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Abstract

Opinionated natural language generation
(ONLG) is a new, challenging, NLG task
in which we aim to automatically gener-
ate human-like, subjective, responses to
opinionated articles online. We present
a data-driven architecture for ONLG that
generates subjective responses triggered
by users’ agendas, based on automatically
acquired wide-coverage generative gram-
mars. We compare three types of gram-
matical representations that we design for
ONLG. The grammars interleave different
layers of linguistic information, and are in-
duced from a new, enriched dataset we de-
veloped. Our evaluation shows that gener-
ation with Relational-Realizational (Tsar-
faty and Sima’an, 2008) inspired grammar
gets better language model scores than
lexicalized grammars a la Collins (2003),
and that the latter gets better human-
evaluation scores. We also show that con-
ditioning the generation on topic models
makes generated responses more relevant
to the document content.

1 Introduction

Interaction in social media has become increas-
ingly prevalent nowadays. It fundamentally
changes the way businesses and consumers behave
(Qualman, 2012), it is instrumental to the success
of individuals and businesses (Haenlein and Ka-
plan, 2009) and it also affects political regimes
(Howard et al., 2011; Lamer, 2012). In particu-
lar, automatic interaction in natural language in
social media iS now a common theme, as seen
in the rapid popularization of chat applications,
chat-bots, and “smart agents” aiming to conduct
human-like interactions in natural language.
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So far, generation of human-like interaction in
general has been addressed mostly commercially,
where there is a movement towards online re-
sponse automation (Owyang, 2012; Mah, 2012),
and movement away from script-based interaction
towards interactive chat bots (Mori et al., 2003;
Feng et al., 2006). These efforts provide an au-
tomated one-size-fits-all type of interaction, with
no particular expression of particular sentiments,
topics, or opinions. In academia, work on gen-
erating human-like interaction focused so far on
generating responses to tweets (Ritter et al., 2011;
Hasegawa et al., 2013) or taking turns in short di-
alogs (Li et al., 2017). However, the architectures
assumed in these studies implement sequence to
sequence (seq2seq) mappings, which do not take
into account topics, sentiments or agendas of the
intended responders.

Many real-world tasks and applications would
benefit from automatic interaction that is gener-
ated intendedly based on a certain user profile or
agenda. For instance, this can help promoting a
political candidate or a social idea in social me-
dia, aiding people forming and expressing opin-
ions on specific topics, or, in human-computer in-
terfaces (HCI), making the computer-side gener-
ated utterances more meaningful, and ultimately
more human-like (assuming that human-like inter-
action is very often affected by opinion, agenda,
style, etc.).

In this work we address the opinionated natu-
ral language generation (ONLG) task, in which
we aim to automatically generate human-like re-
sponses to opinionated articles. These responses
address particular topics and reflect diverse senti-
ments towards them, in accordance to predefined
user agendas. This is an open-ended and unstruc-
tured generation challenge, which is closely tied to
the communicative goals of actual human respon-
ders.
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In previous work we addressed the ONLG chal-
lenge using a template-based approach (Cagan
et al., 2014). The proposed system generated sub-
jective responses to articles, driven by user agen-
das. While the evaluation showed promising re-
sults in human-likeness and relevance ratings, the
template-based system suffers from low output
variety, which leads to a learning effect that re-
duced the perceived human-likeness of generated
responses over time.

In this work we tackle ONLG from a data-
driven perspective, aiming to circumvent such
learning effects and repetitive patterns in template-
based generation. Here, we approach generation
via automatically inducing broad-coverage gener-
ative grammars from a large corpus, and using
them for response generation. More specifically,
we define a grammar-based generation architec-
ture and design different grammatical representa-
tions suitable for the ONLG task. Our grammars
interleave different layers of linguistic information
— including phrase-structure and dependency la-
bels, lexical items, and levels of sentiment — with
the goal of making responses both human-like and
relevant. In classical NLG terms, these grammars
offer the opportunity for both micro-planning and
surface realization (Reiter and Dale, 1997) to un-
fold together. We implement a generator and a
search strategy to carry out the generation, and sort
through possible candidates to get the best ones.

