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Abstract 

We revisit the algorithm of Schütze 

(1995) for unsupervised part-of-speech 

tagging. The algorithm uses reduced-rank 

singular value decomposition followed 

by clustering to extract latent features 

from context distributions. As imple-

mented here, it achieves state-of-the-art 

tagging accuracy at considerably less cost 

than more recent methods. It can also 

produce a range of finer-grained tag-

gings, with potential applications to vari-

ous tasks. 

1 Introduction 

While supervised approaches are able to solve 

the part-of-speech (POS) tagging problem with 

over 97% accuracy (Collins 2002; Toutanova et 

al. 2003), unsupervised algorithms perform con-

siderably less well. These models attempt to tag 

text without resources such as an annotated cor-

pus, a dictionary, etc. The use of singular value 

decomposition (SVD) for this problem was in-

troduced in Schütze (1995). Subsequently, a 

number of methods for POS tagging without a 

dictionary were examined, e.g., by Clark (2000), 

Clark (2003), Haghighi and Klein (2006), John-

son (2007), Goldwater and Griffiths (2007), Gao 

and Johnson (2008), and Graça et al. (2009).  

The latter two, using Hidden Markov Models 

(HMMs), exhibit the highest performances to 

date for fully unsupervised POS tagging.   

The revisited SVD-based approach presented 

here, which we call “two-step SVD” or SVD2, 

has four important characteristics. First, it 

achieves state-of-the-art tagging accuracy. 

Second, it requires drastically less computational 

effort than the best currently available models. 

Third, it demonstrates that state-of-the-art accu-

racy can be realized without disambiguation, i.e., 

without attempting to assign different tags to dif-

ferent tokens of the same type. Finally, with no 

significant increase in computational cost, SVD2 

can create much finer-grained labelings than typ-

ically produced by other algorithms. When com-

bined with some minimal supervision in post-

processing, this makes the approach useful for 

tagging languages that lack the resources re-

quired by fully supervised models. 

2 Methods 

Following the original work of Schütze (1995), 

we begin by constructing a right context matrix, 

R, and a left context matrix, L.  Rij counts the 

number of times in the corpus a token of word 

type i is immediately followed by a token of 

word type j. Similarly, Lij counts the number of 

times a token of type i is preceded by a token of 

type j. We truncate these matrices, including, in 

the right and left contexts, only the w1 most fre-

quent word types. The resulting L and R are of 

dimension Ntypes×w1, where Ntypes is the number 

of word types (spelling forms) in the corpus, and 

w1 is set to 1000. (The full Ntypes× Ntypes context 

matrices satisfy R = L
T
.) 

* These authors contributed equally. 
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Next, both context matrices are factored using 

singular value decomposition: 

L = UL SL VL
T
 

R = UR SR VR
T
. 

The diagonal matrices SL and SR (each of rank 

1000) are reduced down to rank r1 = 100 by re-

placing the 900 smallest singular values in each 

matrix with zeros, yielding SL
* 
and SR

*
.  We then 

form a pair of latent-descriptor matrices defined 

by:   

L
*
 = UL SL

*
 

R
*
 = UR SR

*
. 

Row i in matrix L
*
 (resp. R

*
) is the left (resp. 

right) latent descriptor for word type i. We next 

include a normalization step in which each row 

in each of L
* 

and R
*
 is scaled to unit length, 

yielding matrices L
** 

and R
**

. Finally, we form a 

single descriptor matrix D by concatenating these 

matrices into D = [L
** 
R

**
].  Row i in matrix D is 

the complete latent descriptor for word type i; 

this latent descriptor sits on the Cartesian product 

of two 100-dimensional unit spheres, hereafter 

the 2-sphere. 

We next categorize these descriptors into 

k1 = 500 groups, using a k-means clustering algo-

rithm. Centroid initialization is done by placing 

the k initial centroids on the descriptors of the k 

most frequent words in the corpus. As the de-

scriptors sit on the 2-sphere, we measure the 

proximity of a descriptor to a centroid by the dot 

product between them; this is equal to the sum of 

the cosines of the angles—computed on the left 

and right parts—between them. We update each 

cluster’s centroid as the weighted average of its 

constituents, the weight being the frequency of 

the word type; the centroids are then scaled, so 

they sit on the 2-sphere. Typically, only a few 

dozen iterations are required for full convergence 

of the clustering algorithm. 

