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Abstract

Attention based recurrent neural networks
have shown advantages in representing
natural language sentences (Hermann et
al., 2015; Rocktäschel et al., 2015; Tan
et al., 2015). Based on recurrent neural
networks (RNN), external attention infor-
mation was added to hidden representa-
tions to get an attentive sentence represen-
tation. Despite the improvement over non-
attentive models, the attention mechanism
under RNN is not well studied. In this
work, we analyze the deficiency of tradi-
tional attention based RNN models quanti-
tatively and qualitatively. Then we present
three new RNN models that add attention
information before RNN hidden represen-
tation, which shows advantage in repre-
senting sentence and achieves new state-
of-art results in answer selection task.

1 Introduction

Answer selection (AS) is a crucial subtask of the
open domain question answering (QA) problem.
Given a question, the goal is to choose the an-
swer from a set of pre-selected sentences (Heilman
and Smith, 2010; Yao et al., 2013). Traditional
AS models are based on lexical features such as
parsing tree edit distance. Neural networks based
models are proposed to represent the meaning of
a sentence in a vector space and then compare
the question and answer candidates in this hidden
space (Wang and Nyberg, 2015; Feng et al., 2015),
which have shown great success in AS. However,
these models represent the question and sentence
separately, which may ignore the information sub-
ject to the question when representing the answer.
For example, given a candidate answer:

Michael Jordan abruptly retired from Chicago

Bulls before the beginning of the 1993-94 NBA
season to pursue a career in baseball.

For a question: When did Michael Jordan
retired from NBA? we should focus on the be-
ginning of the 1993-94 in the sentence; how-
ever, when we were asked: Which sports does
Michael Jordan participates after his retire-
ment from NBA? we should pay more attention
to pursue a career in baseball.

Recent years, attention based models are pro-
posed in light of this purpose and have shown
great success in many NLP tasks such as ma-
chine translation (Bahdanau et al., 2014; Sutskever
et al., 2014), question answering (Sukhbaatar et
al., 2015) and recognizing textual entailments
(Rocktäschel et al., 2015). When building the rep-
resentation of a sentence, some attention informa-
tion is added to the hidden state. For example,
in attention based recurrent neural networks mod-
els (Bahdanau et al., 2014) each time-step hidden
representation is weighted by attention. Inspired
by the attention mechanism, some attention-based
RNN answer selection models have been proposed
(Tan et al., 2015) in which the attention when com-
puting answer representation is from question rep-
resentation.

However, in the RNN architecture, at each time
step a word is added and the hidden state is up-
dated recurrently, so those hidden states near the
end of the sentence are expected to capture more
information1. Consequently, after adding the at-
tention information to the time sequence hidden
representations, the near-the-end hidden variables
will be more attended due to their comparatively
abundant semantic accumulation, which may re-
sult in a biased attentive weight towards the later
coming words in RNN.

In this work, we analyze this attention bias
1so in many previous RNN-based model use the last hid-

den variable as the whole sentence representation
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problem qualitatively and quantitatively, and then
propose three new models to solve this prob-
lem. Different from previous attention based RNN
models in which attention information is added af-
ter RNN computation, we add the attention be-
fore computing the sentence representation. Con-
cretely, the first one uses the question attention to
adjust word representation (i.e. word embedding)
in the answer directly, and then we use RNN to
model the attentive word sequence. However, this
model attends a sentence word by word which may
ignore the relation between words. For example,
if we were asked: what is his favorite food? one
answer candidate is: He likes hot dog best. hot
or dog may be not relate to the question by itself,
but they are informative as a whole in the context.
So we propose the second model in which every
word representation in answer is impacted by not
only question attention but also the context repre-
sentation of the word (i.e. the last hidden state).
In our last model, inspired by previous work on
adding gate into inner activation of RNN to con-
trol the long and short term information flow, we
embed the attention to the inner activation gate of
RNN to influence the computation of RNN hid-
den representation. In addition, inspired by recent
work called Occam’s Gate in which the activation
of input units are penalized to be as less as pos-
sible, we add regulation to the summation of the
attention weights to impose sparsity.

Overall, in this work we make three contribu-
tions: (1) We analyze the attention bias problem
in traditional attention based RNN models. (2) We
propose three inner attention based RNN models
and achieve new state-of-the-art results in answer
selection. (3) We use Occam’s Razor to regulate
the attention weights which shows advantage in
long sentence representation.

