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Abstract

Following up on recent work on estab-
lishing a mapping between vector-based
semantic embeddings of words and the
visual representations of the correspond-
ing objects from natural images, we first
present a simple approach to cross-modal
vector-based semantics for the task of
zero-shot learning, in which an image
of a previously unseen object is mapped
to a linguistic representation denoting its
word. We then introduce fast mapping, a
challenging and more cognitively plausi-
ble variant of the zero-shot task, in which
the learner is exposed to new objects and
the corresponding words in very limited
linguistic contexts. By combining prior
linguistic and visual knowledge acquired
about words and their objects, as well as
exploiting the limited new evidence avail-
able, the learner must learn to associate
new objects with words. Our results on
this task pave the way to realistic simula-
tions of how children or robots could use
existing knowledge to bootstrap grounded
semantic knowledge about new concepts.

1 Introduction

Computational models of meaning that rely on
corpus-extracted context vectors, such as LSA
(Landauer and Dumais, 1997), HAL (Lund and
Burgess, 1996), Topic Models (Griffiths et al.,
2007) and more recent neural-network approaches
(Collobert and Weston, 2008; Mikolov et al.,
2013b) have successfully tackled a number of lex-
ical semantics tasks, where context vector sim-
ilarity highly correlates with various indices of
semantic relatedness (Turney and Pantel, 2010).
Given that these models are learned from natu-
rally occurring data using simple associative tech-
niques, various authors have advanced the claim

that they might be also capturing some crucial as-
pects of how humans acquire and use language
(Landauer and Dumais, 1997; Lenci, 2008).

However, the models induce the meaning of
words entirely from their co-occurrence with other
words, without links to the external world. This
constitutes a serious blow to claims of cogni-
tive plausibility in at least two respects. One
is the grounding problem (Harnad, 1990; Searle,
1984). Irrespective of their relatively high per-
formance on various semantic tasks, it is debat-
able whether models that have no access to visual
and perceptual information can capture the holis-
tic, grounded knowledge that humans have about
concepts. However, a possibly even more serious
pitfall of vector models is lack of reference: natu-
ral language is, fundamentally, a means to commu-
nicate, and thus our words must be able to refer to
objects, properties and events in the outside world
(Abbott, 2010). Current vector models are purely
language-internal, solipsistic models of meaning.
Consider the very simple scenario in which visual
information is being provided to an agent about
the current state of the world, and the agent’s task
is to determine the truth of a statement similar to
There is a dog in the room. Although the agent
is equipped with a powerful context vector model,
this will not suffice to successfully complete the
task. The model might suggest that the concepts
of dog and cat are semantically related, but it has
no means to determine the visual appearance of
dogs, and consequently no way to verify the truth
of such a simple statement.

Mapping words to the objects they denote is
such a core function of language that humans are
highly optimized for it, as shown by the so-called
fast mapping phenomenon, whereby children can
learn to associate a word to an object or prop-
erty by a single exposure to it (Bloom, 2000;
Carey, 1978; Carey and Bartlett, 1978; Heibeck
and Markman, 1987). But lack of reference is not
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only a theoretical weakness: Without the ability to
refer to the outside world, context vectors are ar-
guably useless for practical goals such as learning
to execute natural language instructions (Brana-
van et al., 2009; Chen and Mooney, 2011), that
could greatly benefit from the rich network of lex-
ical meaning such vectors encode, in order to scale
up to real-life challenges.

Very recently, a number of papers have ex-
ploited advances in automated feature extraction
form images and videos to enrich context vectors
with visual information (Bruni et al., 2014; Feng
and Lapata, 2010; Leong and Mihalcea, 2011;
Regneri et al., 2013; Silberer et al., 2013). This
line of research tackles the grounding problem:
Word representations are no longer limited to their
linguistic contexts but also encode visual informa-
tion present in images associated with the corre-
sponding objects. In this paper, we rely on the
same image analysis techniques but instead focus
on the reference problem: We do not aim at en-
riching word representations with visual informa-
tion, although this might be a side effect of our
approach, but we address the issue of automati-
cally mapping objects, as depicted in images, to
the context vectors representing the correspond-
ing words. This is achieved by means of a simple
neural network trained to project image-extracted
feature vectors to text-based vectors through a hid-
den layer that can be interpreted as a cross-modal
semantic space.

