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Abstract

Many NLP applications can be framed
as a graph-to-sequence learning problem.
Previous work proposing neural architec-
tures on this setting obtained promising
results compared to grammar-based ap-
proaches but still rely on linearisation
heuristics and/or standard recurrent net-
works to achieve the best performance.
In this work, we propose a new model
that encodes the full structural informa-
tion contained in the graph. Our ar-
chitecture couples the recently proposed
Gated Graph Neural Networks with an in-
put transformation that allows nodes and
edges to have their own hidden represen-
tations, while tackling the parameter ex-
plosion problem present in previous work.
Experimental results show that our model
outperforms strong baselines in generation
from AMR graphs and syntax-based neu-
ral machine translation.

1 Introduction

Graph structures are ubiquitous in representations
of natural language. In particular, many whole-
sentence semantic frameworks employ directed
acyclic graphs as the underlying formalism, while
most tree-based syntactic representations can also
be seen as graphs. A range of NLP applications
can be framed as the process of transducing a
graph structure into a sequence. For instance, lan-
guage generation may involve realising a semantic
graph into a surface form and syntactic machine
translation involves transforming a tree-annotated
source sentence to its translation.

Previous work in this setting rely on grammar-
based approaches such as tree transducers (Flani-
gan et al., 2016) and hyperedge replacement gram-

mars (Jones et al., 2012). A key limitation of
these approaches is that alignments between graph
nodes and surface tokens are required. These
alignments are usually automatically generated
so they can propagate errors when building the
grammar. More recent approaches transform the
graph into a linearised form and use off-the-shelf
methods such as phrase-based machine translation
(Pourdamghani et al., 2016) or neural sequence-
to-sequence (henceforth, s2s) models (Konstas
et al., 2017). Such approaches ignore the full
graph structure, discarding key information.

In this work we propose a model for graph-to-
sequence (henceforth, g2s) learning that lever-
ages recent advances in neural encoder-decoder
architectures. Specifically, we employ an encoder
based on Gated Graph Neural Networks (Li et al.,
2016, GGNNs), which can incorporate the full
graph structure without loss of information. Such
networks represent edge information as label-wise
parameters, which can be problematic even for
small sized label vocabularies (in the order of hun-
dreds). To address this limitation, we also intro-
duce a graph transformation that changes edges to
additional nodes, solving the parameter explosion
problem. This also ensures that edges have graph-
specific hidden vectors, which gives more infor-
mation to the attention and decoding modules in
the network.

We benchmark our model in two graph-to-
sequence problems, generation from Abstract
Meaning Representations (AMRs) and Neural
Machine Translation (NMT) with source depen-
dency information. Our approach outperforms
strong s2s baselines in both tasks without relying
on standard RNN encoders, in contrast with pre-
vious work. In particular, for NMT we show that
we avoid the need for RNNs by adding sequen-
tial edges between contiguous words in the depen-
dency tree. This illustrates the generality of our
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Figure 1: Left: the AMR graph representing the sentence “The boy wants the girl to believe him.”.
Right: Our proposed architecture using the same AMR graph as input and the surface form as output.
The first layer is a concatenation of node and positional embeddings, using distance from the root node
as the position. The GGNN encoder updates the embeddings using edge-wise parameters, represented by
different colors (in this example, ARG0 and ARG1). The encoder also add corresponding reverse edges
(dotted arrows) and self edges for each node (dashed arrows). All parameters are shared between layers.
Attention and decoder components are similar to standard s2s models. This is a pictorial representation:
in our experiments the graphs are transformed before being used as inputs (see §3).

approach: linguistic biases can be added to the in-
puts by simple graph transformations, without the
need for changes to the model architecture.

2 Neural Graph-to-Sequence Model

Our proposed architecture is shown in Figure 1,
with an example AMR graph and its transforma-
tion into its surface form. Compared to standard
s2s models, the main difference is in the encoder,
where we employ a GGNN to build a graph repre-
sentation. In the following we explain the compo-
nents of this architecture in detail.1

2.1 Gated Graph Neural Networks

Early approaches for recurrent networks on graphs
(Gori et al., 2005; Scarselli et al., 2009) assume
a fixed point representation of the parameters and
learn using contraction maps. Li et al. (2016) ar-
gues that this restricts the capacity of the model
and makes it harder to learn long distance rela-
tions between nodes. To tackle these issues, they
propose Gated Graph Neural Networks, which ex-
tend these architectures with gating mechanisms

1Our implementation uses MXNet (Chen et al., 2015) and
is based on the Sockeye toolkit (Hieber et al., 2017). Code
is available at github.com/beckdaniel/acl2018_
graph2seq.

in a similar fashion to Gated Recurrent Units (Cho
et al., 2014). This allows the network to be learnt
via modern backpropagation procedures.

