
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language Processing, pages 1321–1331,

Beijing, China, July 26-31, 2015. c©2015 Association for Computational Linguistics

Semantic Parsing via Staged Query Graph Generation:
Question Answering with Knowledge Base

Wen-tau Yih Ming-Wei Chang Xiaodong He Jianfeng Gao
Microsoft Research

Redmond, WA 98052, USA
{scottyih,minchang,xiaohe,jfgao}@microsoft.com

Abstract

We propose a novel semantic parsing
framework for question answering using a
knowledge base. We define a query graph
that resembles subgraphs of the knowl-
edge base and can be directly mapped to
a logical form. Semantic parsing is re-
duced to query graph generation, formu-
lated as a staged search problem. Unlike
traditional approaches, our method lever-
ages the knowledge base in an early stage
to prune the search space and thus simpli-
fies the semantic matching problem. By
applying an advanced entity linking sys-
tem and a deep convolutional neural net-
work model that matches questions and
predicate sequences, our system outper-
forms previous methods substantially, and
achieves an F1 measure of 52.5% on the
WEBQUESTIONS dataset.

1 Introduction

Organizing the world’s facts and storing them
in a structured database, large-scale knowledge
bases (KB) like DBPedia (Auer et al., 2007) and
Freebase (Bollacker et al., 2008) have become
important resources for supporting open-domain
question answering (QA). Most state-of-the-art
approaches to KB-QA are based on semantic pars-
ing, where a question (utterance) is mapped to its
formal meaning representation (e.g., logical form)
and then translated to a KB query. The answers to
the question can then be retrieved simply by exe-
cuting the query. The semantic parse also provides
a deeper understanding of the question, which can
be used to justify the answer to users, as well as to
provide easily interpretable information to devel-
opers for error analysis.

However, most traditional approaches for se-
mantic parsing are largely decoupled from the

knowledge base, and thus are faced with sev-
eral challenges when adapted to applications like
QA. For instance, a generic meaning represen-
tation may have the ontology matching problem
when the logical form uses predicates that differ
from those defined in the KB (Kwiatkowski et al.,
2013). Even when the representation language
is closely related to the knowledge base schema,
finding the correct predicates from the large vo-
cabulary in the KB to relations described in the
utterance remains a difficult problem (Berant and
Liang, 2014).

Inspired by (Yao and Van Durme, 2014; Bao et
al., 2014), we propose a semantic parsing frame-
work that leverages the knowledge base more
tightly when forming the parse for an input ques-
tion. We first define a query graph that can be
straightforwardly mapped to a logical form in λ-
calculus and is semantically closely related to λ-
DCS (Liang, 2013). Semantic parsing is then re-
duced to query graph generation, formulated as
a search problem with staged states and actions.
Each state is a candidate parse in the query graph
representation and each action defines a way to
grow the graph. The representation power of the
semantic parse is thus controlled by the set of le-
gitimate actions applicable to each state. In partic-
ular, we stage the actions into three main steps:
locating the topic entity in the question, finding
the main relationship between the answer and the
topic entity, and expanding the query graph with
additional constraints that describe properties the
answer needs to have, or relationships between the
answer and other entities in the question.

One key advantage of this staged design is
that through grounding partially the utterance to
some entities and predicates in the KB, we make
the search far more efficient by focusing on the
promising areas in the space that most likely lead
to the correct query graph, before the full parse
is determined. For example, after linking “Fam-
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ily Guy” in the question “Who first voiced Meg
on Family Guy?” to FamilyGuy (the TV show)
in the knowledge base, the procedure needs only
to examine the predicates that can be applied to
FamilyGuy instead of all the predicates in the
KB. Resolving other entities also becomes easy,
as given the context, it is clear that Meg refers
to MegGriffin (the character in Family Guy).
Our design divides this particular semantic pars-
ing problem into several sub-problems, such as en-
tity linking and relation matching. With this in-
tegrated framework, best solutions to each sub-
problem can be easily combined and help pro-
duce the correct semantic parse. For instance,
an advanced entity linking system that we em-
ploy outputs candidate entities for each question
with both high precision and recall. In addi-
tion, by leveraging a recently developed semantic
matching framework based on convolutional net-
works, we present better relation matching models
using continuous-space representations instead of
pure lexical matching. Our semantic parsing ap-
proach improves the state-of-the-art result on the
WEBQUESTIONS dataset (Berant et al., 2013) to
52.5% in F1, a 7.2% absolute gain compared to
the best existing method.