We evaluate the generated responses and the
underlying grammars using automated metrics as
well as human evaluation inspired by the Tur-
ing test (cf. Cagan et al. (2014) and Li et al.
(2017)). Our evaluation shows that while rela-
tional realizational (RR) inspired grammars (Tsar-
faty and Sima’an, 2008) get good language model
scores, simple head-driven lexicalized grammars
a la Collins (2003) get better human rating and
are more sensitive to sentiment. Furthermore,
we show that incorporating topic models into the
grammar-based generation makes the generated
responses more relevant to the document content.
Finally, our human evaluations results show no
learning effect. That is, human raters are un-
able to discover in the generated responses typi-
cal structures that would lead them to consider the
responses machine-generated.

The remainder of this paper is organized as fol-
lows. In Section 2 we discuss the formal model,
and in Section 3 we present the proposed end-to-

end ONLG architecture. In Section 4 we introduce
the grammars we define, and we describe how we
use them for generation in Section 5. We follow
that with our empirical evaluation in Section 6. In
Section 7 we discuss related and future work, and
in Section 8 we summarize conclude.

2 The Formal Model

Task Definition. Let d be a document contain-
ing a single article, and let a be a user agenda as
in Cagan et al. (2014). Specifically, a user agenda
a can consist of one or more pairs of a fopic (rep-
resented by a weighted bag-of-words) and an as-
sociated sentiment. Let c be an analysis function
on documents such that ¢(d) yields a set of con-
tent elements which are also pairings of topics and
sentiments. The operation ® represents the inter-
section of the sets of content elements in the doc-
ument and in the user agenda. We cast ONLG as
a prediction function which maps the intersection
a ® c(d) to a sentence y € ¥.* in natural language
(in our case, Y is the vocabulary of English):

fresponse(a & C(d)) =Y (1)

For any non-empty intersection, a response is
generated which is related to the topic of the in-
tersection and the sentiments defined towards this
topic. The relation between the sentiment in the
user agenda and the sentiment reflected in the doc-
ument is a simple xor function: when the user and
the author share a sentiment toward a topic the re-
sponse is positive, else it is negative.

Objective Function. Let G be a formal genera-
tive grammar and let 7" be the set of trees strongly
generated by GG. In our proposed data-driven,
grammar-based, generation architecture, we de-
fine fresponse as a function selecting a most proba-
ble tree t € T derived by G, given the intersection
of document content and user agenda.

fresponse (a ® C(d)) =
Pw,tla®c(d) @

argmax
{w|w=yield(t),teT}

Here, w = yield(t) is the sequence of terminals
that defines the leaves of the tree, which is then
picked as the generated response.

Assuming that G is a context-free grammar, we
can spell out the probabilistic expression in Equa-
tion (2) as a history-based probabilistic model
where root(t) selects a starting point for the
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Figure 1: The end-to-end, data-driven, grammar-based generation architecture.

derivation, der(t) selects the sequence of syntac-
tic rules to be applied, and yield(t) selects the
sequence of terminals that forms the response all
conditioned on the derivation history.

P(w,t|.) =P(root(t)|a ® ¢(d)) (3a)
x P(der(t)|root(t),a @ c(d)) (3b)

(Il) automatic annotation, (IIl) grammar induc-
tion, and (IV) topic-model training. The induced
grammar along with a predefined user agenda and
the pre-trained topic model are provided as in-
put to the online generation component, which is
marked with the dashed box in Figure 1.

In (I) corpus collection, we collect a set of docu-

x P(yield(t)|root(t), der(t), a @ c(d))ments D with corresponding user comments. The

(3¢)

Using standard independence assumptions, Eq. (3)
may be re-written as a chain of local decisions,
conditioned on selected aspects of the generation
history, marked here by the function ®.

P(w,t|.) = P(root|®(a ® c(d))) % (4a)

documents in the corpus are used for training a
topic model (IV), which is used for topic infer-
ence given a new input document d. The collected
comments are used for inducing a wide-coverage
grammar G for response generation.

To realize the goal of ONLG, we aim to jointly
model opinion, structure and lexical decisions in

H P(rulej|®(root,a @ c(d)))x our induced grammars. To this end, in (II) au-

rulej€der(t)

(4b)
[I Pwile(tascd))

w; Eyield(t)
(4¢)

In words, the probability of the starting rule (4a) is
multiplied with the probability of each of the rules
in the derivation (4b) and the probability of each
of the terminal nodes in the tree (4c). Each deci-
sion may be conditioned on previously generated
part(s) of the structure, as well as the intersection
of the input document content and user agenda.