2 Related Work

Recent years, many deep learning framework has
been developed to model the text in a vector space,
and then use the embedded representations in this
space for machine learning tasks. There are many
neural networks architectures for this represen-
tation such as convolutional neural networks(Yin
et al., 2015), recursive neural networks(Socher et
al., 2013) and recurrent neural networks(Mikolov
et al., 2011). In this work we propose Inner
Attention based RNN (IARNN) for answer selec-
tion, and there are two main works which we are

related to.

2.1 Attention based Models
Many recent works show that attention techniques
can improve the performance of machine learning
models (Mnih et al., 2014; Zheng et al., 2015). In
attention based models, one representation is built
with attention (or supervision) from other repre-
sentation. Weston et al (2014) propose a neural
networks based model called Memory Networks
which uses an external memory to store the knowl-
edge and the memory are read and written on the
fly with respect to the attention, and these attentive
memory are combined for inference. Since then,
many variants have been proposed to solve ques-
tion answering problems (Sukhbaatar et al., 2015;
Kumar et al., 2015). Hermann (2015) and many
other researchers (Tan et al., 2015; Rocktäschel et
al., 2015) try to introduce the attention mechanism
into the LSTM-RNN architecture. RNN models
the input sequence word-by-word and updates its
hidden variable recurrently. Compared with CNN,
RNN is more capable of exploiting long-distance
sequential information. In attention based RNN
models, after computing each time step hidden
representation, attention information is added to
weight each hidden representation, then the hid-
den states are combined with respect to that weight
to obtain the sentence (or document) representa-
tion. Commonly there are two ways to get atten-
tion from source sentence, either by the whole sen-
tence representation (which they call attentive) or
word by word attention (called impatient).

2.2 Answer Selection
Answer selection is a sub-task of QA and many
other tasks such as machine comprehension.
Given a question and a set of candidate sentences,
one should choose the best sentence from a can-
didate sentence set that can answer the question.
Previous works usually stuck in employing fea-
ture engineering, linguistic tools, or external re-
sources. For example, Yih et al. (2013) use se-
mantic features from WordNet to enhance lexical
features. Wang and Manning (2007) try to com-
pare the question and answer sentence by their
syntactical matching in parse trees. Heilman and
Smith (Heilman and Smith, 2010) try to fulfill the
matching using minimal edit sequences between
their dependency parse trees. Severyn and Mos-
chitti (2013) automate the extraction of discrimi-
native tree-edit features over parsing trees.
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While these methods show effectiveness, they
might suffer from the availability of additional re-
sources and errors of many NLP tools such as
dependency parsing. Recently there are many
works use deep learning architecture to represent
the question and answer in a same hidden space,
and then the task can be converted into a classi-
fication or learning-to-rank problem (Feng et al.,
2015; Wang and Nyberg, 2015). With the develop-
ment of attention mechanism, Tan et.al(2015) pro-
pose an attention-based RNN models which intro-
duce question attention to answer representation.

3 Traditional Attention based RNN
Models and Their Deficiency

The attention-based models introduce the atten-
tion information into the representation process.
In answer selection, given a question Q =
{q1, q2, q3, ..., qn} where qi is i-th word, n is the
question length, we can compute its representation
in RNN architecture as follows:

X = D[q1, q2, ..., qn]
ht = σ(Wihxt + Whhht−1 + bh)
yt = σ(Whoht + bo)

(1)

where D is an embedding matrix that projects
word to its embedding space in Rd; Wih, Whh,
Who are weight matrices and bh, bo are bias vec-
tors; σ is active function such as tanh. Usually we
can ignore the output variables and use the hidden
variables. After recurrent process, the last hidden
variable hn or all hidden states average 1

n

∑n
t=1 ht

is adopted as the question representation rq.
When modeling the candidate answer sentence

with length m:S = {s1, s2, s3, ..., sm} in attention
based RNN model,

instead of using the last hidden state or average
hidden states, we use attentive hidden states that
are weighted by rq:

Ha = [ha(1),ha(2), ...,ha(m)]
st ∝ fattention(rq,ha(t))

h̃a(t) = ha(t)st

ra =
m∑

t=1

h̃a(t)

(2)

where ha(t) is hidden state of the answer at time
t. In many previous work (Hermann et al., 2015;
Rocktäschel et al., 2015; Tan et al., 2015), the at-

