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Abstract

This paper studies the problem of sentence-
level semantic coherence by answering SAT-
style sentence completion questions. These
questions test the ability of algorithms to dis-
tinguish sense from nonsense based on a vari-
ety of sentence-level phenomena. We tackle
the problem with two approaches: methods
that use local lexical information, such as the
n-grams of a classical language model; and
methods that evaluate global coherence, such
as latent semantic analysis. We evaluate these
methods on a suite of practice SAT questions,
and on a recently released sentence comple-
tion task based on data taken from five Conan
Doyle novels. We find that by fusing local
and global information, we can exceed 50%
on this task (chance baseline is 20%), and we
suggest some avenues for further research.

1 Introduction

In recent years, standardized examinations have
proved a fertile source of evaluation data for lan-
guage processing tasks. They are valuable for many
reasons: they represent facets of language under-
standing recognized as important by educational ex-
perts; they are organized in various formats designed
to evaluate specific capabilities; they are yardsticks
by which society measures educational progress;
and they affect a large number of people.

Previous researchers have taken advantage of this
material to test both narrow and general language
processing capabilities. Among the narrower tasks,
the identification of synonyms and antonyms has

been studied by (Landauer and Dumais, 1997; Mo-
hammed et al., 2008; Mohammed et al., 2011; Tur-
ney et al., 2003; Turney, 2008), who used ques-
tions from the Test of English as a Foreign Lan-
guage (TOEFL), Graduate Record Exams (GRE)
and English as a Second Language (ESL) exams.
Tasks requiring broader competencies include logic
puzzles and reading comprehension. Logic puzzles
drawn from the Law School Administration Test
(LSAT) and the GRE were studied in (Lev et al.,
2004), which combined an extensive array of tech-
niques to solve the problems. The DeepRead sys-
tem (Hirschman et al., 1999) initiated a long line of
research into reading comprehension based on test
prep material (Charniak et al., 2000; Riloff and The-
len, 2000; Wang et al., 2000; Ng et al., 2000).

In this paper, we study a new class of problems
intermediate in difficulty between the extremes of
synonym detection and general question answer-
ing - the sentence completion questions found on
the Scholastic Aptitude Test (SAT). These questions
present a sentence with one or two blanks that need
to be filled in. Five possible words (or short phrases)
are given as options for each blank. All possible an-
swers except one result in a nonsense sentence. Two
examples are shown in Figure 1.

The questions are highly constrained in the sense
that all the information necessary is present in the
sentence itself without any other context. Neverthe-
less, they vary widely in difficulty. The first of these
examples is relatively simple: the second half of the
sentence is a clear description of the type of behavior
characterized by the desired adjective. The second
example is more sophisticated; one must infer from
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1. One of the characters in Milton Murayama’s
novel is considered because he deliber-
ately defies an oppressive hierarchical society.
(A) rebellious (B) impulsive (C) artistic (D)
industrious (E) tyrannical

2. Whether substances are medicines or poisons
often depends on dosage, for substances that are

in small doses can be in large.
(A) useless .. effective
(B) mild .. benign
(C) curative .. toxic
(D) harmful .. fatal
(E) beneficial .. miraculous

Figure 1: Sample sentence completion questions
(Educational-Testing-Service, 2011).

the contrast between medicine and poison that the
correct answer involves a contrast, either useless vs.
effective or curative vs. toxic. Moreover, the first, in-
correct, possibility is perfectly acceptable in the con-
text of the second clause alone; only irrelevance to
the contrast between medicine and poison eliminates
it. In general, the questions require a combination of
semantic and world knowledge as well as occasional
logical reasoning. We study the sentence comple-
tion task because we believe it is complex enough to
pose a significant challenge, yet structured enough
that progress may be possible.