3 The Architecture

A bird’s-eye view of the architecture we propose is
depicted in Figure 1. The process consists of an of-
fline component containing (I) corpus collection,

tomatic annotation we enrich the user comments
with annotations that reflect different levels of lin-
guistic information, as detailed in Section 4.

In (II) grammar induction we induce a gen-
erative grammar GG from the annotated corpus,
following the common methodology of induc-
ing PCFGs from syntactically annotated corpora
(Charniak, 1995; Collins, 2003). We traverse the
annotated trees from (III) and use maximum likeli-
hood estimation for learning rule probabilities. No
smoothing is done, and in order to filter noise from
possibly erroneous parses, we use a frequency cap
to define which rules can participate in derivations.

We finally define and implement an efficient
grammar-based generator, termed here the de-
coder, which carries out the generation and cal-
culates the objective function in Eq. (4). The algo-
rithm is described in Section 5.
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4 The Grammars

Base Grammar. A central theme in this re-
search is generating sentences that express a cer-
tain sentiment. Our base grammatical representa-
tion is inspired by the Stanford sentiment classifi-
cation parser (Socher et al., 2013) which annotates
every non-ternminal node with one of five senti-
ment classes s € {—2,—1,0,1,2}.

Formally, each non-terminal in our base gram-
mar includes a constituency category C' and a sen-
timent class label s. The derivation of depth-1
trees with a parent node p and two daughters d1, do
will thus appear as follows:

Cyplsp]l = Car[sa1] Caz[sa2]

The generative story imposed by this grammar is
quite simple: each non-terminal node annotated
with a sentiment can generate either a sequence of
non-terminal daughters, or a single terminal node.
An example of a subtree and its generation se-
quence is given in Figure 2(Base). Here we see a
positive NP which generates two daughters: a neu-
tral DT and a positive NX. The positive NX gen-
erates a neutral noun NN and a positive modifying
adjective JJ on its left. Such a derivation can yield
NP terms such as “the good wife” or “an awe-
some movie”, but will not generate “some terri-
ble words”. In this grammar, lexical realization is
generated conditioned on local pre-terminals only,
and independently of the syntactic structure.
While the generative story is simple, this gram-
mar can capture complex interactions of senti-
ment. Such interactions take place in tree struc-
tures that include elements that may affect polar-
ity, such as negation, modal verbs and so on (see
Socher et al. (2013) and examples therein). In
this work we assume a completely data-driven ap-
proach wherein such structures are derived based
on previously observed sentiment-interactions in
sentiment-augmented parses.

Lexicalized Grammar. Our base grammar suf-
fers from a clear pitfall: the structure lacks sensi-
tivity to lexical information, and vice versa. This
base grammar essentially generates lexical items
as an afterthought, conditioned only on the local
part-of-speech label and sentiment value. Our first
modification of the base grammar is lexicalization
in the spirit of Collins (2003).

In this representation each non-terminal node is
decorated with a phrase-structure category C' and a

sentiment label s, and it is augmented with a lex-
ical head l;,. The lexical head is common to the
parent and the left (or right) daughter. A new lex-
ical item, termed modifier l,,, is introduced in the
right (left) daughter. The resulting depth-1 subtree
for a parent p with daughters d;, dy and a lexical
head on the left (without loss of generality) is:

Cplsp, In) = Cai[sa1,1n] Caz[saz, lm)

Lexicalization makes the grammar more useful
for generation as lexical choices can be made at
any stage of the derivation conditioned on part of
the structure. But it has one drawback — it assumes
very strong dependence between lexical items that
happen to appear as sisters.

To overcome this, we define a head-driven gen-
erative story that follows the model of Collins
(2003), where the mother non-terminal generates
first the head node, and then, conditioned on the
head it generates a modifying constituent to the
left (right) of the head and its corresponding mod-
ifying lexical dependent. An example subtree and
its associated head-driven generative story is illus-
trated in Figure 2(Lex).

Relational-Realizational Grammar. Generat-
ing phrase-structures along with lexical realiza-
tion can manage form — control how sentences
are built. For coherent generation we would like
to also control for the function of nodes in the
derivation. To this end, we define a grammar and
a generative story in the spirit of the Relational-
Realizational (RR) grammar of Tsarfaty (2010).