In following, we formally define the version of
GGNNs we employ in this study. Assume a di-
rected graph G = {V, E , LV , LE}, where V is a
set of nodes (v, `v), E is a set of edges (vi, vj , `e)
and LV and LE are respectively vocabularies for
nodes and edges, from which node and edge la-
bels (`v and `e) are defined. Given an input graph
with nodes mapped to embeddings X, a GGNN is
defined as
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where e = (u, v, `e) is the edge between nodes u
and v, N (v) is the set of neighbour nodes for v, ρ
is a non-linear function, σ is the sigmoid function
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and cv = czv = crv = |Nv|−1 are normalisation
constants.

Our formulation differs from the original
GGNNs from Li et al. (2016) in some aspects:
1) we add bias vectors for the hidden state, re-
set gate and update gate computations; 2) label-
specific matrices do not share any components; 3)
reset gates are applied to all hidden states before
any computation and 4) we add normalisation con-
stants. These modifications were applied based on
preliminary experiments and ease of implementa-
tion.

An alternative to GGNNs is the model from
Marcheggiani and Titov (2017), which add edge
label information to Graph Convolutional Net-
works (GCNs). According to Li et al. (2016),
the main difference between GCNs and GGNNs
is analogous to the difference between convolu-
tional and recurrent networks. More specifically,
GGNNs can be seen as multi-layered GCNs where
layer-wise parameters are tied and gating mecha-
nisms are added. A large number of layers can
propagate node information between longer dis-
tances in the graph and, unlike GCNs, GGNNs
can have an arbitrary number of layers without in-
creasing the number of parameters. Nevertheless,
our architecture borrows ideas from GCNs as well,
such as normalising factors.

2.2 Using GGNNs in attentional
encoder-decoder models

In s2s models, inputs are sequences of tokens
where each token is represented by an embedding
vector. The encoder then transforms these vec-
tors into hidden states by incorporating context,
usually through a recurrent or a convolutional net-
work. These are fed into an attention mechanism,
generating a single context vector that informs de-
cisions in the decoder.

Our model follows a similar structure, where the
encoder is a GGNN that receives node embeddings
as inputs and generates node hidden states as out-
puts, using the graph structure as context. This
is shown in the example of Figure 1, where we
have 4 hidden vectors, one per node in the AMR
graph. The attention and decoder components fol-
low similar standard s2s models, where we use a
bilinear attention mechanism (Luong et al., 2015)
and a 2-layered LSTM (Hochreiter and Schmid-
huber, 1997) as the decoder. Note, however, that
other decoders and attention mechanisms can be

easily employed instead. Bastings et al. (2017)
employs a similar idea for syntax-based NMT, but
using GCNs instead.

2.3 Bidirectionality and positional
embeddings

While our architecture can in theory be used with
general graphs, rooted directed acyclic graphs
(DAGs) are arguably the most common kind in
the problems we are addressing. This means that
node embedding information is propagated in a
top down manner. However, it is desirable to
have information flow from the reverse direction
as well, in the same way RNN-based encoders
benefit from right-to-left propagation (as in bidi-
rectional RNNs). Marcheggiani and Titov (2017)
and Bastings et al. (2017) achieve this by adding
reverse edges to the graph, as well as self-loops
edges for each node. These extra edges have spe-
cific labels, hence their own parameters in the net-
work.

In this work, we also follow this procedure to
ensure information is evenly propagated in the
graph. However, this raises another limitation: be-
cause the graph becomes essentially undirected,
the encoder is now unaware of any intrinsic hier-
archy present in the input. Inspired by Gehring
et al. (2017) and Vaswani et al. (2017), we tackle
this problem by adding positional embeddings to
every node. These embeddings are indexed by in-
teger values representing the minimum distance
from the root node and are learned as model pa-
rameters.2 This kind of positional embedding is
restricted to rooted DAGs: for general graphs, dif-
ferent notions of distance could be employed.