We first test the effectiveness of our cross-
modal semantic space on the so-called zero-shot
learning task (Palatucci et al., 2009), which has re-
cently been explored in the machine learning com-
munity (Frome et al., 2013; Socher et al., 2013). In
this setting, we assume that our system possesses
linguistic and visual information for a set of con-
cepts in the form of text-based representations of
words and image-based vectors of the correspond-
ing objects, used for vision-to-language-mapping
training. The system is then provided with visual
information for a previously unseen object, and the
task is to associate it with a word by cross-modal
mapping. Our approach is competitive with re-
spect to the recently proposed alternatives, while
being overall simpler.

The aforementioned task is very demanding and
interesting from an engineering point of view.
However, from a cognitive angle, it relies on
strong, unrealistic assumptions: The learner is

asked to establish a link between a new object and
a word for which they possess a full-fledged text-
based vector extracted from a billion-word cor-
pus. On the contrary, the first time a learner is
exposed to a new object, the linguistic informa-
tion available is likely also very limited. Thus, in
order to consider vision-to-language mapping un-
der more plausible conditions, similar to the ones
that children or robots in a new environment are
faced with, we next simulate a scenario akin to fast
mapping. We show that the induced cross-modal
semantic space is powerful enough that sensible
guesses about the correct word denoting an object
can be made, even when the linguistic context vec-
tor representing the word has been created from as
little as 1 sentence containing it.

The contributions of this work are three-fold.
First, we conduct experiments with simple image-
and text-based vector representations and compare
alternative methods to perform cross-modal map-
ping. Then, we complement recent work (Frome
et al., 2013) and show that zero-shot learning
scales to a large and noisy dataset. Finally, we pro-
vide preliminary evidence that cross-modal pro-
jections can be used effectively to simulate a fast
mapping scenario, thus strengthening the claims
of this approach as a full-fledged, fully inductive
theory of meaning acquisition.

2 Related Work

The problem of establishing word reference has
been extensively explored in computational sim-
ulations of cross-situational learning (see Fazly et
al. (2010) for a recent proposal and extended re-
view of previous work). This line of research has
traditionally assumed artificial models of the ex-
ternal world, typically a set of linguistic or logi-
cal labels for objects, actions and possibly other
aspects of a scene (Siskind, 1996). Recently,
Yu and Siskind (2013) presented a system that
induces word-object mappings from features ex-
tracted from short videos paired with sentences.
Our work complements theirs in two ways. First,
unlike Yu and Siskind (2013) who considered a
limited lexicon of 15 items with only 4 nouns, we
conduct experiments in a large search space con-
taining a highly ambiguous set of potential target
words for every object (see Section 4.1). Most im-
portantly, by projecting visual representations of
objects into a shared semantic space, we do not
limit ourselves to establishing a link between ob-
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jects and words. We induce a rich semantic rep-
resentation of the multimodal concept, that can
lead, among other things, to the discovery of im-
portant properties of an object even when we lack
its linguistic label. Nevertheless, Yu and Siskind’s
system could in principle be used to initialize the
vision-language mapping that we rely upon.

Closer to the spirit of our work are two very
recent studies coming from the machine learning
community. Socher et al. (2013) and Frome et al.
(2013) focus on zero-shot learning in the vision-
language domain by exploiting a shared visual-
linguistic semantic space. Socher et al. (2013)
learn to project unsupervised vector-based image
representations onto a word-based semantic space
using a neural network architecture. Unlike us,
Socher and colleagues train an outlier detector
to decide whether a test image should receive a
known-word label by means of a standard super-
vised object classifier, or be assigned an unseen
label by vision-to-language mapping. In our zero-
shot experiments, we assume no access to an out-
lier detector, and thus, the search for the correct
label is performed in the full concept space. Fur-
thermore, Socher and colleagues present a much
more constrained evaluation setup, where only 10
concepts are considered, compared to our experi-
ments with hundreds or thousands of concepts.