In our RR-augmented trees, each non-terminal
node includes, on top of the phrase-structure cat-
egory C, the lexical head [ and the sentiment s, a
relation label dep; which determines its functional
role in relation to its parent. The functional com-
ponent will affect the selection of daughters so that
the derived subtree fulfils its function. A depth-1
subtree will thus appear as follows:

Cilsi, dep;, ;] = Cj[s;,depj, ;] Cklsk, depx, li]

The generative story of our RR representation
follows the three-phase process defined by Tsar-
faty and Sima’an (2008) and Tsarfaty (2010):

(i) projection: given a constituent and a senti-
ment value, generate a set of grammatical
relations which define the functions of the
daughters to be generated.
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(a) (b)

(Base) NP[+1]
DTI[0] NX[+1]
\
The JI[+1] NN[0]
\
good wife
(Lex) NP[+1,wife]
DTI[0,The] NX[+1,wife]
\
The J[+1,g00d] NNJO,wife]
\
good wife
(RR) NP[+1,r00t,wife]
DTJ0,det,The] NX[+1,hd,wife]
\
The
JJ[+1,amod,good] NNI[O,hd,wife]
\ \
good wife

Type LHS RHS
NP[+1] — DT[0] NX[+1]
NX[+1] — JI[+1] NN[O0]
DTI[0] —  The
J[+1] —  good
NN[0] — wife
Type  LHS RHS
HEAD  NP[+1,wife] —r NX[+1]
MOD  NP[+1,wife], NX[+1] —;  DT[0]
LEX-H NP[+1,wife],NX[+1] —  wife
LEX NP[+1,wife], NX[+1,wife], DT[0] — the
HEAD  NX[+1,wife] —,  NN[O]
MOD  NX[+1,wife], NN[0] — JI[+1]
LEX-H NX[+1,wife], NN[0] —  wife
LEX NX[+1,wife], NN[0,wife] JI[+1] —  good
Type LHS RHS
PROJ NP[+1] —  {amod,det,hd} @NP[+1]
CONF {amod,det,hd} @NP[+1] —  <det>@NP[+1],
<{amod,hd}>@NP[+1]
REAL-C <det>@NP[+1] —  DT[0]
REAL-C  <{amod,hd} >@NP[+1] —  NX[+1]
REAL-L  DT[0,det] @NP[+1,hd,wife] —  The
REAL-L  NX[+1,hd] @NP[+1,hd,wife] —  wife
PROJ NX[+1] —  {amod,hd} @NX[+1]
CONF {amod, hd} @NX[+1] —  <amod>@NX[+1],
<hd>@NX[+1]
REAL-C <amod>@NX[+1] —  JJ[+1]
REAL-C  <hd>@NX[+1] —  NNIO0]
REAL-L  JIJ[+1,amod]@NX][+1,hd,wife] — good
REAL-L NN[+1,hd]@NX[+1,hd,wife] — wife

Figure 2: Our grammatical representations, with (a) a sample tree and (b) its generation sequence. A rule
of type SYN marks syntactic rules, LEX indicates lexical realization, HEAD, MOD indicate head selection
and modifier selection, PROJ,CONF,REAL indicate projection, configuration and realization, respectively.
The @ sign indicates aspects in the generation history that the production is conditioned on (® in eq. 4).

(ii) configuration: given a constituent, sentiment
and an unordered set of relations, an ordering
for the relations is generated. Unlike the orig-
inal RR derivations which fully order the set,
here we partition the set into two disjoint sets
(one of which is a singleton) and order them.
This modification ensures that we adhere to
binary trees.

(ii1) realization: For each function-labels’ set we
select the daughter’s constituent realizing it.
We first generate the constituent and senti-
ment realizing this function, and then, con-
ditioned on the constituent, sentiment, head
and function, we select the lexical dependent.

An example tree along with its RR derivation is
given in Figure 2(RR).