As a first step, we have approached the prob-
lem from two points-of-view: first by exploiting lo-
cal sentence structure, and secondly by measuring
a novel form of global sentence coherence based
on latent semantic analysis. To investigate the use-
fulness of local information, we evaluated n-gram
language model scores, from both a conventional
model with Good-Turing smoothing, and with a re-
cently proposed maximum-entropy class-based n-
gram model (Chen, 2009a; Chen, 2009b). Also
in the language modeling vein, but with potentially
global context, we evaluate the use of a recurrent
neural network language model. In all the language
modeling approaches, a model is used to compute a
sentence probability with each of the potential com-
pletions. To measure global coherence, we propose

a novel method based on latent semantic analysis
(LSA). We find that the LSA based method performs
best, and that both local and global information can
be combined to exceed 50% accuracy. We report re-
sults on a set of questions taken from a collection
of SAT practice exams (Princeton-Review, 2010),
and further validate the methods with the recently
proposed MSR Sentence Completion Challenge set
(Zweig and Burges, 2011).

Our paper thus makes the following contributions:
First, we present the first published results on the
SAT sentence completion task. Secondly, we eval-
uate the effectiveness of both local n-gram informa-
tion, and global coherence in the form of a novel
LSA-based metric. Finally, we illustrate that the lo-
cal and global information can be effectively fused.

The remainder of this paper is organized as fol-
lows. In Section 2 we discuss related work. Section
3 describes the language modeling methods we have
evaluated. Section 4 outlines the LSA-based meth-
ods. Section 5 presents our experimental results. We
conclude with a discussion in Section 6.

2 Related Work
The past work which is most similar to ours is de-
rived from the lexical substitution track of SemEval-
2007 (McCarthy and Navigli, 2007). In this task,
the challenge is to find a replacement for a word or
phrase removed from a sentence. In contrast to our
SAT-inspired task, the original answer is indicated.
For example, one might be asked to find alternates
for match in “After the match, replace any remain-
ing fluid deficit to prevent problems of chronic de-
hydration throughout the tournament.” Two consis-
tently high-performing systems for this task are the
KU (Yuret, 2007) and UNT (Hassan et al., 2007)
systems. These operate in two phases: first they find
a set of potential replacement words, and then they
rank them. The KU system uses just an N-gram lan-
guage model to do this ranking. The UNT system
uses a large variety of information sources, and a
language model score receives the highest weight.
N-gram statistics were also very effective in (Giu-
liano et al., 2007). That paper also explores the use
of Latent Semantic Analysis to measure the degree
of similarity between a potential replacement and its
context, but the results are poorer than others. Since
the original word provides a strong hint as to the pos-
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sible meanings of the replacements, we hypothesize
that N-gram statistics are largely able to resolve the
remaining ambiguities. The SAT sentence comple-
tion sentences do not have this property and thus are
more challenging.

Related to, but predating the Semeval lexical sub-
stitution task are the ESL synonym questions pro-
posed by Turney (2001), and subsequently consid-
ered by numerous research groups including Terra
and Clarke (2003) and Pado and Lapata (2007).
These questions are similar to the SemEval task, but
in addition to the original word and the sentence
context, the list of options is provided. Jarmasz and
Szpakowicz (2003) used a sophisticated thesaurus-
based method and achieved state-of-the art perfor-
mance, which is 82%.

Other work on standardized tests includes the syn-
onym and antonym tasks mentioned in Section 1,
and more recent work on a SAT analogy task in-
troduced by (Turney et al., 2003) and extensively
used by other researchers (Veale, 2004; Turney and
Littman, 2005; D. et al., 2009).

3 Sentence Completion via Language
Modeling

Perhaps the most straightforward approach to solv-
ing the sentence completion task is to form the com-
plete sentence with each option in turn, and to eval-
uate its likelihood under a language model. As
discussed in Section 2, this was found be be very
effective in the ranking phase of several SemEval
systems. In this section, we describe the suite of
state-of-the-art language modeling techniques for
which we will present results. We begin with n-
gram models; first a classical n-gram backoff model
(Chen and Goodman, 1999), and then a recently pro-
posed class-based maximum-entropy n-gram model
(Chen, 2009a; Chen, 2009b). N-gram models have
the obvious disadvantage of using a very limited
context in predicting word probabilities. There-
fore we evaluate the recurrent neural net model of
(Mikolov et al., 2010; Mikolov et al., 2011b). This
model has produced record-breaking perplexity re-
sults in several tasks (Mikolov et al., 2011a), and has
the potential to encode sentence-span information in
the network hidden-layer activations. We have also
evaluated the use of parse scores, using an off-the-
shelf stochastic context free grammar parser. How-

ever, the grammatical structure of the alternatives is
often identical. With scores differing only in the fi-
nal non-terminal/terminal rewrites, this did little bet-
ter than chance. The use of other syntactically de-
rived features, for example based on a dependency
parse, are likely to be more effective, but we leave
this for future work.