Frome et al. (2013) use linear regression to
transform vector-based image representations onto
vectors representing the same concepts in linguis-
tic semantic space. Unlike Socher et al. (2013) and
the current study that adopt simple unsupervised
techniques for constructing image representations,
Frome et al. (2013) rely on a supervised state-of-
the-art method: They feed low-level features to a
deep neural network trained on a supervised object
recognition task (Krizhevsky et al., 2012). Fur-
thermore, their text-based vectors encode very rich
information, such as ~king − ~man + ~woman =
~queen (Mikolov et al., 2013c). A natural ques-

tion we aim to answer is whether the success of
cross-modal mapping is due to the high-quality
embeddings or to the general algorithmic design.
If the latter is the case, then these results could be
extended to traditional distributional vectors bear-
ing other desirable properties, such as high inter-
pretability of dimensions.

(a) (b)

Figure 1: A potential wampimuk (a) together with
its projection onto the linguistic space (b).

3 Zero-shot learning and fast mapping

“We found a cute, hairy wampimuk sleeping be-
hind the tree.” Even though the previous state-
ment is certainly the first time one hears about
wampimuks, the linguistic context already creates
some visual expectations: Wampimuks probably
resemble small animals (Figure 1a). This is the
scenario of zero-shot learning. Moreover, if this is
also the first linguistic encounter of that concept,
then we refer to the task as fast mapping.

Concretely, we assume that concepts, denoted
for convenience by word labels, are represented in
linguistic terms by vectors in a text-based distri-
butional semantic space (see Section 4.3). Objects
corresponding to concepts are represented in vi-
sual terms by vectors in an image-based semantic
space (Section 4.2). For a subset of concepts (e.g.,
a set of animals, a set of vehicles), we possess in-
formation related to both their linguistic and visual
representations. During training, this cross-modal
vocabulary is used to induce a projection func-
tion (Section 4.4), which – intuitively – represents
a mapping between visual and linguistic dimen-
sions. Thus, this function, given a visual vector,
returns its corresponding linguistic representation.
At test time, the system is presented with a previ-
ously unseen object (e.g., wampimuk). This object
is projected onto the linguistic space and associ-
ated with the word label of the nearest neighbor in
that space (degus in Figure 1b).

The fast mapping setting can be seen as a spe-
cial case of the zero-shot task. Whereas for the lat-
ter our system assumes that all concepts have rich
linguistic representations (i.e., representations es-
timated from a large corpus), in the case of the for-
mer, new concepts are assumed to be encounted in
a limited linguistic context and therefore lacking
rich linguistic representations. This is operational-
ized by constructing the text-based vector for these
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Figure 2: Images of chair as extracted from
CIFAR-100 (left) and ESP (right).

concepts from a context of just a few occurrences.
In this way, we simulate the first encounter of a
learner with a concept that is new in both visual
and linguistic terms.

4 Experimental Setup

4.1 Visual Datasets

CIFAR-100 The CIFAR-100 dataset
(Krizhevsky, 2009) consists of 60,000 32x32
colour images (note the extremely small size)
representing 100 distinct concepts, with 600
images per concept. The dataset covers a wide
range of concrete domains and is organized into
20 broader categories. Table 1 lists the concepts
used in our experiments organized by category.

ESP Our second dataset consists of 100K im-
ages from the ESP-Game data set, labeled through
a “game with a purpose” (Von Ahn, 2006).1 The
ESP image tags form a vocabulary of 20,515
unique words. Unlike other datasets used for zero-
shot learning, it covers adjectives and verbs in ad-
dition to nouns. On average, an image has 14
tags and a word appears as a tag for 70 images.
Unlike the CIFAR-100 images, which were cho-
sen specifically for image object recognition tasks
(i.e., each image is clearly depicting a single ob-
ject in the foreground), ESP contains a random se-
lection of images from the Web. Consequently,
objects do not appear in most images in their pro-
totypical display, but rather as elements of com-
plex scenes (see Figure 2). Thus, ESP constitutes
a more realistic, and at the same time more chal-
lenging, simulation of how things are encountered
in real life, testing the potentials of cross-modal
mapping in dealing with the complex scenes that
one would encounter in event recognition and cap-
tion generation tasks.

1http://www.cs.cmu.edu/˜biglou/
resources/

4.2 Visual Semantic Spaces

Image-based vectors are extracted using the unsu-
pervised bag-of-visual-words (BoVW) represen-
tational architecture (Sivic and Zisserman, 2003;
Csurka et al., 2004), that has been widely and suc-
cessfully applied to computer vision tasks such as
object recognition and image retrieval (Yang et al.,
2007). First, low-level visual features (Szeliski,
2010) are extracted from a large collection of im-
ages and clustered into a set of “visual words”.
The low-level features of a specific image are then
mapped to the corresponding visual words, and the
image is represented by a count vector recording
the number of occurrences of each visual word in
it. We do not attempt any parameter tuning of the
pipeline.