Question

RNN

Answer

ave|max
rq Attention SUM

ra

cosine

Figure 1: Traditional attention based RNN answer
selection model. Dark blue rectangles represent
hidden virable, ⊗ means gate opperation.

tention function fattention was computed as:

m(t) = tanh(Whmha(t) + Wqmrq)

fattention(rq,ha(t)) = exp(wT
msm(t))

(3)

Whm and Wqm are attentive weight matrices and
wms is attentive weight vector. So we can ex-
pect that the candidate answer sentence represen-
tation ra may be represented in a question-guided
way: when its hidden state ha(t) is irrelevant to
the question (determined by attention weight st),
it will take less part in the final representation; but
when this hidden state is relavent to the question,
it will contribute more in representing ra. We call
this type of attention based RNN model OARNN
which stands for Outer Attention based RNN mod-
els because this kind of model adds attention in-
formation outside the RNN hidden representation
computing process. An illustration of traditional
attention-based RNN model is in Figure 1.

However, we know in the RNN architecture, the
input words are processed in time sequence and
the hidden states are updated recurrently, so the
current hidden state ht is supposed to contain all
the information up to time t, when we add ques-
tion attention information, aiming at finding the
useful part of the sentence, these near-the-end hid-
den states are prone to be selected because they
contains much more information about the whole
sentence. In other word, if the question pays atten-
tion to the hidden states at time t , then it should
also pay attention to those hidden states after t
(i.e {ht′ |t

′
> t}) as they contain the information

at least as much as ht, but in answer selection
for a specific candidate answer, the useful parts
to answer the question may be located anywhere
in a sentence, so the attention should also dis-
tribute uniformly around the sentence. Traditional
attention-based RNN models under attention after
representation mechanism may cause the attention
to bias towards the later coming hidden states. We
will analyze this attention bias problem quantita-
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tively in the experiments.

4 Inner Attention based Recurrent
Neural Networks

In order to solve the attention bias problem, we
propose an intuition:

Attention before representation
Instead of adding attention information after en-

coding the answer by RNN, we add attention be-
fore computing the RNN hidden representations.
Based on this intuition, we propose three inner at-
tention based RNN models detailed below.

4.1 IARNN-WORD
As attention mechanism aims at finding useful part
of a sentence, the first model applies the above
intuition directly. Instead of using the original
answer words to the RNN model, we weight the
words representation according to question atten-
tion as follows:

αt = σ(rT
q Mqixt)

x̃t = αt ∗ xt

(4)

where Mqi is an attention matrix to transform a
question representaion into the word embedding
space. Then we use the dot value to determine the
question attention strength, σ is sigmoid function
to normalize the weight αt between 0 and 1.

The above attention process can be understood
as sentence distillation where the input words are
distilled (or filtered) by question attention. Then,
we can represent the whole sentence based on this
distilled input using traditional RNN model. In
this work, we use GRU instead of LSTM as build-
ing block for RNN because it has shown advan-
tages in many tasks and has comparatively less
parameter(Jozefowicz et al., 2015) which is for-
mulated as follows:

zt = σ(Wxz x̃t + Whzht−1)
ft = σ(Wxf x̃t + Whf ht−1)

h̃t = tanh(Wxhx̃t + Whh(ft � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t

(5)

where Wxz,Whz,Wxf ,Whh,Wxh are weight
matrices and � stands for element-wise multipli-
cation. Finally, we get candidate answer represen-
tation by average pooling all the hidden state ht.
we call this model IARNN-WORD as the atten-
tion is paid to the original input words. This model
is shown in Figure 2.

rq

Attention

ra
ave

෨𝑋𝑡

𝑋𝑡

ℎ𝑡GRU

Figure 2: IARNN-WORD architecture. rq is ques-
tion representation.

rq

Attention

raave

෨𝑋𝑡

𝑋𝑡

ℎ𝑡GRU h0

Figure 3: IARNN-CONTEXT architecture for
building candidate answer sentence representa-
tion. h0 is added for completeness.

4.2 IARNN-CONTEXT

IABRNN-WORD attend input word embedding
directly. However, the answer sentence may con-
sist of consecutive words that are related to the
question, and a word may be irrelevant to ques-
tion by itself but relevant in the context of answer
sentence.