3.1 Backoff N-gram Language Model

Our baseline model is a Good-Turing smoothed
model trained with the CMU language modeling
toolkit (Clarkson and Rosenfeld, 1997). For the SAT
task, we used a trigram language model trained on
1.1B words of newspaper data, described in Section
5.1. All bigrams occurring at least twice were re-
tained in the model, along with all trigrams occur-
ring at least three times. The vocabulary consisted
of all words occurring at least 100 times in the data,
along with every word in the development or test
sets. This resulted in a 124k word vocabulary and
59M n-grams. For the Conan Doyle data, which we
henceforth refer to as the Holmes data (see Section
5.1), the smaller amount of training data allowed us
to use 4-grams and a vocabulary cutoff of 3. This re-
sulted in 26M n-grams and a 126k word vocabulary.

3.2 Maximum Entropy Class-Based N-gram
Language Model

Word-class information provides a level of abstrac-
tion which is not available in a word-level lan-
guage model; therefore we evaluated a state-of-the-
art class based language model. Model M (Chen,
2009a; Chen, 2009b) is a recently proposed class
based exponential n-gram language model which
has shown improvements across a variety of tasks
(Chen, 2009b; Chen et al., 2009; Emami et al.,
2010). The key ideas are the modeling of word n-
gram probabilities with a maximum entropy model,
and the use of word-class information in the defini-
tion of the features. In particular, each word w is
assigned deterministically to a class c, allowing the
n-gram probabilities to be estimated as the product
of class and word parts

P (wi|wi−n+1 . . . wi−2wi−1) =
P (ci|ci−n+1 . . . ci−2ci−1, wi−n+1 . . . wi−2wi−1)

P (wi|wi−n+1 . . . wi−2wi−1, ci).
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Both components are themselves maximum entropy
n-gram models in which the probability of a word
or class label l given history h is determined by
1
Z exp(

∑
k fk(h, l)). The features fk(h, l) used are

the presence of various patterns in the concatena-
tion of hl, for example whether a particular suffix
is present in hl.

3.3 Recurrent Neural Net Language Model
Many of the questions involve long-range depen-
dencies between words. While n-gram models have
no ability to explicitly maintain long-span context,
the recently proposed recurrent neural-net model of
(Mikolov et al., 2010) does. Related approaches
have been proposed by (Sutskever et al., 2011;
Socher et al., 2011). In this model, a set of neu-
ral net activations s(t) is maintained and updated at
each sentence position t. These activations encapsu-
late the sentence history up to the tth word in a real-
valued vector which typically has several hundred
dimensions. The word at position t is represented as
a binary vector w(t) whose length is the vocabulary
size, and with a “1” in a position uniquely associated
with the word, and “0” elsewhere. w(t) and s(t) are
concatenated to predict an output distribution over
words, y(t). Updating is done with two weight ma-
trices u and v and nonlinear functions f() and g()
(Mikolov et al., 2011b):

x(t) = [w(t)T s(t − 1)T ]T

sj(t) = f(
∑

i

xi(t)uji)

yk(t) = g(
∑

j

sj(t)vkj)

with f() being a sigmoid and g() a softmax:

f(x) =
1

1 + exp(−z)
, g(zm) =

exp(zm)∑
k exp(zk)

The output y(t) is a probability distribution over
words, and the parameters u and v are trained with
back-propagation to minimize the Kullback-Leibler
(KL) divergence between the predicted and observed
distributions. Because of the recurrent connections,
this model is similar to a nonlinear infinite impulse
response (IIR) filter, and has the potential to model
long span dependencies. Theoretical considerations
(Bengio et al., 1994) indicate that for many prob-
lems, this may not be possible, but in practice it is
an empirical question.