The rest of this paper is structured as follows.
Sec. 2 introduces the basic notion of the graph
knowledge base and the design of our query graph.
Sec. 3 presents our search-based approach for gen-
erating the query graph. The experimental results
are shown in Sec. 4, and the discussion of our ap-
proach and the comparisons to related work are in
Sec. 5. Finally, Sec. 6 concludes the paper.

2 Background

In this work, we aim to learn a semantic parser
that maps a natural language question to a logi-
cal form query q, which can be executed against a
knowledge baseK to retrieve the answers. Our ap-
proach takes a graphical view of bothK and q, and
reduces semantic parsing to mapping questions to
query graphs. We describe the basic design below.

2.1 Knowledge base

The knowledge base K considered in this work
is a collection of subject-predicate-object triples
(e1, p, e2), where e1, e2 ∈ E are the entities (e.g.,
FamilyGuy or MegGriffin) and p ∈ P is a
binary predicate like character. A knowledge
base in this form is often called a knowledge graph

Family Guy cvt2

Meg Griffin

Lacey Chabert

1/31/1999

cvt1

fr
om

12/26/1999

cvt3

series

Mila Kunis

Figure 1: Freebase subgraph of Family Guy

because of its straightforward graphical represen-
tation – each entity is a node and two related en-
tities are linked by a directed edge labeled by the
predicate, from the subject to the object entity.

To compare our approach to existing methods,
we use Freebase, which is a large database with
more than 46 million topics and 2.6 billion facts.
In Freebase’s design, there is a special entity cate-
gory called compound value type (CVT), which is
not a real-world entity, but is used to collect mul-
tiple fields of an event or a special relationship.

Fig. 1 shows a small subgraph of Freebase re-
lated to the TV show Family Guy. Nodes are the
entities, including some dates and special CVT en-
tities1. A directed edge describes the relation be-
tween two entities, labeled by the predicate.

2.2 Query graph

Given the knowledge graph, executing a logical-
form query is equivalent to finding a subgraph that
can be mapped to the query and then resolving the
binding of the variables. To capture this intuition,
we describe a restricted subset of λ-calculus in a
graph representation as our query graph.

Our query graph consists of four types of nodes:
grounded entity (rounded rectangle), existential
variable (circle), lambda variable (shaded circle),
aggregation function (diamond). Grounded enti-
ties are existing entities in the knowledge base K.
Existential variables and lambda variables are un-

1In the rest of the paper, we use the term entity for both
real-world and CVT entities, as well as properties like date or
height. The distinction is not essential to our approach.
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Family Guy cast

Meg Griffinargmin

xy

Figure 2: Query graph that represents the question
“Who first voiced Meg on Family Guy?”

grounded entities. In particular, we would like to
retrieve all the entities that can map to the lambda
variables in the end as the answers. Aggregation
function is designed to operate on a specific entity,
which typically captures some numerical proper-
ties. Just like in the knowledge graph, related
nodes in the query graph are connected by directed
edges, labeled with predicates in K.

To demonstrate this design, Fig. 2 shows one
possible query graph for the question “Who first
voiced Meg on Family Guy?” using Freebase.
The two entities, MegGriffin and FamilyGuy
are represented by two rounded rectangle nodes.
The circle node y means that there should exist
an entity describing some casting relations like
the character, actor and the time she started the
role2. The shaded circle node x is also called
the answer node, and is used to map entities re-
trieved by the query. The diamond node arg min
constrains that the answer needs to be the ear-
liest actor for this role. Equivalently, the logi-
cal form query in λ-calculus without the aggrega-
tion function is: λx.∃y.cast(FamilyGuy, y) ∧
actor(y, x) ∧ character(y,MegGriffin)
Running this query graph against K as in
Fig. 1 will match both LaceyChabert and
MilaKunis before applying the aggregation
function, but only LaceyChabert is the correct
answer as she started this role earlier (by checking
the from property of the grounded CVT node).

