environment, which can fur-
ther reduce its running time to O(log n).

3 Learning Syntactic Distances

We use neural networks to estimate the vector of
syntactic distances for a given sentence. We use a
modified hinge loss, where the target distances are
generated by the tree-to-distance conversion given
by Algorithm 1. Section 3.1 will describe in detail
the model architecture, and Section 3.2 describes
the loss we use in this setting.

3.1 Model Architecture
Given input words w = (w0, w1, ..., wn), we pre-
dict the tuple (d, c, t). The POS tags t are given
by an external Part-Of-Speech (POS) tagger. The
syntactic distances d and constituent labels c are
predicted using a neural network architecture that
stacks recurrent (LSTM (Hochreiter and Schmid-
huber, 1997)) and convolutional layers.

Words and tags are first mapped to sequences
of embeddings ew0 , ..., e

w
n and et0, ..., e

t
n. Then the

word embeddings and the tag embeddings are con-
catenated together as inputs for a stack of bidirec-
tional LSTM layers:

hw
0 , ...,h

w
n = BiLSTMw([e

w
0 , e

t
0], ..., [e

w
n , e

t
n])

(2)
where BiLSTMw(·) is the word-level bidirectional
layer, which gives the model enough capacity to
capture long-term syntactical relations between
words.

To predict the constituent labels for each
word, we pass the hidden states representations
hw
0 , ...,h

w
n through a 2-layer network FFw

c , with
softmax output:

p(cwi |w) = softmax(FFw
c (h

w
i )) (3)

To compose the necessary information for infer-
ring the syntactic distances and the constituency

label information, we perform an additional con-
volution:

gs
1, . . . ,g

s
n = CONV(hw

0 , ...,h
w
n ) (4)

where gs
i can be seen as a draft representation for

each split position in Algorithm 2. Note that the
subscripts of gsi s start with 1, since we have n− 1
positions as non-terminal constituents. Then, we
stack a bidirectional LSTM layer on top of gs

i :

hs
1, ...,h

s
n = BiLSTMs(g

s
1, . . . ,g

s
n) (5)

where BiLSTMs fine-tunes the representation by
conditioning on other split position representa-
tions. Interleaving between LSTM and convolu-
tion layers turned out empirically to be the best
choice over multiple variations of the model, in-
cluding using self-attention (Vaswani et al., 2017)
instead of LSTM.

To calculate the syntactic distances for each
position, the vectors hs

1, . . . ,h
s
n are transformed

through a 2-layer feed-forward network FFd with
a single output unit (this can be done in parallel
with 1x1 convolutions), with no activation func-
tion at the output layer:

d̂i = FFd(h
s
i ), (6)

For predicting the constituent labels, we pass the
same representations hs

1, . . . ,h
s
n through another

2-layer network FFs
c, with softmax output.

p(csi |w) = softmax(FFs
c(h

s
i)) (7)

The overall architecture is shown in Figure 2a.
Since the output (d, c, t) can be unambiguously
transfered to a unique parse tree, the model im-
plicitly makes all parsing decisions inside the re-
current and convolutional layers.

3.2 Objective
Given a set of training examples D =
{〈dk, ck, tk,wk〉}Kk=1, the training objective is the
sum of the prediction losses of syntactic distances
dk and constituent labels ck.

Due to the categorical nature of variable c, we
use a standard softmax classifier with a cross-
entropy loss Llabel for constituent labels, using the
estimated probabilities obtained in Eq. 3 and 7.

A naïve loss function for estimating syntactic
distances is the mean-squared error (MSE):

Lmse
dist =

∑
i

(di − d̂i)
2 (8)
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Figure 3: The overall visualization of our model. Circles represent hidden states, triangles represent
convolution layers, block arrows represent feed-forward layers, arrows represent recurrent connections.
The bottom part of the model predicts unary labels for each input word. The ∅ is treated as a special label
together with other labels. The top part of the model predicts the syntactic distances and the constituent
labels. The inputs of model are the word embeddings concatenated with the POS tag embeddings. The
tags are given by an external Part-Of-Speech tagger.

The MSE loss forces the model to regress on the
exact value of the true distances. Given that only
the ranking induced by the ground-truth distances
in d is important, as opposed to the absolute values
themselves, using an MSE loss over-penalizes the
model by ignoring ranking equivalence between
different predictions.