4 Sentence Completion via Latent
Semantic Analysis

Latent Semantic Analysis (LSA) (Deerwester et al.,
1990) is a widely used method for representing
words and documents in a low dimensional vector
space. The method is based on applying singular
value decomposition (SVD) to a matrix W repre-
senting the occurrence of words in documents. SVD
results in an approximation of W by the product
of three matrices, one in which each word is rep-
resented as a low-dimensional vector, one in which
each document is represented as a low dimensional
vector, and a diagonal scaling matrix. The simi-
larity between two words can then be quantified as
the cosine-similarity between their respective scaled
vectors, and document similarity can be measured
likewise. It has been used in numerous tasks, rang-
ing from information retrieval (Deerwester et al.,
1990) to speech recognition (Bellegarda, 2000; Coc-
caro and Jurafsky, 1998).

To perform LSA, one proceeds as follows. The
input is a collection of n documents which are ex-
pressed in terms of words from a vocabulary of size
m. These documents may be actual documents such
as newspaper articles, or simply as in our case no-
tional documents such as sentences. Next, a m x n
matrix W is formed. At its simplest, the ijth entry
contains the number of times word i has occurred in
document j - its term frequency or TF value. More
conventionally, the entry is weighted by some no-
tion of the importance of word i, for example the
negative logarithm of the fraction of documents that
contain it, resulting in a TF-IDF weighting (Salton
et al., 1975). Finally, to obtain a subspace represen-
tation of dimension d, W is decomposed as

W ≈ USV T

where U is m x d, V T is d x n, and S is a d x d diag-
onal matrix. In applications, d << n and d << m;
for example one might have a 50, 000 word vocab-
ulary and 1, 000, 000 documents and use a 300 di-
mensional subspace representation.

An important property of SVD is that the rows
of US - which represents the words - behave sim-
ilarly to the original rows of W , in the sense that
the cosine similarity between two rows in US ap-
proximates the cosine similarity between the corre-
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sponding rows in W . Cosine similarity is defined as
sim(x,y) = x·y

‖x‖‖y‖ .

4.1 Total Word Similarity
Perhaps the simplest way of doing sentence comple-
tion with LSA is to compute the total similarity of a
potential answer a with the rest of the words in the
sentence S, and to choose the most related option.
We define the total similarity as:

totsim(a,S) =
∑
w∈S

sim(a,w)

When the completion requires two words, total sim-
ilarity is the sum of the contributions for both words.
This is our baseline method for using LSA, and one
of the best methods we have found.

4.2 Sentence Reconstruction
Recall that LSA approximates a weighted word-
document matrix W as the product of low rank
matrices U and V along with a scaling matrix S:
W ≈ USV T . Using singular value decomposition,
this is done so as to minimize the mean square re-
construction error

∑
ij Q2

ij where Q = W−USV T .
From the basic definition of LSA, each column of W
(representing a document) is represented as

Wj = USV T
j , (1)

that is, as a linear combination of the set of basis
functions formed by the columns of US, with the
combination weights specified in V T

j . When a new
document is presented, it is also possible to repre-
sent it in terms of the same basis vectors. Moreover,
we may take the reconstruction error induced by this
representation to be a measure of how consistent the
new document is with the original set of documents
used to determine U S and V (Bellegarda, 2000).

It remains to represent a new document in terms
of the LSA bases. This is done as follows (Deer-
wester et al., 1990; Bellegarda, 2000), again with
the objective of minimizing the reconstruction error.
First, note that since U is column-orthonormal, (1)
implies that

Vj = W T
j US−1 (2)

Thus, if we notionally index a new document by p,
we proceed by forming a new column (document)
vector Wp using the standard term-weighting, and

then find its LSA-space representation Vp using (2).
We can evaluate the reconstruction quality by insert-
ing the result in (1). The reconstruction error is then

||(UUT − I)Wp||2

Note that if all the dimensions are retained, the re-
construction error is zero; in the case that only the
highest singular vectors are used, however, it is not.
Due to the fact that the sentences vary in length we
choose the number of retained singular vectors as a
fraction f of the sentence length. If the answer has
n words we use the top nf components. In practice,
a f of 1.2 was selected on the basis of development
set results.