Our query graph design is inspired by (Reddy
et al., 2014), but with some key differences. The
nodes and edges in our query graph closely re-
semble the exact entities and predicates from the
knowledge base. As a result, the graph can
be straightforwardly translated to a logical form
query that is directly executable. In contrast, the
query graph in (Reddy et al., 2014) is mapped
from the CCG parse of the question, and needs fur-
ther transformations before mapping to subgraphs

2y should be grounded to a CVT entity in this case.

f Se Sp Sc

Ae Ap Aa/Ac

Aa/Ac

Figure 3: The legitimate actions to grow a query
graph. See text for detail.

of the target knowledge base to retrieve answers.
Semantically, our query graph is more related to

simple λ-DCS (Berant et al., 2013; Liang, 2013),
which is a syntactic simplification of λ-calculus
when applied to graph databases. A query graph
can be viewed as the tree-like graph pattern of a
logical form in λ-DCS. For instance, the path from
the answer node to an entity node can be described
using a series of join operations in λ-DCS. Differ-
ent paths of the tree graph are combined via the
intersection operators.

3 Staged Query Graph Generation

We focus on generating query graphs with the fol-
lowing properties. First, the tree graph consists of
one entity node as the root, referred as the topic
entity. Second, there exists only one lambda vari-
able x as the answer node, with a directed path
from the root to it, and has zero or more existential
variables in-between. We call this path the core
inferential chain of the graph, as it describes the
main relationship between the answer and topic
entity. Variables can only occur in this chain, and
the chain only has variable nodes except the root.
Finally, zero or more entity or aggregation nodes
can be attached to each variable node, including
the answer node. These branches are the addi-
tional constraints that the answers need to satisfy.
For example, in Fig. 2, FamilyGuy is the root
and FamilyGuy→ y → x is the core inferential
chain. The branch y → MegGriffin specifies
the character and y → arg min constrains that the
answer needs to be the earliest actor for this role.

Given a question, we formalize the query
graph generation process as a search problem,
with staged states and actions. Let S =⋃ {φ,Se,Sp,Sc} be the set of states, where each
state could be an empty graph (φ), a single-
node graph with the topic entity (Se), a core in-
ferential chain (Sp), or a more complex query
graph with additional constraints (Sc). Let A =⋃ {Ae,Ap,Ac,Aa} be the set of actions. An ac-
tion grows a given graph by adding some edges
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s1

Meg Griffin
s2

ϕ 
s0

Figure 4: Two possible topic entity linking actions
applied to an empty graph, for question “Who first
voiced [Meg] on [Family Guy]?”

and nodes. In particular, Ae picks an entity node;
Ap determines the core inferential chain; Ac and
Aa add constraints and aggregation nodes, respec-
tively. Given a state, the valid action set can be de-
fined by the finite state diagram in Fig. 3. Notice
that the order of possible actions is chosen for the
convenience of implementation. In principle, we
could choose a different order, such as matching
the core inferential chain first and then resolving
the topic entity linking. However, since we will
consider multiple hypotheses during search, the
order of the staged actions can simply be viewed
as a different way to prune the search space or to
bias the exploration order.

We define the reward function on the state space
using a log-linear model. The reward basically
estimates the likelihood that a query graph cor-
rectly parses the question. Search is done using
the best-first strategy with a priority queue, which
is formally defined in Appendix A. In the follow-
ing subsections, we use a running example of find-
ing the semantic parse of question qex = “Who
first voiced Meg of Family Guy?” to describe the
sequence of actions.

3.1 Linking Topic Entity

Starting from the initial state s0, the valid actions
are to create a single-node graph that corresponds
to the topic entity found in the given question. For
instance, possible topic entities in qex can either be
FamilyGuy or MegGriffin, shown in Fig. 4.