So the above word by word attention mech-
anism may not capture the relationship between
multiple words. In order to import contextual in-
formation into attention process, we modify the at-
tention weights in Equation 4 with additional con-
text information:

wC(t) = Mhcht−1 + Mqcrq

αt
C = σ(wT

C(t)xt)
x̃t = αt

C ∗ xt

(6)

where we use ht−1 as context, Mhc and Mqc are
attention weight matrices, wC(t) is the attention
representation which consists of both question and
word context information. This additional con-
text attention endows our model to capture rele-
vant part in longer text span. We show this model
in Figure 3.
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4.3 IARNN-GATE
Inspired by the previous work of LSTM (Hochre-
iter and Schmidhuber, 1997) on solving the gra-
dient exploding problem in RNN and recent work
on building distributed word representation with
topic information(Ghosh et al., 2016), instead of
adding attention information to the original input,
we can apply attention deeper to the GRU inner
activation (i.e zt and ft). Because these inner ac-
tivation units control the flow of the information
within the hidden stage and enables information
to pass long distance in a sentence, we add atten-
tion information to these active gates to influence
the hidden representation as follows:

zt = σ(Wxzxt + Whzht−1+Mqzrq)
ft = σ(Wxf xt + Whf ht−1+Mqf rq)

h̃t = tanh(Wxhxt + Whh(ft � ht−1))

ht = (1− zt)� ht−1 + zt � h̃t

(7)

where Mqz and Mhz are attention weight matrices.
In this way, the update and forget units in GRU can
focus on not only long and short term memory but
also the attention information from the question.
The architecture is shown in Figure 4.

4.4 IARNN-OCCAM
In answer selection, the answer sentence may
only contain small number of words that are re-
lated to the question. In IARNN-WORD and
IARNN-CONTEXT, we calculate each word at-
tention weight without considering total weights.
Similar with Raiman(2015) who adds regulation
to the input gate, we punish the summation of the
attention weights to enforce sparsity. This is an
application of Occam’s Razor: Among the whole
words set, we choose those with fewest number
that can represent the sentence. However, assign-
ing a pre-defined hyper-parameter for this regula-
tion2 is not an ideal way because it punishes all
question attention weights with same strength. For
different questions there may be different number
of snippets in candidate answer that are required.
For example, when the question type is When or
Who, answer sentence may only contains a little
relavant words so we should impose more sparsity
on the summation of the attention. But when the

2For example, in many machine learning problem the
original objective sometimes followed with a L1 or L2

regulation with hyper-parameter λ1 or λ2 to control the
tradeoff between the original objective J and the sparsity
criterion:J∗ = J + (λ1|λ2)

∑
(L1|L2norm)

rq

ht

xt

ht-1

xt

ht-1

zt ft

෨ℎ𝑡

1-

Attention

GRU

Figure 4: IABRNN-GATE architecture. We show
one time step GRU inner state process within the
blue dotted line.

question type is Why or How, there may be much
more words on the sentence that are relevant to
the question so we should set the regulation value
small accordingly. In this work, this attention reg-
ulation is added as follows: for the specific ques-
tion Qi and its representation ri

q, we use a vector
wqp to project it into scalar value ni

p, and then we
add it into the original objective Ji as follows:

ni
p = max{wT

qpri
q, λq}

J∗i = Ji + ni
p

mc∑
t=1

αi
t

(8)

where αi
t is attention weights in Equation 4 and

Equation 6. λq is a small positive hyper-parameter.
It needs to mention that we do not regulate
IARNN-GATE because the attention has been em-
bedded to gate activation.

5 Experiments

5.1 Quantify Traditional Attention based
Model Bias Problem

In order to quantify the outer attention based RNN
model’s attention bias problem in Section 3, we
build an outer attention based model similar with
Tan (2015). First of all, for the question we build
its representation by averaging its hidden states in
LSTM, then we build the candidate answer sen-
tence representation in an attentive way introduced
in Section 3. Next we use the cosine similarity to
compare question and answer representation simi-
larity. Finally, we adopt max-margin hinge loss as
objective:

L = max{0,M − cosine(rq, ra+)
+ cosine(rq, ra−)} (9)
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Figure 5: One directional OARNN attention dis-
tribution, the horizontal axis is position of word
in a sentence that has been normalized from 1 to
10000.
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Figure 6: Bi-directional OARNN attention distri-
bution, the horizontal axis is the postion of the
word in a sentence that has been normalized from
1 to 10000.

where a+ is ground truth answer candidate and
a− stands for negative one, the scalar M is a pre-
defined margin. When training result saturates af-
ter 50 epoches, we get the attention weight distri-
bution (i.e. sq in Equation 2). The experiment is
conducted on two answer selection datasets: Wik-
iQA (Yang et al., 2015) and TrecQA (Wang et al.,
2007). The normalized attention weights is re-
ported in Figure 5.