As low-level features, we use Scale Invariant
Feature Transform (SIFT) features (Lowe, 2004).
SIFT features are tailored to capture object parts
and to be invariant to several image transfor-
mations such as rotation, illumination and scale
change. These features are clustered into vocab-
ularies of 5,000 (ESP) and 4,096 (CIFAR-100) vi-
sual words.2 To preserve spatial information in the
BoVW representation, we use the spatial pyramid
technique (Lazebnik et al., 2006), which consists
in dividing the image into several regions, comput-
ing BoVW vectors for each region and concatenat-
ing them. In particular, we divide ESP images into
16 regions and the smaller CIFAR-100 images into
4. The vectors resulting from region concatenation
have dimensionality 5000 × 16 = 80, 000 (ESP)
and 4, 096 × 4 = 16, 384 (CIFAR-100), respec-
tively. We apply Local Mutual Information (LMI,
(Evert, 2005)) as weighting scheme and reduce the
full co-occurrence space to 300 dimensions using
the Singular Value Decomposition.

For CIFAR-100, we extract distinct visual vec-
tors for single images. For ESP, given the size
and amount of noise in this dataset, we build vec-
tors for visual concepts, by normalizing and sum-
ming the BoVW vectors of all the images that have
the relevant concept as a tag. Note that relevant
literature (Pereira et al., 2010) has emphasized
the importance of learners self-generating multi-
ple views when faced with new objects. Thus, our
multiple-image assumption should not be consid-
ered as problematic in the current setup.

2For selecting the size of the vocabulary size, we relied on
standard settings found in the relevant literature (Bruni et al.,
2014; Chatfield et al., 2011).
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Category Seen Concepts Unseen (Test) Concepts
aquatic mammals beaver, otter, seal, whale dolphin
fish ray, trout shark
flowers orchid, poppy, sunflower, tulip rose
food containers bottle, bowl, can ,plate cup
fruit vegetable apple, mushroom, pear orange
household electrical devices keyboard, lamp, telephone, television clock
household furniture chair, couch, table, wardrobe bed
insects bee, beetle, caterpillar, cockroach butterfly
large carnivores bear, leopard, lion, wolf tiger
large man-made outdoor things bridge, castle, house, road skyscraper
large natural outdoor scenes cloud, mountain, plain, sea forest
large omnivores and herbivores camel, cattle, chimpanzee, kangaroo elephant
medium-sized mammals fox, porcupine, possum, skunk raccoon
non-insect invertebrates crab, snail, spider, worm lobster
people baby, girl, man, woman boy
reptiles crocodile, dinosaur, snake, turtle lizard
small mammals hamster, mouse, rabbit, shrew squirrel
vehicles 1 bicycle, motorcycle, train bus
vehicles 2 rocket, tank, tractor streetcar

Table 1: Concepts in our version of the CIFAR-100 data set

We implement the entire visual pipeline with
VSEM, an open library for visual seman-
tics (Bruni et al., 2013).3

4.3 Linguistic Semantic Spaces

For constructing the text-based vectors, we fol-
low a standard pipeline in distributional semantics
(Turney and Pantel, 2010) without tuning its pa-
rameters and collect co-occurrence statistics from
the concatenation of ukWaC4 and the Wikipedia,
amounting to 2.7 billion tokens in total. Seman-
tic vectors are constructed for a set of 30K target
words (lemmas), namely the top 20K most fre-
quent nouns, 5K most frequent adjectives and 5K
most frequent verbs, and the same 30K lemmas are
also employed as contextual elements. We collect
co-occurrences in a symmetric context window of
20 elements around a target word. Finally, simi-
larly to the visual semantic space, raw counts are
transformed by applying LMI and then reduced to
300 dimensions with SVD.5

4.4 Cross-modal Mapping

The process of learning to map objects to the their
word label is implemented by training a projec-
tion function fprojv→w from the visual onto the lin-
guistic semantic space. For the learning, we use
a set of Ns seen concepts for which we have both
image-based visual representations Vs ∈ RNs×dv