We then apply a second pass of this entire 

SVD-and-clustering procedure. In this second 

pass, we use the k1 = 500 clusters from the first 

iteration to assemble a new pair of context ma-

trices. Now, Rij counts all the cluster-j (j=1… k1) 

words to the right of word i, and Lij counts all the 

cluster-j words to the left of word i. The new ma-

trices L and R have dimension Ntypes × k1. 

As in the first pass, we perform reduced-rank 

SVD, this time down to rank r2 = 300, and we 

again normalize the descriptors to unit length, 

yielding a new pair of latent descriptor matrices 

L
** 

and R
**

.  Finally, we concatenate L
** 

and R
** 

into a single matrix of descriptors, and cluster 

these descriptors into k2 groups, where k2 is the 

desired number of induced tags. We use the same 

weighted k-means algorithm as in the first pass, 

again placing the k initial centroids on the de-

scriptors of the k most frequent words in the cor-

pus. The final tag of any token in the corpus is 

the cluster number of its type. 

3 Data and Evaluation 

We ran the SVD2 algorithm described above on 

the full Wall Street Journal part of the Penn 

Treebank (1,173,766 tokens). Capitalization was 

ignored, resulting in Ntypes = 43,766, with only a 

minor effect on accuracy. Evaluation was done 

against the POS-tag annotations of the 45-tag 

PTB tagset (hereafter PTB45), and against the 

Smith and Eisner (2005) coarse version of the 

PTB tagset (hereafter PTB17). We selected the 

three evaluation criteria of Gao and Johnson 

(2008): M-to-1, 1-to-1, and VI. M-to-1 and 1-to-

1 are the tagging accuracies under the best many-

to-one map and the greedy one-to-one map re-

spectively; VI is a map-free information-

theoretic criterion—see Gao and Johnson (2008) 

for details. Although we find M-to-1 to be the 

most reliable criterion of the three, we include 

the other two criteria for completeness. 

In addition to the best M-to-1 map, we also 

employ here, for large values of k2, a prototype-

based M-to-1 map.  To construct this map, we 

first find, for each induced tag t, the word type 

with which it co-occurs most frequently; we call 

this word type the prototype of t. We then query 

the annotated data for the most common gold tag 

for each prototype, and we map induced tag t to 

this gold tag. This prototype-based M-to-1 map 

produces accuracy scores no greater—typically 

lower—than the best M-to-1 map. We discuss 

the value of this approach as a minimally-

supervised post-processing step in Section 5. 

4 Results 

Low-k performance. Here we present the per-

formance of the SVD2 model when k2, the num-

ber of induced tags, is the same or roughly the 

same as the number of tags in the gold stan-

dard—hence small. Table 1 compares the per-

formance of SVD2 to other leading models. Fol-

lowing Gao and Johnson (2008), the number of 

induced tags is 17 for PTB17 evaluation and 50 

for PTB45 evaluation. Thus, with the exception 

of Graça et al. (2009) who use 45 induced tags 

for PTB45, the number of induced tags is the 

same across each column of Table 1. 
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The performance of SVD2 compares favora-

bly to the HMM models. Note that SVD2 is a 

deterministic algorithm. The table shows, in pa-

rentheses, the standard deviations reported in 

Graça et al. (2009). For the sake of comparison 

with Graça et al. (2009), we also note that, with 

k2 = 45, SVD2 scores 0.659 on PTB45. The NVI 

scores (Reichart and Rappoport 2009) corres-

ponding to the VI scores for SVD2 are 0.938 for 

PTB17 and 0.885 for PTB45. To examine the 

sensitivity of the algorithm to its four parameters, 

w1, r1, k1, and r2, we changed each of these para-

meters separately by a multiplicative factor of 

either 0.5 or 2; in neither case did M-to-1 accura-

cy drop by more than 0.014. 

This performance was achieved despite the 

fact that the SVD2 tagger is mathematically 

much simpler than the other models. Our MAT-

LAB implementation of SVD2 takes only a few 

minutes to run on a desktop computer, in contrast 

to HMM training times of several hours or days 

(Gao and Johnson 2008; Johnson 2007). 