However, the above model use only forward
LSTM to build hidden state representation, the at-
tention bias problem may attribute to the biased
answer distribution: the useful part of the an-
swer to the question sometimes may located at the
end of the sentence. So we try OARNN in bidi-
rectional architecture, where the forward LSTM
and backward LSTM are concatenated for hidden
representation, The bidirectional attention based
LSTM attention distribution is shown in Figure 6.

Analysis: As is shown in Figure 5 and 6, for
one-directional OARNN, as we move from begin-
ning to the end in a sentence, the question atten-

tion gains continuously; when we use bidirectional
OARNN, the hidden representations near two ends
of a sentence get more attention. This is consistent
with our assumption that for a hidden representa-
tion in RNN, the closer to the end of a sentence,
the more attention it should drawn from question.
But the relevant part may be located anywhere in a
answer. As a result, when the sample size is large
enough3, the attention weight should be unformly
distributed. The traditional attention after repre-
sentation style RNN may suffer from the biased
attention problem. Our IARNN models are free
from this problem and distribute nearly uniform
(orange line) in a sentence.

5.2 IARNN evaluation
Common Setup: We use the off-the-shelf 100-
dimension word embeddings from word2vec4, and
initiate all weights and attention matrices by fixing
their largest singular values to 1 (Pascanu et al.,
2013). IARNN-OCCAM base regulation hyper-
parameter λq is set to 0.05, we addL2 penalty with
a coefficient of 10−5 . Dropout (Srivastava et al.,
2014) is further applied to every parameters with
probability 30%. We use Adadelta(Zeiler, 2012)
with ρ = 0.90 to update parameters.

We choose three datasets for evaluation: Insur-
anceQA, WikiQA and TREC-QA. These datasets
contain questions from different domains. Table 1
presents some statistics about these datasets. We
adopt a max-margin hinge loss as training objec-
tive. The results are reported in terms of MAP and
MRR in WikiQA and TREC-QA and accuracy in
InsuranceQA.

We use bidirectional GRU for all models. We
share the GRU parameter between question and
answer which has shown significant improvement
on performance and convergency rate (Tan et al.,
2015; Feng et al., 2015).

There are two common baseline systems for
above three datasets:

• GRU: A non-attentive GRU-RNN that mod-
els the question and answer separately.

• OARNN: Outer attention-based RNN mod-
els (OARNN) with GRU which is detailed in
Section 5.1.

WikiQA (Yang et al., 2015) is a recently
released open-domain question answering

310000 for WikiQA and 5000 for TrecQA in experiment.
4https://code.google.com/archive/p/word2vec/
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Dataset(train / test / dev) InsuranceQA WikiQA TREC-QA
# of questions 12887 / 1800x2 /1000 873 / 243 / 126 78 / 68 / 65
# of sentences 24981(ALL) 20360 / 6165 / 2733 5919 / 1442 / 1117

Ave length of question 7.16 7.16 / 7.26 / 7.23 11.39 / 8.63 / 8.00
Ave length of sentence 49.5 25.29 / 24.59 / 24.59 30.39 / 25.61 / 24.9

Table 1: The statistics of three answer selection datasets. For the TREC-QA, we use the cleaned dataset
that has been edit by human. For WikiQA and TREC-QA we remove all the questions that has no right
or wrong answers.