3http://clic.cimec.unitn.it/vsem/
4http://wacky.sslmit.unibo.it
5We also experimented with the image- and text-based

vectors of Socher et al. (2013), but achieved better perfor-
mance with the reported setup.

and text-based linguistic representations Ws ∈
RNs×dw . The projection function is subject to
an objective that aims at minimizing some cost
function between the induced text-based represen-
tations Ŵs ∈ RNs×dw and the gold ones Ws.
The induced fprojv→w is then applied to the image-
based representations Vu ∈ RNu×dv of Nu un-
seen objects to transform them into text-based rep-
resentations Ŵu ∈ RNu×dw . We implement 4
alternative learning algorithms for inducing the
cross-modal projection function fprojv→w .

Linear Regression (lin) Our first model is a very
simple linear mapping between the two modali-
ties estimated by solving a least-squares problem.
This method is similar to the one introduced by
Mikolov et al. (2013a) for estimating a translation
matrix, only solved analytically. In our setup, we
can see the two different modalities as if they were
different languages. By using least-squares regres-
sion, the projection function fprojv→w can be de-
rived as

fprojv→w = (VT
s Vs)

−1
VT

s Ws (1)

Canonical Correlation Analysis (CCA)
CCA (Hardoon et al., 2004; Hotelling, 1936)
and variations thereof have been successfully used
in the past for annotation of regions (Socher and
Fei-Fei, 2010) and complete images (Hardoon et
al., 2006; Hodosh et al., 2013). Given two paired
observation matrices, in our case Vs and Ws,
CCA aims at capturing the linear relationship
that exists between these variables. This is
achieved by finding a pair of matrices, in our
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case CV ∈ Rdv×d and CW ∈ Rdw×d, such that
the correlation between the projections of the
two multidimensional variables into a common,
lower-rank space is maximized. The resulting
multimodal space has been shown to provide a
good approximation to human concept similarity
judgments (Silberer and Lapata, 2012). In our
setup, after applying CCA on the two spaces Vs

and Ws, we obtain the two projection mappings
onto the common space and thus our projection
function can be derived as:

fprojv→w = CV CW
−1 (2)

Singular Value Decomposition (SVD) SVD is
the most widely used dimensionality reduction
technique in distributional semantics (Turney and
Pantel, 2010), and it has recently been exploited
to combine visual and linguistic dimensions in
the multimodal distributional semantic model of
Bruni et al. (2014). SVD smoothing is also a way
to infer values of unseen dimensions in partially
incomplete matrices, a technique that has been ap-
plied to the task of inferring word tags of unanno-
tated images (Hare et al., 2008). Assuming that the
concept-representing rows of Vs and Ws are or-
dered in the same way, we apply the (k-truncated)
SVD to the concatenated matrix [VsWs], such
that [V̂sŴs] = UkΣkZT

k is a k-rank approxima-
tion of the original matrix.6 The projection func-
tion is then:

fprojv→w = ZkZT
k (3)

where the input is appropriately padded with 0s
([Vu0Nu×W ]) and we discard the visual block of
the output matrix [V̂uŴu].

Neural Network (NNet) The last model that we
introduce is a neural network with one hidden
layer. The projection function in this model can
be described as:

fprojv→w = Θv→w (4)

where Θv→w consists of the model weights θ(1) ∈
Rdv×h and θ(2) ∈ Rh×dw that map the in-
put image-based vectors Vs first to the hid-
den layer and then to the output layer in or-
der to obtain text-based vectors, i.e., Ŵs =
σ(2)(σ(1)(Vsθ

(1))θ(2)), where σ(1) and σ(2) are

6We denote the right singular vectors matrix by Z instead
of the customary V to avoid confusion with the visual matrix.

the non-linear activation functions. We experi-
mented with sigmoid, hyperbolic tangent and lin-
ear; hyperbolic tangent yielded the highest perfor-
mance. The weights are estimated by minimizing
the objective function

J(Θv→w) =
1
2
(1− sim(Ws,Ŵs)) (5)

where sim is some similarity function. In our ex-
periments we used cosine as similarity function,
so that sim(A,B) = AB

‖A‖‖B‖ , thus penalizing pa-
rameter settings leading to a low cosine between
the target linguistic representations Ws and those
produced by the projection function Ŵs. The co-
sine has been widely used in the distributional se-
mantic literature, and it has been shown to out-
perform Euclidean distance (Bullinaria and Levy,
2007).7 Parameters were estimated with standard
backpropagation and L-BFGS.