We use an entity linking system that is designed
for short and noisy text (Yang and Chang, 2015).
For each entity e in the knowledge base, the sys-
tem first prepares a surface-form lexicon that lists
all possible ways that e can be mentioned in text.
This lexicon is created using various data sources,
such as names and aliases of the entities, the an-
chor text in Web documents and the Wikipedia re-
direct table. Given a question, it considers all the

Family Guy
s1

Family Guy cast actor xy
s3

Family Guy writer start xy
s4

Family Guy genre x
s5

Figure 5: Candidate core inferential chains start
from the entity FamilyGuy.

consecutive word sequences that have occurred in
the lexicon as possible mentions, paired with their
possible entities. Each pair is then scored by a sta-
tistical model based on its frequency counts in the
surface-form lexicon. To tolerate potential mis-
takes of the entity linking system, as well as ex-
ploring more possible query graphs, up to 10 top-
ranked entities are considered as the topic entity.
The linking score will also be used as a feature for
the reward function.

3.2 Identifying Core Inferential Chain

Given a state s that corresponds to a single-node
graph with the topic entity e, valid actions to ex-
tend this graph is to identify the core inferential
chain; namely, the relationship between the topic
entity and the answer. For example, Fig. 5 shows
three possible chains that expand the single-node
graph in s1. Because the topic entity e is given,
we only need to explore legitimate predicate se-
quences that can start from e. Specifically, to re-
strict the search space, we explore all paths of
length 2 when the middle existential variable can
be grounded to a CVT node and paths of length 1 if
not. We also consider longer predicate sequences
if the combinations are observed in training data3.

Analogous to the entity linking problem, where
the goal is to find the mapping of mentions to en-
tities in K, identifying the core inferential chain
is to map the natural utterance of the question to
the correct predicate sequence. For question “Who
first voiced Meg on [Family Guy]?” we need to
measure the likelihood that each of the sequences
in {cast-actor, writer-start, genre}
correctly captures the relationship between Family
Guy and Who. We reduce this problem to measur-
ing semantic similarity using neural networks.

3Decomposing relations in the utterance can be done us-
ing decoding methods (e.g., (Bao et al., 2014)). However,
similar to ontology mismatch, the relation in text may not
have a corresponding single predicate, such as grandparent
needs to be mapped to parent-parent in Freebase.
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Figure 6: The architecture of the convolutional
neural networks (CNN) used in this work. The
CNN model maps a variable-length word se-
quence (e.g., a pattern or predicate sequence) to a
low-dimensional vector in a latent semantic space.
See text for the description of each layer.

3.2.1 Deep Convolutional Neural Networks
To handle the huge variety of the semantically
equivalent ways of stating the same question, as
well as the mismatch of the natural language ut-
terances and predicates in the knowledge base, we
propose using Siamese neural networks (Brom-
ley et al., 1993) for identifying the core inferen-
tial chain. For instance, one of our constructions
maps the question to a pattern by replacing the en-
tity mention with a generic symbol <e> and then
compares it with a candidate chain, such as “who
first voiced meg on<e>” vs. cast-actor. The
model consists of two neural networks, one for
the pattern and the other for the inferential chain.
Both are mapped to k-dimensional vectors as the
output of the networks. Their semantic similar-
ity is then computed using some distance func-
tion, such as cosine. This continuous-space rep-
resentation approach has been proposed recently
for semantic parsing and question answering (Bor-
des et al., 2014a; Yih et al., 2014) and has shown
better results compared to lexical matching ap-
proaches (e.g., word-alignment models). In this
work, we adapt a convolutional neural network
(CNN) framework (Shen et al., 2014b; Shen et al.,
2014a; Gao et al., 2014) to this matching problem.
The network architecture is illustrated in Fig. 6.

The CNN model first applies a word hashing
technique (Huang et al., 2013) that breaks a word
into a vector of letter-trigrams (xt → ft in Fig. 6).
For example, the bag of letter-trigrams of the word
“who” are #-w-h, w-h-o, h-o-# after adding the

Family Guy cast actor xy

Family Guy cast actor xy

Meg Griffin

Family Guy xy

Meg Griffinargmin

s3

s6

s7

Figure 7: Extending an inferential chain with con-
straints and aggregation functions.

word boundary symbol #. Then, it uses a convo-
lutional layer to project the letter-trigram vectors
of words within a context window of 3 words to
a local contextual feature vector (ft → ht), fol-
lowed by a max pooling layer that extracts the
most salient local features to form a fixed-length
global feature vector (v). The global feature vector
is then fed to feed-forward neural network layers
to output the final non-linear semantic features (y),
as the vector representation of either the pattern or
the inferential chain.