System MAP MRR
(Yang et al., 2015) 0.652 0.6652
(Yin et al., 2015) 0.6921 0.7108
(Santos et al., 2016) 0.6886 0.6957
GRU 0.6581 0.6691
OARNN 0.6881 0.7013
IARNN-word 0.7098 0.7234
IARNN-Occam(word) 0.7121 0.7318
IARNN-context 0.7182 0.7339
IARNN-Occam(context) 0.7341 0.7418
IARNN-Gate 0.7258 0.7394

Table 2: Performances on WikiQA

dataset in which all answers are collected from
Wikipedia. In addition to the original (ques-
tion,positive,negative) triplets, we randomly
select a bunch of negative answer candidates
from answer sentence pool and finally we get a
relatively abundant 50,298 triplets. We use cosine
similarity to compare the question and candidate
answer sentence. The hidden variable’s length
is set to 165 and batch size is set to 1. We use
sigmoid as GRU inner active function, we keep
word embedding fixed during training. Margin M
was set to 0.15 which is tuned in the development
set. We adopt three additional baseline systems
applied to WikiQA: (1) A bigram CNN models
with average pooling(Yang et al., 2015). (2)
An attention-based CNN model which uses an
interactive attention matrix for both question and
answer(Yin et al., 2015) 5 (3) An attention based
CNN models which builds the attention matrix
after sentence representation(Santos et al., 2016).
The result is shown in Table 2.

InsuranceQA (Feng et al., 2015) is a domain
specific answer selection dataset in which all ques-
tions is related to insurance. Its vocabulary size
is comparatively small (22,353), we set the batch
size to 16 and the hidden variable size to 145,
hinge loss margin M is adjusted to 0.12 by evalu-
ation behavior. Word embeddings are also learned
during training. We adopt the Geometric mean of
Euclidean and Sigmoid Dot (GESD) proposed in
(Feng et al., 2015) to measure the similarity be-

5In their experiment some extra linguistic features was
also added for better performance.

System Dev Test1 Test2
(Feng et al., 2015) 65.4 65.3 61.0
(Santos et al., 2016) 66.8 67.8 60.3
GRU 59.4 53.2 58.1
OARNN 65.4 66.1 60.2
IARNN-word 67.2125 67.0651 61.5896
IARNN-Occam(word) 69.9130 69.5923 63.7317
IARNN-context 67.1025 66.7211 63.0656
IARNN-Occam(context) 69.1125 68.8651 65.1396
IARNN-Gate 69.9812 70.1128 62.7965

Table 3: Experiment result in InsuranceQA, (Feng
et al., 2015) is a CNN architecture without atten-
tion mechanism.

System MAP MRR
(Wang and Nyberg, 2015) † 0.7134 0.7913
(Wang and Ittycheriah, 2015) † 0.7460 0.8200
(Santos et al., 2016) † 0.7530 0.8511
GRU 0.6487 0.6991
OARNN 0.6887 0.7491
IARNN-word 0.7098 0.7757
IARNN-Occam(word) 0.7162 0.7916
IARNN-context 0.7232 0.8069
IARNN-Occam(context) 0.7272 0.8191
IARNN-Gate 0.7369 0.8208

Table 4: Result of different systems in Trec-
QA.(Wang and Ittycheriah, 2015) propose a ques-
tion similarity model to extract features from word
alignment between two questions which is suitable
to FAQ based QA. It needs to mention that the sys-
tem marked with † are learned on TREC-QA orig-
inal full training data.

tween two representations:

GESD(x, y) =
1

1 + ||x− y||×
1

1 + exp(−γ(xyT + c))

(10)

which shows advantage over cosine similarity in
experiments.

We report accuracy instead of MAP/MRR be-
cause one question only has one right answers in
InsuranceQA. The result is shown in Table 3.

TREC-QA was created by Wang et al.(2007)
based on Text REtrieval Conference (TREC) QA
track (8-13) data. The size of hidden variable was
set to 80, M was set to 0.1. This dataset is com-
paratively small so we set word embedding vector
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Q: how old was monica lewinsky during the affair ?
Monica Samille Lewinsky ( born July 23 , 1973 ) is an American woman with whom United States President Bill 
Clinton admitted to having had an `` improper relationship '' while she worked at the White House in 1995 
and 1996 . 

Monica Samille Lewinsky ( born July 23 , 1973 ) is an American woman with whom United States President Bill 
Clinton admitted to having had an `` improper relationship '' while she worked at the White House in 1995 
and 1996 . 

OARNN:

IARNN-CONTEXT:

Figure 7: An example demonstrates the advantage of IARNN in capturing the informed part of a sentence
compared with OARNN.

The effects of relativistic self focusing and preformed plasma channel guiding are analyzed.

Q: what did gurgen askaryan research when he entered the moscow state university?