5 Results

Our experiments focus on the tasks of zero-shot
learning (Sections 5.1 and 5.2) and fast mapping
(Section 5.3). In both tasks, the projected vector of
the unseen concept is labeled with the word asso-
ciated to its cosine-based nearest neighbor vector
in the corresponding semantic space.

For the zero-shot task we report the accuracy
of retrieving the correct label among the top k
neighbors from a semantic space populated with
the union of seen and unseen concepts. For fast
mapping, we report the mean rank of the correct
concept among fast mapping candidates.

5.1 Zero-shot Learning in CIFAR-100
For this experiment, we use the intersection of
our linguistic space with the concepts present in
CIFAR-100, containing a total of 90 concepts. For
each concept category, we treat all concepts but
one as seen concepts (Table 1). The 71 seen con-
cepts correspond to 42,600 distinct visual vectors
and are used to induce the projection function. Ta-
ble 2 reports results obtained by averaging the per-
formance on the 11,400 distinct vectors of the 19
unseen concepts.

Our 4 models introduced in Section 4.4 are
compared to a theoretically derived baseline
Chance simulating selecting a label at random. For
the neural network NN, we use prior knowledge

7We also experimented with the same objective func-
tion as Socher et al. (2013), however, our objective function
yielded consistently better results in all experimental settings.
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PPPPPPModel
k 1 2 3 5 10 20

Chance 1.1 2.2 3.3 5.5 11.0 22.0
SVD 1.9 5.0 8.1 14.5 29.0 48.6
CCA 3.0 6.9 10.7 17.9 31.7 51.7
lin 2.4 6.4 10.5 18.7 33.0 55.0
NN 3.9 6.6 10.6 21.9 37.9 58.2

Table 2: Percentage accuracy among top k nearest
neighbors on CIFAR-100.

about the number of concept categories to set the
number of hidden units to 20 in order to avoid
tuning of this parameter. For the SVD model, we
set the number of dimensions to 300, a common
choice in distributional semantics, coherent with
the settings we used for the visual and linguistic
spaces.

First and foremost, all 4 models outperform
Chance by a large margin. Surprisingly, the very
simple lin method outperforms both CCA and SVD.
However, NN, an architecture that can capture
more complex, non-linear relations in features
across modalities, emerges as the best performing
model, confirming on a larger scale the recent find-
ings of Socher et al. (2013).

5.1.1 Concept Categorization
In order to gain qualitative insights into the perfor-
mance of the projection process of NN, we attempt
to investigate the role and interpretability of the
hidden layer. We achieve this by looking at which
visual concepts result in the highest hidden unit
activation.8 This is inspired by analogous quali-
tative analysis conducted in Topic Models (Grif-
fiths et al., 2007), where “topics” are interpreted
in terms of the words with the highest probability
under each of them.

Table 3 presents both seen and unseen con-
cepts corresponding to visual vectors that trigger
the highest activation for a subset of hidden units.
The table further reports, for each hidden unit, the
“correct” unseen concept for the category of the
top seen concepts, together with its rank in terms
of activation of the unit. The analysis demon-
strates that, although prior knowledge about cat-
egories was not explicitly used to train the net-
work, the latter induced an organization of con-
cepts into superordinate categories in which the

8For this post-hoc analysis, we include a sparsity param-
eter in the objective function of Equation 5 in order to get
more interpretable results; hidden units are therefore maxi-
mally activated by a only few concepts.

Unseen Concept Nearest Neighbors
tiger cat, microchip, kitten, vet, pet
bike spoke, wheel, brake, tyre, motorcycle
blossom bud, leaf, jasmine, petal, dandelion
bakery quiche, bread, pie, bagel, curry

Table 4: Top 5 neighbors in linguistic space after
visual vector projection of 4 unseen concepts.

hidden layer acts as a cross-modal concept cate-
gorization/organization system. When the induced
projection function maps an object onto the lin-
guistic space, the derived text vector will inherit
a mixture of textual features from the concepts
that activated the same hidden unit as the object.
This suggests a bias towards seen concepts. Fur-
thermore, in many cases of miscategorization, the
concepts are still semantically coherent with the
induced category, confirming that the projection
function is indeed capturing a latent, cross-modal
semantic space. A squirrel, although not a “large
omnivore”, is still an animal, while butterflies are
not flowers but often feed on their nectar.