4.3 A LSA N-gram Language Model
In the context of speech recognition, LSA has been
combined with classical n-gram language models
in (Coccaro and Jurafsky, 1998; Bellegarda, 2000).
The crux of this idea is to interpolate an n-gram lan-
guage model probability with one based on LSA,
with the intuition that the standard n-gram model
will do a good job predicting function words, and
the LSA model will do a good job on words pre-
dicted by their long-span context. This logic makes
sense for the sentence completion task as well, mo-
tivating us to evaluate it.

To do this, we adopt the procedure of (Coccaro
and Jurafsky, 1998), using linear interpolation be-
tween the n-gram and LSA probabilities:

p(w|history) =
αpng(w|history) + (1 − α)plsa(w|history)

The probability of a word given its history is com-
puted by the LSA model in the following way. Let h
be the sum of all the LSA word vectors in the his-
tory. Let m be the smallest cosine similarity be-
tween h and any word in the vocabulary V : m =
minw∈V sim(h, w). The probability of a word w in
the context of history h is given by

Plsa(w|h) =
sim(h, w) − m∑

q∈V (sim(h, q) − m)

Since similarity can be negative, subtracting the
minimum (m) ensures that all the estimated prob-
abilities are between 0 and 1.
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4.4 Improving Efficiency and Expressiveness

Given the basic framework described above, a num-
ber of enhancements are possible. In terms of ef-
ficiency, recall that it is necessary to perform SVD
on a term-document matrix. The data we used was
grouped into paragraph “documents,” of which there
were over 27 million, with 2.6 million unique words.
While the resulting matrix is highly sparse, it is nev-
ertheless impractical to perform SVD. We overcome
this difficulty in two ways. First, we restrict the set
of documents used to those which are “relevant” to
a given test set. This is done by requiring that a doc-
ument contain at least one of the potential answer-
words. Secondly, we restrict the vocabulary to the
set of words present in the test set. For the sentence-
reconstruction method of Section 4.2, we have found
it convenient to do data selection per-sentence.

To enhance the expressive power of LSA, the term
vocabulary can be expanded from unigrams to bi-
grams or trigrams of words, thus adding information
about word ordering. This was also used in the re-
construction technique.

5 Experimental Results
5.1 Data Resources

We present results with two datasets. The first is
taken from 11 Practice Tests for the SAT & PSAT
2011 Edition (Princeton-Review, 2010). This book
contains eleven practice tests, and we used all the
sentence completion questions in the first five tests
as a development set, and all the questions in the last
six tests as the test set. This resulted in sets with 95
and 108 questions respectively. Additionally, we re-
port results on the recently released MSR Sentence
Completion Challenge (Zweig and Burges, 2011).
This consists of a set of 1, 040 sentence completion
questions based on sentences occurring in five Co-
nan Doyle Sherlock Holmes novels, and is identical
in format to the SAT questions. Due to the source of
this data, we refer to it as the Holmes data.

To train models, we have experimented with a
variety of data sources. Since there is no publi-
cally available collection of SAT questions suitable
to training, our methods have all relied on unsu-
pervised data. Early on, we ran a set of experi-
ments to determine the relevance of different types
of data. Thinking that data from an encyclopedia

Data Dev % Correct Test % Correct
Encarta 26 33
Wikipedia 32 31
LA Times 39 42

Table 1: Effectiveness of different types of training data.

might be useful, we evaluated an electronic version
of the 2003 Encarta encyclopedia, which has ap-
proximately 29M words. Along similar lines, we
used a collection of Wikipedia articles consisting of
709M words. This data is the entire Wikipedia as of
January 2011, broken down into sentences, with fil-
tering to remove sentences consisting of URLs and
Wiki author comments. Finally, we used a com-
mercial newspaper dataset consisting of all the Los
Angeles Times data from 1985 to 2002, containing
about 1.1B words. These data sources were evalu-
ated using the baseline n-gram LM approach of Sec-
tion 3.1. Initial experiments indicated that that the
Los Angeles Times data is best suited to this task
(see Table 1), and our SAT experiments use this
source. For the MSR Sentence Completion data,
we obtained the training data specified in (Zweig
and Burges, 2011), consisting of approximately 500
19th-century novels available from Project Guten-
berg, and comprising 48M words.