IARNN-CONTEXT:

IARNN-WORD:

Answer:

Figure 8: An example illustrates the IARNN-CONTEXT could attend the consecutive words in a sen-
tence.

size to 50 and update it during training. It needs to
mention that we do not use the original TREC-QA
training data but the smaller one which has been
edited by human. The result is shown in Table 4.

6 Result and Analysis

We can see from the result tables that the atten-
tion based RNN models achieve better results than
the non-attention RNN models (GRU). OARNN
and IARNN beat the non-attentive GRU in ev-
ery datasets by a large margin, which proves the
importance of attention mechanism in represent-
ing answer sentence in AS. For the non-attentive
models, the fixed width of the hidden vectors is
a bottleneck for interactive information flow, so
the informative part of the question could only
propagate through the similarity score which is
blurred for the answer representation to be prop-
erly learned. But in attention based models, the
question attention information is introduced to in-
fluence the answer sentence representation explic-
itly, in this way we can improve sentence repre-
sentation for the specific target (or topic (Ghosh et
al., 2016)).

The inner attention RNN models outperform
outer attention model in three datasets, this is
corresponds to our intuition that the bias atten-
tion problem in OARNN may cause a biasd sen-
tence representation. An example of the attention
heatmap is shown in Figure7. To answer the ques-
tion, we should focus on “born July 23 , 1973”
which is located at the beginning of the sentence.
But in OARNN, the attention is biases towards the
last few last words in the answer. In IARNN-
CONTEXT, the attention is paid to the relevant

part and thus results in a more relevant representa-
tion.

The attention with context information could
also improves the result, we can see that IARNN-
CONTEXT and IARNN-GATE outperform
IARNN-WORD in three experiments. IARNN-
WORD may ignore the importance of some
words because it attends answer word by word,
for example in Figure8, the specific word self or
focusing may not be related to the question by
itself, but their combination and the previous word
relativistic is very informative for answering the
question. In IARNN-CONTEXT we add attention
information dynamically in RNN process, thus it
could capture the relationship between word and
its context.

In general, we can see from table3-5 that the
IARNN-GATE outperforms IARNN-CONTEXT
and IARNN-WORD. In IARNN-WORD and
IARNN-CONTEXT, the attention is added to im-
pact each word representation, but the recur-
rent process of updating RNN hidden state rep-
resentations are not influenced. IARNN-GATE
embeds the attention into RNN inner activa-
tion, the attentive activation gate are more ca-
pable of controlling the attention information in
RNN. This enlights an important future work:
we could add attention information as an individ-
ual activation gate, and use this additional gate
to control attention information flow in RNN.
The regulation of the attention weights (Oc-
cam’s attention) could also improve the represen-
tation. We also conduct an experiment on Wik-
iQA (training process) to measure the Occam’s at-
tention regulation on different type of questions.
We use rules to classify question into 6 types
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Figure 9: The Occam’s attention regulation on dif-
ferent types of question.

(i.e. who,why,how,when,where,what), and each of
them has the same number of samples to avoid
data imbalance. We report the Occam’m regula-
tion (ni

p in Equation.8) in Figure 9. As we can see
from the radar graph, who and where are regulized
severely compared with other types of question,
this is correspond to their comparetively less infor-
mation in the answer candidate to answer the ques-
tion. This emphasize that different types question
should impose different amount of regulation on
its candidate answers. The experiment result on
three AS datasets shows that the improvement of
Occam’s attention is significant in WikiQA and in-
suranceQA. Because most of the sentence are rel-
atively long in these two datasets, and the longer
the sentence, the more noise it may contain, so
we should punish the summation of the attention
weights to remove some irrelevant parts. Our
question-specific Occam’s attention punishes the
summation of attention and thus achieves a bet-
ter result for both IARNN-WORD and IARNN-
CONTEXT.

7 Conclusion and Future Work

In this work we present some variants of tradi-
tional attention-based RNN models with GRU.
The key idea is attention before representation.
We analyze the deficiency of traditional outer
attention-based RNN models qualitatively and
quantitatively. We propose three models where at-
tention is embedded into representation process.
Occam’s Razor is further implemented to this at-
tention for better representation. Our results on
answer selection demonstrate that the inner atten-
tion outperforms the outer attention in RNN. Our
models can be further extended to other NLP tasks
such as recognizing textual entailments where at-
tention mechanism is important for sentence rep-

resentation. In the future we plan to apply our
inner-attention intuition to other neural networks
such as CNN or multi-layer perceptron.
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