5 Grammar-Based Generation

Our grammar-based generator is a top-down algo-
rithm which starts with a frontier that includes a
selected root, and expands the tree continually by
substituting non-terminals at the left-hand-side of
rules with their daughters on the right hand side,
until no more non-terminals exist. This generation
procedure yields one sentence for any given root.
Due to independence assumptions inherent in the
generative processes we defined, there is no guar-
antee that generated sentences will be completely
grammatical, relevant and human-like. To circum-
vent this, we develop an over-generation algorithm
that modifies the basic algorithm to select multiple
rules at each generation point, and apply them to
uncover several derivation trees, or a forest.
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We then use a variation on the beam search al-
gorithm (Reddy, 1977) and devise a methodology
to select the k-best scoring trees to be carried on to
the next iteration. Specifically, we use a Breadth-
First algorithm for expanding the tree and define
a dynamic programming algorithm that takes the
score of a derivation tree of n — 1 expanded nodes,
selects a new rule for the next non-expanded node,
and from it, calculates the score of the expanded
tree with now n nodes. For comparing the trees,
we computed a score according to Eq. (4) for the
tree generated so far, and used an average node
score to neutralize size difference between trees.

To make sure our responses target a particular
topic, we propose to condition the selection of lex-
ical items at the root on the fopic at the intersec-
tion of the document content and user agenda, es-
sentially preferring derivations that yield words re-
lated to the input topic distribution. In practice we
use topic model scores to estimate the root rule
probability, selecting lexical item(s) for generation
to start with:

P(root(t)la @ c(d)) =
P(ROOT — l1ls]a ® ¢(d)) =

Zé\;l Z?Zl tm_weight(c) * word_weight(c, ;)
(&)
where tm_weight(c) is the weight of topic ¢ in
the topic distribution at the document-agenda in-
tersection, and word_weight(c,l;) is the weight
of the lexical head word [; within the word distri-

bution of topic c in the given topic model.

The generation process ends when all deriva-
tions reach (at most) a pre-defined height (to avoid
endless recursions). We then re-rank the generated
candidates. The re-ranking is based on a 3-grams
language model on the raw yield of the sentence,
divided by the length of the sentence to obtain a
per-word average and avoid length biases. !

6 Evaluation

Goal. We aim to evaluate the grammars’ appli-
cability to the ONLG task. Set in an open domain,
it is not trivial to find a “gold-standard” for this
task, or even a method to obtain one. Our eval-
uation thus follows two tracks: an automated as-
sessment track, where we quantitatively assess the
responses, and a Turing-like test similar to that
of Cagan et al. (2014), where we aim to gauge
human-likeness and response relevance.

"Here we use Microsoft’s WebLM API which is part of
the Microsoft Oxford Project (Microsoft, 2011).

Materials. We collected a new corpus of news
articles and corresponding user comments from
the NY-Times®web site, using their open Com-
munity API. We focus on sports news, which gave
us 3,583 news articles and 13,100 user comments,
or 55,700 sentences. The articles are then used
for training a topic model using the Mallet library
(McCallum, 2002). Next, we use the comments
in the corpus to induce the grammars. To obtain
our Base representation we parse the sentences us-
ing the Stanford CoreNLP suite (Manning et al.,
2014) which can provide both phrase-structure
and sentiment annotation. To obtain our Lexi-
calized representation we follow the same proce-
dure, this time also using a head-finder which lo-
cates the head word for each non-terminal. To
obtain the Relational-Realizational representation
we followed the algorithm described in Tsarfaty
et al. (2011), which, given both a constituency
parse and a dependency parse of a sentence, uni-
fies them into a lexicalized and functional phrase-
structure. The merging is based on matching spans
over words within the sentence.’

Setup. We simulated several scenarios. In each,
the system generates sentences with one grammar
(G € {Base, Lex, RR}) and one scoring scheme
(with/without topic model scores). The results of
each simulation are 5,000 responses for each vari-
ant of the system, consisting of 1,000 sentences
for each sentiment class, s € {—2,—1,0,1,2}.
The same 5000 generated sentences were used in
all experiments. We set the generator for trees
of maximum depth of 13 which can yield up to
4096 words. In reality, the realization was of
much shorter sentences. Examples for generated
responses are given in Table 1.

6.1 Comparing Grammars

Goal and Metrics. In this experiment we com-
pare and contrast the generation capacity of the
grammars, using the following metrics:

(1) Fluency measures how grammatical or nat-
ural the generated sentences are.  We base
this measure on a probabilistic language model
which gives an indication of how common word-
sequences within the sentence are. We express flu-
ency as a Language Model (LM) score which is
calculated using the Microsoft Web ML API to get
aggregated minus-log probabilities of all 3-grams

The collected corpus and supplementary annotations are
available at www . tomercagan.com/onlg.
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in the sentence. The aggregated score is then nor-
malized to give a per-word average in order to can-
cel any effects of sentence length.