Therefore, we propose to minimize a pair-wise
learning-to-rank loss, similar to those proposed in
(Burges et al., 2005). We define our loss as a vari-
ant of the hinge loss as:

Lrank
dist =

∑
i,j>i

[1− sign(di − dj)(d̂i − d̂j)]
+, (9)

where [x]+ is defined as max(0, x). This loss en-
courages the model to reproduce the full ranking
order induced by the ground-truth distances. The
final loss for the overall model is just the sum of
individual losses L = Llabel + Lrank

dist .

4 Experiments

We evaluate our model described above on 2 dif-
ferent datasets, the standard Wall Street Journal
(WSJ) part of the Penn Treebank (PTB) dataset,
and the Chinese Treebank (CTB) dataset.

For evaluating the F1 score, we use the standard
evalb1 tool. We provide both labeled and unla-
beled F1 score, where the former takes into con-
sideration the constituent label for each predicted

1http://nlp.cs.nyu.edu/evalb/

constituent, while the latter only considers the po-
sition of the constituents. In the tables below, we
report the labeled F1 scores for comparison with
previous work, as this is the standard metric usu-
ally reported in the relevant literature.

4.1 Penn Treebank

For the PTB experiments, we follow the standard
train/valid/test separation and use sections 2-21 for
training, section 22 for development and section
23 for test set. Following this split, the dataset
has 45K training sentences and 1700, 2416 sen-
tences for valid/test respectively. The placeholders
with the -NONE- tag are stripped from the dataset
during preprocessing. The POS tags are predicted
with the Stanford Tagger (Toutanova et al., 2003).

We use a hidden size of 1200 for each direction
on all LSTMs, with 0.3 dropout in all the feed-
forward connections, and 0.2 recurrent connection
dropout (Merity et al., 2017). The convolutional
filter size is 2. The number of convolutional chan-
nels is 1200. As a common practice for neural
network based NLP models, the embedding layer
that maps word indexes to word embeddings is
randomly initialized. The word embeddings are
sized 400. Following (Merity et al., 2017), we
randomly swap an input word embedding during
training with the zero vector with probability of
0.1. We found this helped the model to general-
ize better. Training is conducted with Adam al-
gorithm with l2 regularization decay 1 × 10−6.
We pick the result obtaining the highest labeled F1

http://nlp.cs.nyu.edu/evalb/
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Model LP LR F1
Single Model
Vinyals et al. (2015) - - 88.3
Zhu et al. (2013) 90.7 90.2 90.4
Dyer et al. (2016) - - 89.8
Watanabe and Sumita (2015) - - 90.7
Cross and Huang (2016) 92.1 90.5 91.3
Liu and Zhang (2017b) 92.1 91.3 91.7
Stern et al. (2017a) 93.2 90.3 91.8
Liu and Zhang (2017a) - - 91.8
Gaddy et al. (2018) - - 92.1
Stern et al. (2017b) 92.5 92.5 92.5
Our Model 92.0 91.7 91.8
Ensemble
Shindo et al. (2012) - - 92.4
Vinyals et al. (2015) - - 90.5
Semi-supervised
Zhu et al. (2013) 91.5 91.1 91.3
Vinyals et al. (2015) - - 92.8
Re-ranking
Charniak and Johnson (2005) 91.8 91.2 91.5
Huang (2008) 91.2 92.2 91.7
Dyer et al. (2016) - - 93.3

Table 1: Results on the PTB dataset WSJ test set,
Section 23. LP, LR represents labeled precision
and recall respectively.

on the validation set, and report the corresponding
test F1, together with other statistics. We report
our results in Table 1. Our best model obtains a
labeled F1 score of 91.8 on the test set (Table 1).
Detailed dev/test set performances, including label
accuracy is reported in Table 3.

Our model performs achieves good perfor-
mance for single-model constituency parsing
trained without external data. The best result
from (Stern et al., 2017b) is obtained by a genera-
tive model. Very recently, we came to knowledge
of Gaddy et al. (2018), which uses character-level
LSTM features coupled with chart-based parsing
to improve performance. Similar sub-word fea-
tures can be also used in our model. We leave this
investigation for future works. For comparison,
other models obtaining better scores either use en-
sembles, benefit from semi-supervised learning, or
recur to re-ranking of a set of candidates.