 

High-k performance.  Not suffering from the 

same computational limitations as other models, 

SVD2 can easily accommodate high numbers of 

induced tags, resulting in fine-grained labelings. 

The value of this flexibility is discussed in the 

next section. Figure 1 shows, as a function of k2, 

the tagging accuracy of SVD2 under both the 

best and the prototype-based M-to-1 maps (see 

Section 3), for both the PTB45 and the PTB17 

tagsets. The horizontal one-tag-per-word-type 

line in each panel is the theoretical upper limit 

for tagging accuracy in non-disambiguating 

models (such as SVD2). This limit is the fraction 

of all tokens in the corpus whose gold tag is the 

most frequent for their type.  

5 Discussion 

At the heart of the algorithm presented here is 

the reduced-rank SVD method of Schütze 

(1995), which transforms bigram counts into la-

tent descriptors. In view of the present work, 

which achieves state-of-the-art performance 

when evaluation is done with the criteria now in 

common use, Schütze's original work should 

rightly be praised as ahead of its time. The SVD2 

model presented here differs from Schütze's 

work in many details of implementation—not all 

of which are explicitly specified in Schütze 

(1995). In what follows, we discuss the features 

of SVD2 that are most critical to its performance. 

Failure to incorporate any one of them signifi-

Figure 1. Performance of the SVD2 algo-

rithm as a function of the number of induced 

tags. Top: PTB45; bottom: PTB17.  Each 

plot shows the tagging accuracy under the 

best and the prototype-based M-to-1 maps, as 

well as the upper limit for non-

disambiguating taggers. 

 M-to-1 1-to-1 VI 

Model PTB17 PTB45 PTB17 PTB45 PTB17 PTB45 

SVD2 0.730 0.660 0.513 0.467 3.02 3.84 

HMM-EM  0.647 0.621 0.431 0.405 3.86 4.48 

HMM-VB  0.637 0.605 0.514 0.461 3.44 4.28 

HMM-GS  0.674 0.660 0.466 0.499 3.46 4.04 

HMM-Sparse(32) 0.702(2.2) 0.654(1.0) 0.495 0.445   

VEM (10-1,10-1) 0.682(0.8) 0.546(1.7) 0.528 0.460   

Table 1.  Tagging accuracy under the best M-to-1 map, the greedy 1-to-1 map, and 

VI, for the full PTB45 tagset and  the reduced PTB17 tagset.  HMM-EM, HMM-VB 

and HMM-GS show the best results from Gao and Johnson (2008); HMM-Sparse(32) 

and VEM (10
-1

,10
-1

) show the best results from Graça et al. (2009). 
 

217



cantly reduces the performance of the algorithm 

(M-to-1 reduced by 0.04 to 0.08). 

First, the reduced-rank left-singular vectors 

(for the right and left context matrices) are 

scaled, i.e., multiplied, by the singular values.  

While the resulting descriptors, the rows of L
* 

and R
*
, live in a much lower-dimensional space 

than the original context vectors, they are 

mapped by an angle-preserving map (defined by 

the matrices of right-singular vectors VL and VR) 

into vectors in the original space. These mapped 

vectors best approximate (in the least-squares 

sense) the original context vectors; they have the 

same geometric relationships as their equivalent 

high-dimensional images, making them good 

candidates for the role of word-type descriptors. 

A second important feature of the SVD2 algo-

rithm is the unit-length normalization of the la-

tent descriptors, along with the computation of 

cluster centroids as the weighted averages of 

their constituent vectors. Thanks to this com-

bined device, rare words are treated equally to 

frequent words regarding the length of their de-

scriptor vectors, yet contribute less to the place-

ment of centroids. 

Finally, while the usual drawback of k-means-

clustering algorithms is the dependency of the 

outcome on the initial—usually random—

placement of centroids, our initialization of the k 

centroids as the descriptors of the k most fre-

quent word types in the corpus makes the algo-

rithm fully deterministic, and improves its per-

formance substantially: M-to-1 PTB45 by 0.043, 

M-to-1 PTB17 by 0.063. 