5.2 Zero-shot Learning in ESP

For this experiment, we focus on NN, the best per-
forming model in the previous experiment. We
use a set of approximately 9,500 concepts, the in-
tersection of the ESP-based visual semantic space
with the linguistic space. For tuning the number
of hidden units of NN, we use the MEN-concrete
dataset of Bruni et al. (2014). Finally, we ran-
domly pick 70% of the concepts to induce the pro-
jection function fprojv→w and report results on the
remaining 30%. Note that the search space for the
correct label in this experiment is approximately
95 times larger than the one used for the experi-
ment presented in Section 5.1.

Although our experimental setup differs from
the one of Frome et al. (2013), thus preventing a
direct comparison, the results reported in Table 5
are on a comparable scale to theirs. We note that
previous work on zero-shot learning has used stan-
dard object recognition benchmarks. To the best
of our knowledge, this is the first time this task has
been performed on a dataset as noisy as ESP. Over-
all, the results suggest that cross-modal mapping
could be applied in tasks where images exhibit a
more complex structure, e.g., caption generation
and event recognition.
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Seen Concepts Unseen Concept Rank of Correct CIFAR-100 Category
Unseen Concept

Unit 1 sunflower, tulip, pear butterfly 2 (rose) flowers
Unit 2 cattle, camel, bear squirrel 2 (elephant) large omnivores and herbivores
Unit 3 castle, bridge, house bus 4 (skyscraper) large man-made outdoor things
Unit 4 man, girl, baby boy 1 people
Unit 5 motorcycle, bicycle, tractor streetcar 2 (bus) vehicles 1
Unit 6 sea, plain, cloud forest 1 large natural outdoor scenes
Unit 7 chair, couch, table bed 1 household furniture
Unit 8 plate, bowl, can clock 3 (cup) food containers
Unit 9 apple, pear, mushroom orange 1 fruit and vegetables

Table 3: Categorization induced by the hidden layer of the NN; concepts belonging in the same CIFAR-
100 categories, reported in the last column, are marked in bold. Example: Unit 1 receives the highest
activation during training by the category flowers and at test time by butterfly, belonging to insects. The
same unit receives the second highest activation by the “correct” test concept, the flower rose.

PPPPPPModel
k 1 2 5 10 50

Chance 0.01 0.02 0.05 0.10 0.5
NN 0.8 1.9 5.6 9.7 30.9

Table 5: Percentage accuracy among top k nearest
neighbors on ESP.

5.3 Fast Mapping in ESP

In this section, we aim at simulating a fast map-
ping scenario in which the learner has been just
exposed to a new concept, and thus has limited lin-
guistic evidence for that concept. We operational-
ize this by considering the 34 concrete concepts
introduced by Frassinelli and Keller (2012), and
deriving their text-based representations from just
a few sentences randomly picked from the corpus.
Concretely, we implement 5 models: context 1, con-
text 5, context 10, context 20 and context full, where
the name of the model denotes the number of sen-
tences used to construct the text-based representa-
tions. The derived vectors were reduced with the
same SVD projection induced from the complete
corpus. Cross-modal mapping is done via NN.

The zero-shot framework leads us to frame fast
mapping as the task of projecting visual represen-
tations of new objects onto language space for re-
trieving their word labels (v→ w). This mapping
from visual to textual representations is arguably
a more plausible task than vice versa. If we think
about how linguistic reference is acquired, a sce-
nario in which a learner first encounters a new ob-
ject and then seeks its reference in the language of
the surrounding environment (e.g., adults having a
conversation, the text of a book with an illustration
of an unknown object) is very natural. Further-
more, since not all new concepts in the linguistic

environment refer to new objects (they might de-
note abstract concepts or out-of-scene objects), it
seems more reasonable for the learner to be more
alerted to linguistic cues about a recently-spotted
new object than vice versa. Moreover, once the
learner observes a new object, she can easily con-
struct a full visual representation for it (and the
acquisition literature has shown that humans are
wired for good object segmentation and recogni-
tion (Spelke, 1994)) – the more challenging task is
to scan the ongoing and very ambiguous linguistic
communication for contexts that might be relevant
and informative about the new object. However,
fast mapping is often described in the psycholog-
ical literature as the opposite task: The learner
is exposed to a new word in context and has to
search for the right object referring to it. We im-
plement this second setup (w→ v) by training the
projection function fprojw→v which maps linguis-
tic vectors to visual ones. The adaptation of NN is
straightforward; the new objective function is de-
rived as