3 Levi Graph Transformation

The g2s model proposed in §2 has two key defi-
ciencies. First, GGNNs have three linear transfor-
mations per edge type. This means that the num-
ber of parameters can explode: AMR, for instance,
has around 100 different predicates, which corre-
spond to edge labels. Previous work deal with this
problem by explicitly grouping edge labels into a
single one (Marcheggiani and Titov, 2017; Bast-
ings et al., 2017) but this is not an ideal solution
since it incurs in loss of information.

2Vaswani et al. (2017) also proposed fixed positional em-
beddings based on sine and cosine wavelengths. Preliminary
experiments showed that this approach did not work in our
case: we speculate this is because wavelengths are more suit-
able to sequential inputs.
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Figure 2: Top: the AMR graph from Figure 1
transformed into its corresponding Levi graph.
Bottom: Levi graph with added reverse and self
edges (colors represent different edge labels).

The second deficiency is that edge label in-
formation is encoded in the form of GGNN pa-
rameters in the network. This means that each
label will have the same “representation” across
all graphs. However, the latent information in
edges can depend on the content in which they
appear in a graph. Ideally, edges should have
instance-specific hidden states, in the same way
as nodes, and these should also inform decisions
made in the decoder through the attention mod-
ule. For instance, in the AMR graph shown in Fig-
ure 1, the ARG1 predicate between want-01 and
believe-01 can be interpreted as the prepo-
sition “to” in the surface form, while the ARG1
predicate connecting believe-01 and boy is
realised as a pronoun. Notice that edge hidden
vectors are already present in s2s networks that
use linearised graphs: we would like our architec-
ture to also have this benefit.

Instead of modifying the architecture, we pro-
pose to transform the input graph into its equiv-
alent Levi graph (Levi, 1942; Gross and Yellen,
2004, p. 765). Given a graph G = {V, E , LV , LE},

a Levi graph3 is defined as G = {V ′, E ′, LV ′ , LE ′},
where V ′ = V ∪ E , LV ′ = LV ∪ LE and LE ′ = ∅.
The new edge set E ′ contains a edge for every
(node, edge) pair that is present in the original
graph. By definition, the Levi graph is bipartite.

Intuitively, transforming a graph into its Levi
graph equivalent turns edges into additional nodes.
While simple in theory, this transformation ad-
dresses both modelling deficiencies mentioned
above in an elegant way. Since the Levi graph
has no labelled edges there is no risk of parame-
ter explosion: original edge labels are represented
as embeddings, in the same way as nodes. Further-
more, the encoder now naturally generates hidden
states for original edges as well.

In practice, we follow the procedure in §2.3
and add reverse and self-loop edges to the Levi
graph, so the practical edge label vocabulary is
LE ′ = {default, reverse, self}. This still keeps
the parameter space modest since we have only
three labels. Figure 2 shows the transformation
steps in detail, applied to the AMR graph shown
in Figure 1. Notice that the transformed graphs
are the ones fed into our architecture: we show the
original graph in Figure 1 for simplicity.

It is important to note that this transformation
can be applied to any graph and therefore is inde-
pendent of the model architecture. We speculate
this can be beneficial in other kinds of graph-based
encoder such as GCNs and leave further investiga-
tion to future work.

4 Generation from AMR Graphs

Our first g2s benchmark is language genera-
tion from AMR, a semantic formalism that repre-
sents sentences as rooted DAGs (Banarescu et al.,
2013). Because AMR abstracts away from syntax,
graphs do not have gold-standard alignment infor-
mation, so generation is not a trivial task. There-
fore, we hypothesize that our proposed model is
ideal for this problem.

4.1 Experimental setup

Data and preprocessing We use the latest AMR
corpus release (LDC2017T10) with the default
split of 36521/1368/1371 instances for training,

3Formally, a Levi graph is defined over any incidence
structure, which is a general concept usually considered in
a geometrical context. Graphs are an example of incidence
structures but so are points and lines in the Euclidean space,
for instance.
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development and test sets. Each graph is prepro-
cessed using a procedure similar to what is per-
formed by Konstas et al. (2017), which includes
entity simplification and anonymisation. This pre-
processing is done before transforming the graph
into its Levi graph equivalent. For the s2s base-
lines, we also add scope markers as in Konstas
et al. (2017). We detail these procedures in the
Supplementary Material.