Training the model needs positive pairs, such as
a pattern like “who first voiced meg on <e>” and
an inferential chain like cast-actor. These
pairs can be extracted from the full semantic
parses when provided in the training data. If the
correct semantic parses are latent and only the
pairs of questions and answers are available, such
as the case in the WEBQUESTIONS dataset, we
can still hypothesize possible inferential chains by
traversing the paths in the knowledge base that
connect the topic entity and the answer. Sec. 4.1
will illustrate this data generation process in detail.

Our model has two advantages over the embed-
ding approach (Bordes et al., 2014a). First, the
word hashing layer helps control the dimensional-
ity of the input space and can easily scale to large
vocabulary. The letter-trigrams also capture some
sub-word semantics (e.g., words with minor ty-
pos have almost identical letter-trigram vectors),
which makes it especially suitable for questions
from real-world users, such as those issued to a
search engine. Second, it uses a deeper archi-
tecture with convolution and max-pooling layers,
which has more representation power.

1325



3.3 Augmenting Constraints & Aggregations

A graph with just the inferential chain forms the
simplest legitimate query graph and can be exe-
cuted against the knowledge base K to retrieve
the answers; namely, all the entities that x can
be grounded to. For instance, the graph in s3 in
Fig. 7 will retrieve all the actors who have been on
FamilyGuy. Although this set of entities obvi-
ously contains the correct answer to the question
(assuming the topic entity FamilyGuy is correct),
it also includes incorrect entities that do not sat-
isfy additional constraints implicitly or explicitly
mentioned in the question.

To further restrict the set of answer entities, the
graph with only the core inferential chain can be
expanded by two types of actions: Ac and Aa. Ac

is the set of possible ways to attach an entity to a
variable node, where the edge denotes one of the
valid predicates that can link the variable to the
entity. For instance, in Fig. 7, s6 is created by
attaching MegGriffin to y with the predicate
character. This is equivalent to the last con-
junctive term in the corresponding λ-expression:
λx.∃y.cast(FamilyGuy, y) ∧ actor(y, x) ∧
character(y,MegGriffin). Sometimes, the
constraints are described over the entire answer
set through the aggregation function, such as the
word “first” in our example question qex. This is
handled similarly by actions Aa, which attach an
aggregation node on a variable node. For exam-
ple, the arg min node of s7 in Fig. 7 chooses the
grounding with the smallest from attribute of y.

The full possible constraint set can be derived
by first issuing the core inferential chain as a query
to the knowledge base to find the bindings of vari-
ables y’s and x, and then enumerating all neigh-
boring nodes of these entities. This, however,
often results in an unnecessarily large constraint
pool. In this work, we employ simple rules to re-
tain only the nodes that have some possibility to be
legitimate constraints. For instance, a constraint
node can be an entity that also appears in the ques-
tion (detected by our entity linking component), or
an aggregation constraint can only be added if cer-
tain keywords like “first” or “latest” occur in the
question. The complete set of these rules can be
found in Appendix B.

3.4 Learning the reward function

Given a state s, the reward function γ(s) basically
judges whether the query graph represented by s

is the correct semantic parse of the input ques-
tion q. We use a log-linear model to learn the re-
ward function. Below we describe the features and
the learning process.

3.4.1 Features
The features we designed essentially match spe-
cific portions of the graph to the question, and gen-
erally correspond to the staged actions described
previously, including:

Topic Entity The score returned by the entity
linking system is directly used as a feature.

Core Inferential Chain We use similarity
scores of different CNN models described in
Sec. 3.2.1 to measure the quality of the core infer-
ential chain. PatChain compares the pattern (re-
placing the topic entity with an entity symbol) and
the predicate sequence. QuesEP concatenates the
canonical name of the topic entity and the predi-
cate sequence, and compares it with the question.
This feature conceptually tries to verify the entity
linking suggestion. These two CNN models are
learned using pairs of the question and the infer-
ential chain of the parse in the training data. In
addition to the in-domain similarity features, we
also train a ClueWeb model using the Freebase
annotation of ClueWeb corpora (Gabrilovich et al.,
2013). For two entities in a sentence that can be
linked by one or two predicates, we pair the sen-
tences and predicates to form a parallel corpus to
train the CNN model.