4.2 Chinese Treebank

We use the Chinese Treebank 5.1 dataset, with ar-
ticles 001-270 and 440-1151 for training, articles

Model LP LR F1
Single Model
Charniak (2000) 82.1 79.6 80.8
Zhu et al. (2013) 84.3 82.1 83.2
Wang et al. (2015) - - 83.2
Watanabe and Sumita (2015) - - 84.3
Dyer et al. (2016) - - 84.6
Liu and Zhang (2017b) 85.9 85.2 85.5
Liu and Zhang (2017a) - - 86.1
Our Model 86.6 86.4 86.5
Semi-supervised
Zhu et al. (2013) 86.8 84.4 85.6
Wang and Xue (2014) - - 86.3
Wang et al. (2015) - - 86.6
Re-ranking
Charniak and Johnson (2005) 83.8 80.8 82.3
Dyer et al. (2016) - - 86.9

Table 2: Test set performance comparison on the
CTB dataset

301-325 as development set, and articles 271-300
for test set. This is a standard split in the literature
(Liu and Zhang, 2017b). The -NONE- tags are
stripped as well. The hidden size for the LSTM
networks is set to 1200. We use a dropout rate
of 0.4 on the feed-forward connections, and 0.1
recurrent connection dropout. The convolutional
layer has 1200 channels, with a filter size of 2.
We use 400 dimensional word embeddings. Dur-
ing training, input word embeddings are randomly
swapped with the zero vector with probability of
0.1. We also apply a l2 regularization weighted by
1×10−6 on the parameters of the network. Table 2
reports our results compared to other benchmarks.
To the best of our knowledge, we set a new state-
of-the-art for single-model parsing achieving 86.5
F1 on the test set. The detailed statistics are shown
in Table 3.

4.3 Ablation Study

We perform an ablation study by removing com-
ponents from a network trained with the best set
of hyperparameters, and re-train the ablated ver-
sion from scratch. This gives an idea of the rela-
tive contributions of each of the components in the
model. Results are reported in Table 4. It seems
that the top LSTM layer has a relatively big im-
pact on performance. This may give additional ca-
pacity to the model for capturing long-term depen-
dencies useful for label prediction. We also exper-
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dev/test result Prec. Recall F1 label accuracy

PTB
labeled 91.7/92.0 91.8/91.7 91.8/91.8

94.9/95.4%
unlabeled 93.0/93.2 93.0/92.8 93.0/93.0

CTB
labeled 89.4/86.6 89.4/86.4 89.4/86.5

92.2/91.1%
unlabeled 91.1/88.9 91.1/88.6 91.1/88.8

Table 3: Detailed experimental results on PTB and CTB datasets

Model LP LR F1
Full model 92.0 91.7 91.8
w/o top LSTM 91.0 90.5 90.7
w. embedding 91.9 91.6 91.7
w. MSE loss 90.3 90.0 90.1

Table 4: Ablation test on the PTB dataset. “w/o
top LSTM” is the full model without the top
LSTM layer. “w. embedding” stands for the full
model using the pretrained word embeddings. “w.
MSE loss” stands for the full model trained with
MSE loss.

imented by using 300D GloVe (Pennington et al.,
2014) embedding for the input layer but this didn’t
yield improvements over the model’s best perfor-
mance. Unsurprisingly, the model trained with
MSE loss underperforms considerably a model
trained with the rank loss.

4.4 Parsing Speed

The prediction of syntactic distances can be
batched in modern GPU architectures. The dis-
tance to tree conversion is a O(n log n) (n stand
for the number of words in the input sentence)
divide-and-conquer algorithm. We compare the
parsing speed of our parser with other state-of-
the-art neural parsers in Table 5. As the syntactic
distance computation can be performed in paral-
lel within a GPU, we first compute the distances
in a batch, then we iteratively decode the tree with
Algorithm 2. It is worth to note that this compar-
ison may be unfair since some of the reported re-
sults may use very different hardware settings. We
couldn’t find the source code to re-run them on our
hardware, to give a fair enough comparison. In our
setting, we use an NVIDIA TITAN Xp graphics
card for running the neural network part, and the
distance to tree inference is run on an Intel Core
i7-6850K CPU, with 3.60GHz clock speed.