As noted in the Results section, SVD2 is fairly 

robust to changes in all four parameters w1, r1, k1, 

and r2. The values used here were obtained by a  

coarse, greedy strategy, where each parameter 

was optimized independently. It is worth noting 

that dispensing with the second pass altogether, 

i.e., clustering directly the latent descriptor vec-

tors obtained in the first pass into the desired 

number of induced tags, results in a drop of 

Many-to-1 score of only 0.021 for the PTB45 

tagset and 0.009 for the PTB17 tagset. 

 

Disambiguation. An obvious limitation of 

SVD2 is that it is a non-disambiguating tagger, 

assigning the same label to all tokens of a type. 

However, this limitation per se is unlikely to be 

the main obstacle to the improvement of low-k 

performance, since, as is well known, the theo-

retical upper limit for the tagging accuracy of 

non-disambiguating models (shown in Fig. 1) is 

much higher than the current state-of-the-art for 

unsupervised taggers, whether disambiguating or 

not. 

To further gain insight into how successful 

current models are at disambiguating when they 

have the power to do so, we examined a collec-

tion of HMM-VB runs (Gao and Johnson 2008) 

and asked how the accuracy scores would change 

if, after training was completed, the model were 

forced to assign the same label to all tokens of 

the same type. To answer this question, we de-

termined, for each word type, the modal HMM 

state, i.e., the state most frequently assigned by 

the HMM to tokens of that type. We then re-

labeled all words with their modal label. The ef-

fect of thus eliminating the disambiguation ca-

pacity of the model was to slightly increase the 

tagging accuracy under the best M-to-1 map for 

every HMM-VB run (the average increase was 

0.026  for PTB17, and 0.015 for PTB45).  We 

view this as a further indication that, in the cur-

rent state of the art and with regards to tagging 

accuracy, limiting oneself to non-disambiguating 

models may not adversely affect performance.  

To the contrary, this limitation may actually 

benefit an approach such as SVD2. Indeed, on 

difficult learning tasks, simpler models often be-

have better than more powerful ones (Geman et 

al. 1992). HMMs are powerful since they can, in 

theory, induce both a system of tags and a system 

of contextual patterns that allow them to disam-

biguate word types in terms of these tags. How-

ever, carrying out both of these unsupervised 

learning tasks at once is problematic in view of 

the very large number of parameters to be esti-

mated compared to the size of the training data 

set. 

The POS-tagging subtask of disambiguation 

may then be construed as a challenge in its own 

right: demonstrate effective disambiguation in an 

unsupervised model. Specifically, show that tag-

ging accuracy decreases when the model's dis-

ambiguation capacity is removed, by re-labeling 

all tokens with their modal label, defined above. 

We believe that the SVD2 algorithm presented 

here could provide a launching pad for an ap-

proach that would successfully address the dis-

ambiguation challenge. It would do so by allow-

ing a gradual and carefully controlled amount of 

ambiguity into an initially non-disambiguating 

model. This is left for future work. 

 

Fine-grained labeling. An important feature of 

the SVD2 algorithm is its ability to produce a 

fine-grained labeling of the data, using a number 

of clusters much larger than the number of tags 
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in a syntax-motivated POS-tag system. Such 

fine-grained labelings can capture additional lin-

guistic features. To achieve a fine-grained labe-

ling, only the final clustering step in the SVD2 

algorithm needs to be changed; the computation-

al cost this entails is negligible. A high-quality 

fine-grained labeling, such as achieved by the 

SVD2 approach, may be of practical interest as 

an input to various types of unsupervised gram-

mar-induction algorithms (Headden et al. 2008). 

This application is left for future work. 

 

Prototype-based tagging. One potentially im-

portant practical application of a high-quality 

fine-grained labeling is its use for languages 

which lack any kind of annotated data. By first 

applying the SVD2 algorithm, word types are 

grouped together into a few hundred clusters. 

Then, a prototype word is automatically ex-

tracted from each cluster. This produces, in a 

completely unsupervised way, a list of only a 

few hundred words that need to be hand-tagged 

by an expert. The results shown in Fig. 1 indicate 

that these prototype tags can then be used to tag 

the entire corpus with only a minor decrease in 

accuracy compared to the best M-to-1 map—the 

construction of which requires a fully annotated 

corpus. Fig. 1 also indicates that, with only a few 

hundred prototypes, the gap left between the ac-

curacy thus achieved and the upper bound for 

non-disambiguating models is fairly small. 
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