Constraints & Aggregations When a con-
straint node is present in the graph, we use some
simple features to check whether there are words
in the question that can be associated with the con-
straint entity or property. Examples of such fea-
tures include whether a mention in the question
can be linked to this entity, and the percentage of
the words in the name of the constraint entity ap-
pear in the question. Similarly, we check the ex-
istence of some keywords in a pre-compiled list,
such as “first”, “current” or “latest” as features for
aggregation nodes such as arg min. The complete
list of these simple word matching features can
also be found in Appendix B.

Overall The number of the answer entities re-
trieved when issuing the query to the knowledge
base and the number of nodes in the query graph
are both included as features.
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Family Guy cast actor

Meg Griffinargmin

xy

q =  Who first voiced Meg on Family Guy? 

(1) EntityLinkingScore(FamilyGuy,  Family Guy ) = 0.9
(2) PatChain( who first voiced meg on <e> , cast-actor) = 0.7
(3) QuesEP(q,  family guy cast-actor ) = 0.6
(4) ClueWeb( who first voiced meg on <e> , cast-actor) = 0.2
(5) ConstraintEntityWord( Meg Griffin , q) = 0.5
(6) ConstraintEntityInQ( Meg Griffin , q) = 1
(7) AggregationKeyword(argmin, q) = 1
(8) NumNodes(s) = 5
(9) NumAns(s) = 1

s

Figure 8: Active features of a query graph s. (1)
is the entity linking score of the topic entity. (2)-
(4) are different model scores of the core chain.
(5) indicates 50% of the words in “Meg Griffin”
appear in the question q. (6) is 1 when the mention
“Meg” in q is correctly linked to MegGriffin
by the entity linking component. (8) is the number
of nodes in s. The knowledge base returns only 1
entity when issuing this query, so (9) is 1.

To illustrate our feature design, Fig. 8 presents
the active features of an example query graph.

3.4.2 Learning

In principle, once the features are extracted, the
model can be trained using any standard off-the-
shelf learning algorithm. Instead of treating it as a
binary classification problem, where only the cor-
rect query graphs are labeled as positive, we view
it as a ranking problem. Suppose we have several
candidate query graphs for each question4. Let ga

and gb be the query graphs described in states sa

and sb for the same question q, and the entity sets
Aa and Ab be those retrieved by executing ga and
gb, respectively. Suppose that A is the labeled an-
swers to q. We first compute the precision, recall
and F1 score of Aa and Ab, compared with the
gold answer setA. We then rank sa and sb by their
F1 scores5. The intuition behind is that even if a
query is not completely correct, it is still preferred
than some other totally incorrect queries. In this
work, we use a one-layer neural network model
based on lambda-rank (Burges, 2010) for training
the ranker.

4We will discuss how to create these candidate query
graphs from question/answer pairs in Sec. 4.1.

5We use F1 partially because it is the evaluation metric
used in the experiments.

4 Experiments

We first introduce the dataset and evaluation met-
ric, followed by the main experimental results and
some analysis.

4.1 Data & evaluation metric
We use the WEBQUESTIONS dataset (Berant
et al., 2013), which consists of 5,810 ques-
tion/answer pairs. These questions were collected
using Google Suggest API and the answers were
obtained from Freebase with the help of Amazon
MTurk. The questions are split into training and
testing sets, which contain 3,778 questions (65%)
and 2,032 questions (35%), respectively. This
dataset has several unique properties that make it
appealing and was used in several recent papers
on semantic parsing and question answering. For
instance, although the questions are not directly
sampled from search query logs, the selection pro-
cess was still biased to commonly asked questions
on a search engine. The distribution of this ques-
tion set is thus closer to the “real” information
need of search users than that of a small number
of human editors. The system performance is ba-
sically measured by the ratio of questions that are
answered correctly. Because there can be more
than one answer to a question, precision, recall
and F1 are computed based on the system output
for each individual question. The average F1 score
is reported as the main evaluation metric6.