Model # sents/sec
Petrov and Klein (2007) 6.2
Zhu et al. (2013) 89.5
Liu and Zhang (2017b) 79.2
Stern et al. (2017a) 75.5
Our model 111.1
Our model w/o tree inference 351

Table 5: Parsing speed in sentences per second on
the PTB dataset.

5 Related Work

Parsing natural language with neural network
models has recently received growing attention.
These models have attained state-of-the-art re-
sults for dependency parsing (Chen and Manning,
2014) and constituency parsing (Dyer et al., 2016;
Cross and Huang, 2016; Coavoux and Crabbé,
2016). Early work in neural network based
parsing directly use a feed-forward neural net-
work to predict parse trees (Chen and Manning,
2014). Vinyals et al. (2015) use a sequence-to-
sequence framework where the decoder outputs a
linearized version of the parse tree given an input
sentence. Generally, in these models, the correct-
ness of the output tree is not strictly ensured (al-
though empirically observed).

Other parsing methods ensure structural con-
sistency by operating in a transition-based set-
ting (Chen and Manning, 2014) by parsing either
in the top-down direction (Dyer et al., 2016; Liu
and Zhang, 2017b), bottom-up (Zhu et al., 2013;
Watanabe and Sumita, 2015; Cross and Huang,
2016) and recently in-order (Liu and Zhang,
2017a). Transition-based methods generally suf-
fer from compounding errors due to exposure bias:
during testing, the model is exposed to a very
different regime (i.e. decisions sampled from the
model itself) than what was encountered during
training (i.e. the ground-truth decisions) (Daumé
et al., 2009; Goldberg and Nivre, 2012). This can
have catastrophic effects on test performance but
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can be mitigated to a certain extent by using beam-
search instead of greedy decoding. (Stern et al.,
2017b) proposes an effective inference method
for generative parsing, which enables direct de-
coding in those models. More complex training
methods have been devised in order to alleviate
this problem (Goldberg and Nivre, 2012; Cross
and Huang, 2016). Other efforts have been put
into neural chart-based parsing (Durrett and Klein,
2015; Stern et al., 2017a) which ensure structural
consistency and offer exact inference with CYK
algorithm. (Gaddy et al., 2018) includes a simpli-
fied CYK-style inference, but the complexity still
remains in O(n3).

In this work, our model learns to produce a par-
ticular representation of a tree in parallel. Rep-
resentations can be computed in parallel, and the
conversion from representation to a full tree can
efficiently be done with a divide-and-conquer al-
gorithm. As our model outputs decisions in par-
allel, our model doesn’t suffer from the exposure
bias. Interestingly, a series of recent works, both
in machine translation (Gu et al., 2018) and speech
synthesis (Oord et al., 2017), considered the se-
quence of output variables conditionally indepen-
dent given the inputs.

6 Conclusion

We presented a novel constituency parsing scheme
based on predicting real-valued scalars, named
syntactic distances, whose ordering identify the
sequence of top-down split decisions. We employ
a neural network model that predicts the distances
d and the constituent labels c. Given the algo-
rithms presented in Section 2, we can build an un-
ambiguous mapping between each (d, c, t) and a
parse tree. One peculiar aspect of our model is
that it predicts split decisions in parallel. Our ex-
periments show that our model can achieve strong
performance compare to previous models, while
being significantly more efficient. Since the archi-
tecture of model is no more than a stack of stan-
dard recurrent and convolution layers, which are
essential components in most academic and indus-
trial deep learning frameworks, the deployment of
this method would be straightforward.
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Akiko Eriguchi, Yoshimasa Tsuruoka, and Kyunghyun
Cho. 2017. Learning to parse and translate improves
neural machine translation. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers). Asso-
ciation for Computational Linguistics, pages 72–78.

Jenny Rose Finkel, Alex Kleeman, and Christopher D.
Manning. 2008. Efficient, feature-based, condi-
tional random field parsing. In Proceedings of ACL.
Association for Computational Linguistics, pages
959–967.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
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