(1) Sentiment Agreement measures whether the
inferred sentiment of the response matches the
input sentiment parameter used for generation.
Specifically, we take the raw yield of the generated
tree (a sentence) and run it through the sentiment
classifier implemented in Socher et al. (2013), to
assign the full sentence one of 5 sentiment classes
between —2 and +2. During evaluation, we com-
pare the classified sentiment of the generated sen-
tence is with the sentiment entered as input for the
derivation of the sentence, and report the rate of
agreement on (a) level (—2.. 4 2) and (b) polarity
(—/+), which is a more relaxed measure.

(iii) The Consiceness/tightness metric aims to
evaluate which grammar derives a simpler struc-
ture across generations of similar content. Our
tightness evaluation is based on the percentage of
sentences that were fully realization as terminals
within the specific height limit;> we simply ob-
serve how many trees have all leaves as termi-
nal symbols. Intuitively, tighter grammars lead to
improved performance and better control over the
generated content. It is possible to think of what
it captures in terms Occams Razor, preferring the
simpler structure to derive comparable outcome.

Empirical Results The results of our evaluation
are presented in Table 2. With respect to the above
metrics, the RR grammar was more compact and
natural compared to the lexicalized (LEX) gram-
mar: the per-word LM Score for the RR is —5.6 as
compared to —6.5 for LEX. Also, RR has 95.7%
complete sentences as compared to only 67.3% for
LEX. The LEX grammar was more sensitive to the
sentiment input but only slightly, having a 44.6%
sentiment agreement and 63.9% sentiment polar-
ity agreement compared to 43.8% and 61.0% for
RR grammar. The BASE grammar gave the worst
performance for all measures. This provides pre-
liminary evidence in support of incorporating sur-
face realization (lexicalization) into the syntactic
generation, rather than filling slots in retrospect.

6.2 Testing Relevance

Goal and Metrics Next we aim to evaluate the
relevance of the responses to the input document
triggering the response. We do so by calculating

s 3A hezight of 13 makes a maximum sentence length of
211 =212 = 4096 words.

Grammar | Sentiment | Sentence

-2 | (and badly should doesn’t..

doesn’t of the yankees..

who is the the game,.

is the the united states..

is the best players..

is a rhyme ... mahi mahi, and, I not quote Bunny.
Dumpster unpire are the villans.

Derogatory big names symbols wider

New england has been playful, and infrequent human.
That’s a huge award — having get fined!

he is very awkward, and to any ridiculous reason.

the malfeasance underscores the the widespread belief.
the programs serve the purposes.

Mcllroy is a courageous competitor.

The urgent service’s a grand idea.

BASE

LEX

RR

] N S RN S S

Table 1: Responses generated by the system with
the different grammars and sentiment levels.

Grammar | Avg. LM Score | Avg. LM Score | Complete | Sentiment Avg.
per word Sentences | Agreement Length
Mean CI Mean CI (%) / Polarity (%) | (words)
BASE -79.7  £0.054 | -89  40.007 | 20.1 13.3/41.8 9.5
LEX -73.7  £0.016 | -6.5  £0.002 | 67.3 44.6/63.9 12.3
RR -51.8 +0.011 | -5.6 ~ +0.001 | 95.7 43.8/61.0 9.6
HUMAN | -50.1 £0.000 | -5.4  £0.000 | N/A N/A 10.3

Table 2: Mean and 95% Confidence Interval (CI)
of language model scores, and measures of com-
pactness and sentiment agreement. The last row,
HUMAN refers to the collected human responses.

Topic Agreement, a measure that, given a trained
topic model, determines how close the topic distri-
bution of the input document and that of the gener-
ated response are. We use L2 to calculate the dis-
tance between the inferred topic distribution vec-
tors. We focus here on relevance testing for the
RR grammar, which gave superior LM scores. In
this test we use two generators — RR generator as
defined above, and RRTM generator that uses the
scoring scheme of Equation (5) to select a start
rule deriving the root lexical item. Example sen-
tences of each generator are presented in Table 3.