Because this dataset contains only question and
answer pairs, we use essentially the same search
procedure to simulate the semantic parses for
training the CNN models and the overall reward
function. Candidate topic entities are first gener-
ated using the same entity linking system for each
question in the training data. Paths on the Free-
base knowledge graph that connect a candidate
entity to at least one answer entity are identified
as the core inferential chains7. If an inferential-
chain query returns more entities than the correct
answers, we explore adding constraint and aggre-
gation nodes, until the entities retrieved by the
query graph are identical to the labeled answers, or
the F1 score cannot be increased further. Negative
examples are sampled from of the incorrect can-
didate graphs generated during the search process.

6We used the official evaluation script from http://
www-nlp.stanford.edu/software/sempre/.

7We restrict the path length to 2. In principle, parses of
shorter chains can be used to train the initial reward function,
for exploring longer paths using the same search procedure.
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Method Prec. Rec. F1

(Berant et al., 2013) 48.0 41.3 35.7
(Bordes et al., 2014b) - - 29.7

(Yao and Van Durme, 2014) - - 33.0
(Berant and Liang, 2014) 40.5 46.6 39.9

(Bao et al., 2014) - - 37.5
(Bordes et al., 2014a) - - 39.2

(Yang et al., 2014) - - 41.3
(Wang et al., 2014) - - 45.3

Our approach – STAGG 52.8 60.7 52.5

Table 1: The results of our approach compared to
existing work. The numbers of other systems are
either from the original papers or derived from the
evaluation script, when the output is available.

In the end, we produce 17,277 query graphs with
none-zero F1 scores from the training set questions
and about 1.7M completely incorrect ones.

For training the CNN models to identify the
core inferential chain (Sec. 3.2.1), we only
use 4,058 chain-only query graphs that achieve
F1 = 0.5 to form the parallel question and pred-
icate sequence pairs. The hyper-parameters in
CNN, such as the learning rate and the numbers
of hidden nodes at the convolutional and semantic
layers were chosen via cross-validation. We re-
served 684 pairs of patterns and inference-chains
from the whole training examples as the held-out
set, and the rest as the initial training set. The
optimal hyper-parameters were determined by the
performance of models trained on the initial train-
ing set when applied to the held-out data. We
then fixed the hyper-parameters and retrained the
CNN models using the whole training set. The
performance of CNN is insensitive to the hyper-
parameters as long as they are in a reasonable
range (e.g., 1000± 200 nodes in the convolutional
layer, 300 ± 100 nodes in the semantic layer, and
learning rate 0.05 ∼ 0.005) and the training pro-
cess often converges after ∼ 800 epochs.

When training the reward function, we created
up to 4,000 examples for each question that con-
tain all the positive query graphs and randomly se-
lected negative examples. The model is trained as
a ranker, where example query graphs are ranked
by their F1 scores.

4.2 Results
Tab. 1 shows the results of our system, STAGG
(Staged query graph generation), compared to ex-
isting work8. As can be seen from the table, our

8We do not include results of (Reddy et al., 2014) because
they used only a subset of 570 test questions, which are not

Method #Entities # Covered Ques. # Labeled Ent.
Freebase API 19,485 3,734 (98.8%) 3,069 (81.2%)

Ours 9,147 3,770 (99.8%) 3,318 (87.8%)

Table 2: Statistics of entity linking results on train-
ing set questions. Both methods cover roughly the
same number of questions, but Freebase API sug-
gests twice the number of entities output by our
entity linking system and covers fewer topic enti-
ties labeled in the original data.

system outperforms the previous state-of-the-art
method by a large margin – 7.2% absolute gain.

Given the staged design of our approach, it is
thus interesting to examine the contributions of
each component. Because topic entity linking is
the very first stage, the quality of the entities found
in the questions, both in precision and recall, af-
fects the final results significantly. To get some
insight about how our topic entity linking com-
ponent performs, we also experimented with ap-
plying Freebase Search API to suggest entities for
possible mentions in a question. As can be ob-
served in Tab. 2, to cover most of the training
questions, we only need half of the number of
suggestions when using our entity linking compo-
nent, compared to Freebase API. Moreover, they
also cover more entities that were selected as the
topic entities in the original dataset. Starting from
those 9,147 entities output by our component, an-
swers of 3,453 questions (91.4%) can be found in
their neighboring nodes. When replacing our en-
tity linking component with the results from Free-
base API, we also observed a significant perfor-
mance degradation. The overall system perfor-
mance drops from 52.5% to 48.4% in F1 (Prec =
49.8%, Rec = 55.7%), which is 4.1 points lower.