Models Our baselines are attentional s2s mod-
els which take linearised graphs as inputs. The
architecture is similar to the one used in Konstas
et al. (2017) for AMR generation, where the en-
coder is a BiLSTM followed by a unidirectional
LSTM. All dimensionalities are fixed to 512.

For the g2smodels, we fix the number of layers
in the GGNN encoder to 8, as this gave the best
results on the development set. Dimensionalities
are also fixed at 512 except for the GGNN encoder
which uses 576. This is to ensure all models have
a comparable number of parameters and therefore
similar capacity.

Training for all models uses Adam (Kingma and
Ba, 2015) with 0.0003 initial learning rate and 16
as the batch size.4 To regularise our models we
perform early stopping on the dev set based on
perplexity and apply 0.5 dropout (Srivastava et al.,
2014) on the source embeddings. We detail addi-
tional model and training hyperparameters in the
Supplementary Material.

Evaluation Following previous work, we eval-
uate our models using BLEU (Papineni et al.,
2001) and perform bootstrap resampling to check
statistical significance. However, since re-
cent work has questioned the effectiveness of
BLEU with bootstrap resampling (Graham et al.,
2014), we also report results using sentence-level
CHRF++ (Popović, 2017), using the Wilcoxon
signed-rank test to check significance. Evaluation
is case-insensitive for both metrics.

Recent work has shown that evaluation in neu-
ral models can lead to wrong conclusions by
just changing the random seed (Reimers and
Gurevych, 2017). In an effort to make our con-
clusions more robust, we run each model 5 times
using different seeds. From each pool, we report

4Larger batch sizes hurt dev performance in our prelim-
inary experiments. There is evidence that small batches
can lead to better generalisation performance (Keskar et al.,
2017). While this can make training time slower, it was
doable in our case since the dataset is small.

BLEU CHRF++ #params

Single models
s2s 21.7 49.1 28.4M
s2s (-s) 18.4 46.3 28.4M
g2s 23.3 50.4 28.3M

Ensembles
s2s 26.6 52.5 142M
s2s (-s) 22.0 48.9 142M
g2s 27.5 53.5 141M

Previous work (early AMR treebank versions)
KIYCZ17 22.0 – –
Previous work (as above + unlabelled data)
KIYCZ17 33.8 – –
PKH16 26.9 – –
SPZWG17 25.6 – –
FDSC16 22.0 – –

Table 1: Results for AMR generation on the test
set. All score differences between our models and
the corresponding baselines are significantly dif-
ferent (p<0.05). “(-s)” means input without scope
marking. KIYCZ17, PKH16, SPZWG17 and
FDSC16 are respectively the results reported in
Konstas et al. (2017), Pourdamghani et al. (2016),
Song et al. (2017) and Flanigan et al. (2016).

results using the median model according to per-
formance on the dev set (simulating what is ex-
pected from a single run) and using an ensemble
of the 5 models.

Finally, we also report the number of parame-
ters used in each model. Since our encoder archi-
tectures are quite different, we try to match the
number of parameters between them by chang-
ing the dimensionality of the hidden layers (as ex-
plained above). We do this to minimise the effects
of model capacity as a confounder.

4.2 Results and analysis

Table 1 shows the results on the test set. For
the s2s models, we also report results without
the scope marking procedure of Konstas et al.
(2017). Our approach significantly outperforms
the s2s baselines both with individual models and
ensembles, while using a comparable number of
parameters. In particular, we obtain these results
without relying on scoping heuristics.

On Figure 3 we show an example where our
model outperforms the baseline. The AMR graph
contains four reentrancies, predicates that refer-
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Original AMR graph
(p / propose-01
:ARG0 (c / country
:wiki "Russia"
:name (n / name
:op1 "Russia"))

:ARG1 (c5 / cooperate-01
:ARG0 c
:ARG1 (a / and
:op1 (c2 / country
:wiki "India"
:name (n2 / name
:op1 "India"))

:op2 (c3 / country
:wiki "China"
:name (n3 / name
:op1 "China"))))

:purpose (i / increase-01
:ARG0 c5
:ARG1 (s / security)
:location (a2 / around
:op1 (c4 / country
:wiki "Afghanistan"
:name (n4 / name
:op1 "Afghanistan")))

:purpose (b / block-01
:ARG0 (a3 / and
:op1 c :op2 c2 :op3 c3

:ARG1 (s2 / supply-01
:ARG1 (d / drug)))))

Reference surface form
Russia proposes cooperation with India and China to in-
crease security around Afghanistan to block drug supplies.

s2s output (CHRF++ 61.8)
Russia proposed cooperation with India and China to in-
crease security around the Afghanistan to block security
around the Afghanistan , India and China.

g2s output (CHRF++ 78.2)
Russia proposed cooperation with India and China to in-
crease security around Afghanistan to block drug supplies.