Empirical Results The results of the two gen-
erators and their average distance from the topic
distribution of the input document are presented in
Table 4. Here we see that the generator using topic
models for selecting start rules (RRTM) gets topic
distribution that is closer to the input document’s
topic distribution. The last row, HUMAN, calcu-
lates the distance between the topic distributions
in the documents and their human responses from
the collected corpus. The fact that RRTM outper-
forms HUMAN is not necessarily surprising, as
sentences in human responses are typically from
longer paragraphs where some sentences are more
generic, used as connectives, interjections, etc.
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Grammar | Sentiment | Sentence

-2 | they deserve it, but I is fear.
the saga is correct.

the indirect penalty?

the job is correct.

a salaries excels.

RR

the franchise would he made?

Probably the LONG time .

In a good addition, he is a good baseball player.
the baseball game sublime.

RRTM

R - O = —

Unfortunately, they remind that to participate in baseball.

Table 3: Responses generated by the system us-
ing emission probabilities and topic models for the
start rule selection.

Generator | Mean CI

RR 0.473 £0.003
RRTM 0.424 +£0.003
HUMAN | 0.429 +0.000

Table 4: Mean and 95% Confidence Interval (CI)
for generators with / without topic models scores
(RRTM / RR respectively). The last row, HUMAN
refers to the collected human responses.

6.3 Human Surveys

Goal and Procedure. We evaluate human-
likeness of the generated responses by collecting
data via an online survey on Amazon Mechani-
cal Turk. In the survey, participants were asked
to judge whether generated sentences were written
by a human or a computer. The participants were
screened to have a good level of English and reside
in the US. Each survey comprised of 50 randomly
ordered trials. In each trial the participant was
shown a response. The task was to categorize each
response on a 7-point scale with labels ‘Certainly
human/computer’, ‘Probably human/computer’,
‘Maybe human/computer’ and ‘Unsure’. In 50 tri-
als the participant was exposed to 3-4 sentences
for each grammar/sentiment combination.

Empirical Results. Average human-likeness
ratings (scale 1-7) are presented in Table 5.
Here, we see that sentences generated by the
lexicalized grammar were perceived as most
human-like. This result is in contrast with the
automatic evaluation. Such a discrepancy need
not be very surprising, as noted by others before
(Belz and Reiter, 2006). Cagan et al. (2014) show
that there are extra-grammatical factors affecting
human-likeness, e.g. world knowledge. We
hypothesise that the LEX grammar, which relies
heavily on lexical co-occurrences frequencies,
is better at replicating world knowledge and
idiomatic phrases thus judged as more human.

Grammar | Mean  CI

BASE 24561 +0.004
LEX 4.1681 =+ 0.004
RR 3.7278 =+ 0.004

Table 5: Mean and 95% Confidence Interval (CI)
for human-likeness ratings (scaling 1:low—7:high).

Factor b Std. Error z-value P(> |z|)
G-LEX 2.90 0.189 1532  <.00001
G-RR 2.33 0.164 14.20  <.00001
SENT 0.17 0.074 2.32 .020
NWORD -1.60 0.107 -14.95 <.00001
POS 0.21 0.036 597 <.00001
G-LEX x SENT -0.18 0.095 -1.91 .056
G-RR x SENT 0.44 0.096 4.53  <.00001
G-LEX x NWORD | 1.31 0.117 11.16  <.00001
G-RR x NWORD 1.35 0.138 9.80 <.00001
NWORD x POS 0.10 0.037 2.81 .005

Table 6: Regression analysis of the human survey.

In a qualitative inspection on a sample of the
results we could verify that the LEX grammar
tends to replicate idiomatic sequences while the
RR grammar generates novel phrases in a more
compositional fashion. Grammaticality is not
hindered by it, but apparently human-likeness is.

We also run an ordinal mixed-effects regression,
which is an appropriate way to analyse discrete
rating data. Regression model predictors were
Grammar (G), sentiment level (SENT), response
length (NWORD), position of response in rating
session (POS), and all two-way interactions be-
tween these. Quantitative predictors were stan-
dardized and non-significant (p > .05) interac-
tions were dropped from the fitted model. By-
participant random intercepts and slopes of G and
SENT were included as random effects.