J(Θw→v) =
1
2
(1− sim(Vs, V̂s)) (6)

where V̂s = σ(2)(σ(1)(Wsθ
(1))θ(2)), θ(1) ∈

Rdw×h and θ(2) ∈ Rh×dv .
Table 7 presents the results. Not surprisingly,

performance increases with the number of sen-
tences that are used to construct the textual repre-
sentations. Furthermore, all models perform bet-
ter than Chance, including those that are based on
just 1 or 5 sentences. This suggests that the system
can make reasonable inferences about object-word
connections even when linguistic evidence is very
scarce.

Regarding the sources of error, a qualitative
analysis of predicted word labels and objects as
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v→w w→v

cooker→potato dishwasher→ corkscrew
clarinet→ drum potato→ corn
gorilla→ elephant guitar→ violin

scooter→ car scarf→ trouser

Table 6: Top-ranked concepts in cases where the
gold concepts received numerically high ranks.

XXXXXXXXContext
Mapping

v→ w w→ v

Chance 17 17
context 1 12.6 14.5
context 5 8.08 13.29
context 10 7.29 13.44
context 20 6.02 12.17
context full 5.52 5.88

Table 7: Mean rank results averaged across 34
concepts when mapping an image-based vector
and retrieving its linguistic neighbors (v→ w) as
well as when mapping a text-based vector and
retrieving its visual neighbors (w→ v). Lower
numbers cue better performance.

presented in Table 6 suggests that both textual
and visual representations, although capturing rel-
evant “topical” or “domain” information, are not
enough to single out the properties of the target
concept. As an example, the textual vector of dish-
washer contains kitchen-related dimensions such
as 〈fridge, oven, gas, hob, ..., sink〉. After projecting
onto the visual space, its nearest visual neighbours
are the visual ones of the same-domain concepts
corkscrew and kettle. The latter is shown in Figure
3a, with a gas hob well in evidence. As a further
example, the visual vector for cooker is extracted
from pictures such as the one in Figure 3b. Not
surprisingly, when projecting it onto the linguis-
tic space, the nearest neighbours are other kitchen-
related terms, i.e., potato and dishwasher.

6 Conclusion

At the outset of this work, we considered the
problem of linking purely language-based distri-

(a) A kettle (b) A cooker

Figure 3: Two images from ESP.

butional semantic spaces with objects in the vi-
sual world by means of cross-modal mapping. We
compared recent models for this task both on a
benchmark object recognition dataset and on a
more realistic and noisier dataset covering a wide
range of concepts. The neural network architec-
ture emerged as the best performing approach, and
our qualitative analysis revealed that it induced a
categorical organization of concepts. Most impor-
tantly, our results suggest the viability of cross-
modal mapping for grounded word-meaning ac-
quisition in a simulation of fast mapping.

Given the success of NN, we plan to experi-
ment in the future with more sophisticated neural
network architectures inspired by recent work in
machine translation (Gao et al., 2013) and mul-
timodal deep learning (Srivastava and Salakhut-
dinov, 2012). Furthermore, we intend to adopt
visual attributes (Farhadi et al., 2009; Silberer
et al., 2013) as visual representations, since they
should allow a better understanding of how cross-
modal mapping works, thanks to their linguistic
interpretability. The error analysis in Section 5.3
suggests that automated localization techniques
(van de Sande et al., 2011), distinguishing an ob-
ject from its surroundings, might drastically im-
prove mapping accuracy. Similarly, in the textual
domain, models that extract collocates of a word
that are more likely to denote conceptual proper-
ties (Kelly et al., 2012) might lead to more infor-
mative and discriminative linguistic vectors. Fi-
nally, the lack of large child-directed speech cor-
pora constrained the experimental design of fast
mapping simulations; we plan to run more realis-
tic experiments with true nonce words and using
source corpora (e.g., the Simple Wikipedia, child
stories, portions of CHILDES) that contain sen-
tences more akin to those a child might effectively
hear or read in her word-learning years.
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