Figure 3: Example showing overgeneration due to
reentrancies. Top: original AMR graph with key
reentrancies highlighted. Bottom: reference and
outputs generated by the s2s and g2s models,
highlighting the overgeneration phenomena.

ence previously defined concepts in the graph. In
the s2s models including Konstas et al. (2017),
reentrant nodes are copied in the linearised form,
while this is not necessary for our g2s models.
We can see that the s2s prediction overgenerates
the “India and China” phrase. The g2s predic-
tion avoids overgeneration, and almost perfectly
matches the reference. While this is only a sin-
gle example, it provides evidence that retaining the
full graphical structure is beneficial for this task,
which is corroborated by our quantitative results.

Table 1 also show BLEU scores reported in pre-
vious work. These results are not strictly com-
parable because they used different training set
versions and/or employ additional unlabelled cor-
pora; nonetheless some insights can be made. In
particular, our g2s ensemble performs better than
many previous models that combine a smaller
training set with a large unlabelled corpus. It is
also most informative to compare our s2s model
with Konstas et al. (2017), since this baseline is
very similar to theirs. We expected our single
model baseline to outperform theirs since we use
a larger training set but we obtained similar per-
formance. We speculate that better results could
be obtained by more careful tuning, but neverthe-
less we believe such tuning would also benefit our
proposed g2s architecture.

The best results with unlabelled data are ob-
tained by Konstas et al. (2017) using Gigaword
sentences as additional data and a paired trained
procedure with an AMR parser. It is important to
note that this procedure is orthogonal to the in-
dividual models used for generation and parsing.
Therefore, we hypothesise that our model can also
benefit from such techniques, an avenue that we
leave for future work.

5 Syntax-based Neural Machine
Translation

Our second evaluation is NMT, using as graphs
source language dependency syntax trees. We fo-
cus on a medium resource scenario where addi-
tional linguistic information tends to be more ben-
eficial. Our experiments comprise two language
pairs: English-German and English-Czech.

5.1 Experimental setup

Data and preprocessing We employ the same
data and settings from Bastings et al. (2017),5

which use the News Commentary V11 corpora
from the WMT16 translation task.6 English text
is tokenised and parsed using SyntaxNet7 while
German and Czech texts are tokenised and split
into subwords using byte-pair encodings (Sen-
nrich et al., 2016, BPE) (8000 merge operations).

5We obtained the data from the original authors to ensure
results are comparable without any influence from prepro-
cessing steps.

6http://www.statmt.org/wmt16/
translation-task.html

7https://github.com/tensorflow/models/
tree/master/syntaxnet



279

We refer to Bastings et al. (2017) for further infor-
mation on the preprocessing steps.

Labelled dependency trees in the source side are
transformed into Levi graphs as a preprocessing
step. However, unlike AMR generation, in NMT
the inputs are originally surface forms that contain
important sequential information. This informa-
tion is lost when treating the input as dependency
trees, which might explain why Bastings et al.
(2017) obtain the best performance when using an
initial RNN layer in their encoder. To investigate
this phenomenon, we also perform experiments
adding sequential connections to each word in
the dependency tree, corresponding to their order
in the original surface form (henceforth, g2s+).
These connections are represented as edges with
specific left and right labels, which are added af-
ter the Levi graph transformation. Figure 4 shows
an example of an input graph for g2s+, with the
additional sequential edges connecting the words
(reverse and self edges are omitted for simplicity).

Models Our s2s and g2s models are almost
the same as in the AMR generation experiments
(§4.1). The only exception is the GGNN encoder
dimensionality, where we use 512 for the experi-
ments with dependency trees only and 448 when
the inputs have additional sequential connections.
As in the AMR generation setting, we do this to
ensure model capacity are comparable in the num-
ber of parameters. Another key difference is that
the s2s baselines do not use dependency trees:
they are trained on the sentences only.