5.2 Human Performance
To provide human benchmark performance, we
asked six native speaking high school students and
five graduate students to answer the questions on the
development set. The high-schoolers attained 87%
accuracy and the graduate students 95%. Zweig and
Burges (2011) cite a human performance of 91%
on the Holmes data. Statistics from a large cross-
section of the population are not available. As a fur-
ther point of comparison, we note that chance per-
formance is 20%.

5.3 Language Modeling Results
Table 2 summarizes our language modeling results
on the SAT data. With the exception of the base-
line backoff n-gram model, these techniques were
too computationally expensive to utilize the full Los
Angeles Times corpus. Instead, as with LSA, a “rel-
evant” corpus was selected of the sentences which
contain at least one answer option from either the
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Method Data (Dev / Test) Dev Test
3-gram GT 1.1B / 1.1B 39% 42%
Model M 193M / 236M 35 41
RNN 36M / 44M 37 42
LSA-LM 293M / 358 M 48 44

Table 2: Performance of language modeling methods on
SAT questions.

Method Dev ppl Dev Test ppl Test
3-gram GT 195 36% 190 44%
Model M 178 36 175 42
RNN 147 37 144 42

Table 3: Performance of language modeling methods us-
ing identical training data and vocabularies.

development or test set. Separate subsets were made
for development and test data. This data was further
sub-sampled to obtain the training set sizes indicated
in the second column. For the LSA-LM, an interpo-
lation weight of 0.1 was used for the LSA score, de-
termined through optimization on the development
set. We see from this table that the language models
perform similarly and achieve just above 40% on the
test set.

To make a more controlled comparison that nor-
malizes for the amount of training data, we have
trained Model M, and the Good-Turing model on
the same data subset as the RNN, and with the same
vocabulary. In Table 3, we present perplexity re-
sults on a held-out set of dev/test-relevant Los Ange-
les Times data, and performance on the actual SAT
questions. Two things are notable. First, the re-
current neural net has dramatically lower perplexity
than the other methods. This is consistent with re-
sults in (Mikolov et al., 2011a). Secondly, despite
the differences in perplexity, the methods show little
difference on SAT performance. Because Model M
was not better, only uses n-gram context, and was
used in the construction of the Holmes data (Zweig
and Burges, 2011), we do not consider it further.

5.4 LSA Results

Table 4 presents results for the methods of Sections
4.1 and 4.2. Of all the methods in isolation, the sim-
ple approach of Section 4.1 - to use the total cosine
similarity between a potential answer and the other
words in the sentence - has performed best. The ap-

Method Dev Test
Total Word Similarity 46% 46%
Reconstruction Error 53 41

Table 4: SAT performance of LSA based methods.

Method Test
3-input LSA 46%
LSA + Good-Turing LM 53
LSA + Good-Turing LM + RNN 52

Table 5: SAT test set accuracy with combined methods.

proach of using reconstruction error performed very
well on the development set, but unremarkably on
the test set.

5.5 Combination Results

A well-known trick for obtaining best results from
a machine learning system is to combine a set of
diverse methods into a single ensemble (Dietterich,
2000). We use ensembles to get the highest accuracy
on both of our data sets.

We use a simple linear combination of the out-
puts of the other models discussed in this paper. For
the LSA model, the linear combination has three in-
puts: the total word similarity, the cosine similarity
between the sum of the answer word vectors and the
sum of the rest of sentence’s word vectors, and the
number of out-of-vocabulary terms in the answer.
Each additional language model beyond LSA con-
tributes an additional input: the probability of the
sentence under that language model.