Next we test the system performance when the
query graph has just the core inferential chain.
Tab. 3 summarizes the results. When only the
PatChain CNN model is used, the performance
is already very strong, outperforming all existing
work. Adding the other CNN models boosts the
performance further, reaching 51.8% and is only
slightly lower than the full system performance.
This may be due to two reasons. First, the ques-
tions from search engine users are often short and
a large portion of them simply ask about properties
of an entity. Examining the query graphs gener-
ated for training set questions, we found that 1,888

directly comparable to results from other work. On these 570
questions, our system achieves 67.0% in F1.
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Method Prec. Rec. F1

PatChain 48.8 59.3 49.6
+QuesEP 50.7 60.6 50.9
+ClueWeb 51.3 62.6 51.8

Table 3: The system results when only the
inferential-chain query graphs are generated. We
started with the PatChain CNN model and then
added QuesEP and ClueWeb sequentially. See
Sec. 3.4 for the description of these models.

(50.0%) can be answered exactly (i.e., F1 = 1) us-
ing a chain-only query graph. Second, even if the
correct parse requires more constraints, the less
constrained graph still gets a partial score, as its
results cover the correct answers.

4.3 Error Analysis

Although our approach substantially outperforms
existing methods, the room for improvement
seems big. After all, the accuracy for the intended
application, question answering, is still low and
only slightly above 50%. We randomly sampled
100 questions that our system did not generate
the completely correct query graphs, and catego-
rized the errors. About one third of errors are in
fact due to label issues and are not real mistakes.
This includes label error (2%), incomplete labels
(17%, e.g., only one song is labeled as the an-
swer to “What songs did Bob Dylan write?”) and
acceptable answers (15%, e.g., “Time in China”
vs. “UTC+8”). 8% of the errors are due to incor-
rect entity linking; however, sometimes the men-
tion is inherently ambiguous (e.g., AFL in “Who
founded the AFL?” could mean either “American
Football League” or “American Federation of La-
bor”). 35% of the errors are because of the incor-
rect inferential chains; 23% are due to incorrect or
missing constraints.

5 Related Work and Discussion

Several semantic parsing methods use a domain-
independent meaning representation derived from
the combinatory categorial grammar (CCG) parses
(e.g., (Cai and Yates, 2013; Kwiatkowski et al.,
2013; Reddy et al., 2014)). In contrast, our query
graph design matches closely the graph knowl-
edge base. Although not fully demonstrated in
this paper, the query graph can in fact be fairly ex-
pressive. For instance, negations can be handled
by adding tags to the constraint nodes indicating
that certain conditions cannot be satisfied. Our

graph generation method is inspired by (Yao and
Van Durme, 2014; Bao et al., 2014). Unlike tra-
ditional semantic parsing approaches, it uses the
knowledge base to help prune the search space
when forming the parse. Similar ideas have also
been explored in (Poon, 2013).

Empirically, our results suggest that it is cru-
cial to identify the core inferential chain, which
matches the relationship between the topic en-
tity in the question and the answer. Our CNN
models can be analogous to the embedding ap-
proaches (Bordes et al., 2014a; Yang et al., 2014),
but are more sophisticated. By allowing param-
eter sharing among different question-pattern and
KB predicate pairs, the matching score of a rare
or even unseen pair in the training data can still be
predicted precisely. This is due to the fact that the
prediction is based on the shared model parame-
ters (i.e., projection matrices) that are estimated
using all training pairs.

6 Conclusion

In this paper, we present a semantic parsing frame-
work for question answering using a knowledge
base. We define a query graph as the meaning rep-
resentation that can be directly mapped to a logical
form. Semantic parsing is reduced to query graph
generation, formulated as a staged search prob-
lem. With the help of an advanced entity linking
system and a deep convolutional neural network
model that matches questions and predicate se-
quences, our system outperforms previous meth-
ods substantially on the WEBQUESTIONS dataset.

In the future, we would like to extend our query
graph to represent more complicated questions,
and explore more features and models for match-
ing constraints and aggregation functions. Apply-
ing other structured-output prediction methods to
graph generation will also be investigated.
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