In addition to neural models, we also report re-
sults for Phrase-Based Statistical MT (PB-SMT),
using Moses (Koehn et al., 2007). The PB-SMT
models are trained using the same data conditions
as s2s (no dependency trees) and use the standard
setup in Moses, except for the language model,
where we use a 5-gram LM trained on the target
side of the respective parallel corpus.8

Evaluation We report results in terms of BLEU
and CHRF++, using case-sensitive versions of both
metrics. Other settings are kept the same as in
the AMR generation experiments (§4.1). For PB-
SMT, we also report the median result of 5 runs,
obtained by tuning the model using MERT (Och
and Ney, 2002) 5 times.

8Note that target data is segmented using BPE, which is
not the usual setting for PB-SMT. We decided to keep the
segmentation to ensure data conditions are the same.
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Figure 4: Top: a sentence with its corresponding
dependency tree. Bottom: the transformed tree
into a Levi graph with additional sequential con-
nections between words (dashed lines). The full
graph also contains reverse and self edges, which
are omitted in the figure.

5.2 Results and analysis
Table 2 shows the results on the respective test set
for both language pairs. The g2s models, which
do not account for sequential information, lag be-
hind our baselines. This is in line with the findings
of Bastings et al. (2017), who found that having a
BiRNN layer was key to obtain the best results.
However, the g2s+ models outperform the base-
lines in terms of BLEU scores under the same pa-
rameter budget, in both single model and ensem-
ble scenarios. This result show that it is possible to
incorporate sequential biases in our model without
relying on RNNs or any other modification in the
architecture.
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English-German
BLEU CHRF++ #params

Single models
PB-SMT 12.8 43.2 –
s2s 15.5 40.8 41.4M
g2s 15.2 41.4 40.8M
g2s+ 16.7 42.4 41.2M

Ensembles
s2s 19.0 44.1 207M
g2s 17.7 43.5 204M
g2s+ 19.6 45.1 206M

Results from (Bastings et al., 2017)
BoW+GCN 12.2 – –
BiRNN 14.9 – –
BiRNN+GCN 16.1 – –

English-Czech
BLEU CHRF++ #params

Single models
PB-SMT 8.6 36.4 –
s2s 8.9 33.8 39.1M
g2s 8.7 32.3 38.4M
g2s+ 9.8 33.3 38.8M

Ensembles
s2s 11.3 36.4 195M
g2s 10.4 34.7 192M
g2s+ 11.7 35.9 194M

Results from (Bastings et al., 2017)
BoW+GCN 7.5 – –
BiRNN 8.9 – –
BiRNN+GCN 9.6 – –

Table 2: Results for syntax-based NMT on the test
sets. All score differences between our models and
the corresponding baselines are significantly dif-
ferent (p<0.05), including the negative CHRF++
result for En-Cs.

Interestingly, we found different trends when
analysing the CHRF++ numbers. In particular, this
metric favours the PB-SMT models for both lan-
guage pairs, while also showing improved perfor-
mance for s2s in En-Cs. CHRF++ has been shown
to better correlate with human judgments com-
pared to BLEU, both at system and sentence level
for both language pairs (Bojar et al., 2017), which
motivated our choice as an additional metric. We
leave further investigation of this phenomena for
future work.

We also show some of the results reported by
Bastings et al. (2017) in Table 2. Note that their
results were based on a different implementation,
which may explain some variation in performance.
Their BoW+GCN model is the most similar to
ours, as it uses only an embedding layer and a
GCN encoder. We can see that even our sim-
pler g2s model outperforms their results. A key
difference between their approach and ours is the
Levi graph transformation and the resulting hidden
vectors for edges. We believe their architecture
would also benefit from our proposed transforma-
tion. In terms of baselines, s2s performs better
than their BiRNN model for En-De and compara-
bly for En-Cs, which corroborates that our base-
lines are strong ones. Finally, our g2s+ single
models outperform their BiRNN+GCN results, in
particular for En-De, which is further evidence
that RNNs are not necessary for obtaining the best
performance in this setting.

An important point about these experiments is
that we did not tune the architecture: we simply
employed the same model we used in the AMR
generation experiments, only adjusting the dimen-
sionality of the encoder to match the capacity of
the baselines. We speculate that even better re-
sults would be obtained by tuning the architecture
to this task. Nevertheless, we still obtained im-
proved performance over our baselines and previ-
ous work, underlining the generality of our archi-
tecture.