We train the parameters of the linear combination
on the SAT development set. The training minimizes
a loss function of pairs of answers: one correct and
one incorrect fill-in from the same question. We use
the RankNet loss function (Burges et al., 2005):

min
~w

f(~w · (~x − ~y)) + λ||~w||2

where ~x are the input features for the incorrect an-
swer, ~y are the features for the correct answer, ~w
are the weights for the combination, and f(z) =
log(1 + exp(z)). We tune the regularizer via 5-
fold cross validation, and minimize the loss using
L-BFGS (Nocedal and Wright, 2006). The results
on the SAT test set for combining various models
are shown in Table 5.
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5.6 Holmes Data Results

To measure the robustness of our approaches, we
have applied them to the MSR Sentence Completion
set (Zweig and Burges, 2011), termed the Holmes
data. In Table 6, we present the results on this set,
along with the comparable SAT results. Note that
the latter are derived from models trained with the
Los Angeles Times data, while the Holmes results
are derived from models trained with 19th-century
novels. We see from this table that the results are
similar across the two tasks. The best performing
single model is LSA total word similarity.

For the Holmes data, combining the models out-
performs any single model. We train the linear com-
bination function via 5-fold cross-validation: the
model is trained five times, each time on 3/5 of the
data, the regularization tuned on 1/5 of the data, and
tested on 1/5. The test results are pooled across all
5 folds and are shown in Table 6. In this case, the
best combination is to blend LSA, the Good-Turing
language model, and the recurrent neural network.

6 Discussion

To verify that the differences in accuracy between
the different algorithms are not statistical flukes, we
perform a statistical significance test on the out-
puts of each algorithm. We use McNemar’s test,
which is a matched test between two classifiers (Di-
etterich, 1998). We use the False Discovery Rate
method (Benjamini and Hochberg, 1995) to control
the false positive rate caused by multiple tests. If
we allow 2% of our tests to yield incorrectly false
results, then for the SAT data, the combination of
the Good-Turing smoothed language model with an
LSA-based global similarity model (52% accuracy)
is better that the baseline alone (42% accuracy).

Secondly, for the Holmes data, we can state that
LSA total similarity beats the recurrent neural net-
work, which in turn is better than the baseline n-
gram model. The combination of all three is sig-
nificantly better than any of the individual models.

To better understand the system performance and
gain insight into ways of improving it, we have ex-
amined the system’s errors. Encouragingly, one-
third of the errors involve single-word questions
which test the dictionary definition of a word. This
is done either by stating the definition, or provid-

Method SAT Holmes
Chance 20% 20%
GT N-gram LM 42 39
RNN 42 45
LSA Total Similarity 46 49
Reconstruction Error 41 41
LSA-LM 44 42
Combination 53 52
Human 87 to 95 91

Table 6: Performance of methods on the MSR Sentence
Completion Challenge, contrasted with SAT test set.

ing a stereotypical use of the word. An example of
the first case is: “Great artists are often prophetic
(visual): they perceive what we cannot and antici-
pate the future long before we do.” (The system’s
incorrect answer is in parentheses.) An example
of the second is: “One cannot help but be moved
by Theresa’s heartrending (therapeutic) struggle to
overcome a devastating and debilitating accident.”

At the other end of the difficulty spectrum are
questions involving world knowledge and/or logical
implications. An example requiring both is, “Many
fear that the ratification (withdrawal) of more le-
nient tobacco advertising could be detrimental to
public health.” About 40% of the errors require this
sort of general knowledge to resolve. Based on our
analysis, we believe that future research could prof-
itably exploit the structured information present in
a dictionary. However, the ability to identify and
manipulate logical relationships and embed world
knowledge in a manner amenable to logical manip-
ulation may be necessary for a full solution. It is
an interesting research question if this could be done
implicitly with a machine learning technique, for ex-
ample recurrent or recursive neural networks.

7 Conclusion
In this paper we have investigated methods for
answering sentence-completion questions. These
questions are intriguing because they probe the abil-
ity to distinguish semantically coherent sentences
from incoherent ones, and yet involve no more con-
text than the single sentence. We find that both local
n-gram information and an LSA-based global coher-
ence model do significantly better than chance, and
that they can be effectively combined.
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