Table 6 displays the fitted model fixed effects,
with BASE grammar as the reference level. Con-
sistent with Table 5, we see that LEX and RR
score significantly higher on human likeness than
BASE. These effects are modulated by sentiment:
more positive sentiment makes BASE and RR
more human-like (respectively: b = 0.17 and b =
0.44) whereas the LEX grammar becomes less hu-
man like (although this effect is only marginally
significant: b = —.18). In addition, these effects
are also modulated by sentence length in #words
— longer sentences make BASE less human-like
(b = —1.60) but RR and LEX more human-like
(respectively: b = 1.31 and b = 1.35)

Importantly, there is a weak but significant pos-
itive effect of position (b = 0.21), indicating that
human-likeness ratings increase over the course of
a rating session. This effect does not depend on
the grammar, but is somewhat stronger for longer
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sentences (b = 0.10). The position effect contrasts
markedly with the decrease of human-likeness rat-
ings that (Cagan et al., 2014) ascribed to a learn-
ing effect: there, raters noticed the repetitive struc-
ture and took this to be a sign that the utterances
were machine generated. The fact that we find no
such effect means that our grammars successfully
avoided such repetitiveness.

7 Related and Future Work

NLG is often cast as a concept-to-text (C2T) chal-
lenge, where a structured record is transformed
into an utterance expressing its content. C2T is
usually addressed using template-based (Becker,
2002) or data-driven (Konstas and Lapata, 2013;
Yuan et al., 2015) approaches. In particular, re-
searchers explored data-driven grammar-based ap-
proaches (Cahill and van Genabith, 2006), often
assuming a custom grammar (Konstas and Lap-
ata, 2013) or a closed-domain approach (DeVault
et al., 2008). ONLG in contrast is set in an
open domain, and expresses multiple dimensions
(grammaticality, sentiment, topic).

In the context of social media, generating re-
sponses to tweets has been cast as a sequence-to-
sequence (seq2seq) transduction problem, and has
been addressed using statistical machine transla-
tion (SMT) methods (Ritter et al., 2011; Hasegawa
et al., 2013). In this seq2seq setup, moods and
sentiments expressed in the past are replicated or
reused, but these responses do not target partic-
ular topics and are not driven by a concrete user
agenda. An exception is a recent work by Li et al.
(2016), exploring a persona-based conversational
model, and Xu et al. (2016) who encode loose
structured knowledge to condition the generation
on. These studies present a stepping stone towards
full-fledge neural ONLG architectures with some
control over the user characteristics.

The surge of interest in neural network genera-
tion architectures has spawned the development of
seq2seq models based on encoder-decoder setup
(Sordoni et al. (2015); Li et al. (2016, 2017) and
references therein). These architectures require a
very large dataset to train on. In the future we aim
to extend our dataset and explore neural network
architectures for ONLG that can encode a user-
agenda, a document, and possibly stylistic choices
(Biber and Conrad, 2009; Reiter and Williams,
2010) — in the hope of yielding more diverse, rel-
evant and coherent responses to online content.

8 Conclusion

We approached ONLG from a data-driven per-
spective, aiming to overcome the shortcomings of
previous template-based approaches. Our contri-
bution is threefold: (i) we designed three types
of broad-coverage grammars appropriate for the
task, (ii) we developed a new enriched data-set
for inducing the grammars, and (iii) we empiri-
cally demonstrated the strengths of the LEX and
RR grammars for generation, as well as the over-
all usefulness of sentiment and topic models incor-
porated into the syntactic derivation. Our results
show that the proposed grammar-based architec-
ture indeed avoids the repetitiveness and learning
effects observed in the template-based ONLG.

To the best of our knowledge, this is the first
data-driven agenda-driven baseline for ONLG,
and we believe it can be further improved. Some
future avenues for investigation include improv-
ing the relevance and human-likeness results by
improving the automatic parses quality, acquiring
more complex templates via abstract grammars,
and experimenting with more sophisticated scor-
ing functions for reranking. With the emergence
of deep learning, we further embrace the opportu-
nity to combine the sequence-to-sequence model-
ing view explored so far with conditioning gener-
ation on speakers agendas and user profiles, push-
ing the envelope of opinionated generation fur-
ther. Finally, we believe that future work should
be evaluated in situ, to examine if, and to what
extent, the generated responses participate in and
affect the discourse (feed) in social media.
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