6 Related work

Graph-to-sequence modelling Early NLP ap-
proaches for this problem were based on Hy-
peredge Replacement Grammars (Drewes et al.,
1997, HRGs). These grammars assume the trans-
duction problem can be split into rules that map
portions of a graph to a set of tokens in the out-
put sequence. In particular, Chiang et al. (2013)
defines a parsing algorithm, followed by a com-
plexity analysis, while Jones et al. (2012) report
experiments on semantic-based machine transla-
tion using HRGs. HRGs were also used in pre-
vious work on AMR parsing (Peng et al., 2015).
The main drawback of these grammar-based ap-
proaches though is the need for alignments be-
tween graph nodes and surface tokens, which are
usually not available in gold-standard form.

Neural networks for graphs Recurrent net-
works on general graphs were first proposed un-
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der the name Graph Neural Networks (Gori et al.,
2005; Scarselli et al., 2009). Our work is based
on the architecture proposed by Li et al. (2016),
which add gating mechanisms. The main differ-
ence between their work and ours is that they fo-
cus on problems that concern the input graph it-
self such as node classification or path finding
while we focus on generating strings. The main
alternative for neural-based graph representations
is Graph Convolutional Networks (Bruna et al.,
2014; Duvenaud et al., 2015; Kipf and Welling,
2017), which have been applied in a range of prob-
lems. In NLP, Marcheggiani and Titov (2017) use
a similar architecture for Semantic Role Labelling.
They use heuristics to mitigate the parameter ex-
plosion by grouping edge labels, while we keep
the original labels through our Levi graph trans-
formation. An interesting alternative is proposed
by Schlichtkrull et al. (2017), which uses tensor
factorisation to reduce the number of parameters.

Applications Early work on AMR generation
employs grammars and transducers (Flanigan
et al., 2016; Song et al., 2017). Linearisation ap-
proaches include (Pourdamghani et al., 2016) and
(Konstas et al., 2017), which showed that graph
simplification and anonymisation are key to good
performance, a procedure we also employ in our
work. However, compared to our approach, lin-
earisation incurs in loss of information. MT has a
long history of previous work that aims at incor-
porating syntax (Wu, 1997; Yamada and Knight,
2001; Galley et al., 2004; Liu et al., 2006, inter
alia). This idea has also been investigated in the
context of NMT. Bastings et al. (2017) is the most
similar work to ours, and we benchmark against
their approach in our NMT experiments. Eriguchi
et al. (2016) also employs source syntax, but us-
ing constituency trees instead. Other approaches
have investigated the use of syntax in the target
language (Aharoni and Goldberg, 2017; Eriguchi
et al., 2017). Finally, Hashimoto and Tsuruoka
(2017) treats source syntax as a latent variable,
which can be pretrained using annotated data.

7 Discussion and Conclusion

We proposed a novel encoder-decoder architec-
ture for graph-to-sequence learning, outperform-
ing baselines in two NLP tasks: generation
from AMR graphs and syntax-based NMT. Our
approach addresses shortcomings from previous
work, including loss of information from lineari-

sation and parameter explosion. In particular, we
showed how graph transformations can solve is-
sues with graph-based networks without chang-
ing the underlying architecture. This is the case
of the proposed Levi graph transformation, which
ensures the decoder can attend to edges as well
as nodes, but also to the sequential connections
added to the dependency trees in the case of NMT.
Overall, because our architecture can work with
general graphs, it is straightforward to add linguis-
tic biases in the form of extra node and/or edge
information. We believe this is an interesting re-
search direction in terms of applications.

Our architecture nevertheless has two major
limitations. The first one is that GGNNs have a
fixed number of layers, even though graphs can
vary in size in terms of number of nodes and
edges. A better approach would be to allow the
encoder to have a dynamic number of layers, pos-
sibly based on the diameter (longest path) in the
input graph. The second limitation comes from
the Levi graph transformation: because edge la-
bels are represented as nodes they end up shar-
ing the vocabulary and therefore, the same seman-
tic space. This is not ideal, as nodes and edges
are different entities. An interesting alternative is
Weave Module Networks (Kearnes et al., 2016),
which explicitly decouples node and edge repre-
sentations without incurring in parameter explo-
sion. Incorporating both ideas to our architecture
is an research direction we plan for future work.
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