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Abstract

This paper describes a computational ap-
proach to resolving the true referent of a
named mention of a person in the body of an
email. A generative model of mention gener-
ation is used to guide mention resolution. Re-
sults on three relatively small collections indi-
cate that the accuracy of this approach com-
pares favorably to the best known techniques,
and results on the full CMU Enron collection
indicate that it scales well to larger collections.

1 Introduction

The increasing prevalence of informal text from
which a dialog structure can be reconstructed (e.g.,
email or instant messaging), raises new challenges if
we are to help users make sense of this cacophony.
Large collections offer greater scope for assembling
evidence to help with that task, but they pose addi-
tional challenges as well. With well over 100,000
unique email addresses in the CMU version of the
Enron collection (Klimt and Yang, 2004), common
names (e.g., John) might easily refer to any one of
several hundred people. In this paper, we associate
named mentions in unstructured text (i.e., the body
of an email and/or the subject line) to modeled iden-
tities. We see at least two direct applications for this
work: (1) helping searchers who are unfamiliar with
the contents of an email collection (e.g., historians or
lawyers) better understand the context of emails that
they find, and (2) augmenting more typical social
networks (based on senders and recipients) with ad-
ditional links based on references found in unstruc-
tured text.

Most approaches to resolving identity can be de-
composed into four sub-problems: (1) finding a ref-
erence that requires resolution, (2) identifying can-
didates, (3) assembling evidence, and (4) choosing
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among the candidates based on the evidence. For
the work reported in this paper, we rely on the user
to designate references requiring resolution (which
we model as a predetermined set of mention-queries
for which the correct referent is known). Candidate
identification is a computational expedient that per-
mits the evidence assembly effort to be efficiently
focused; we use only simple techniques for that task.
Our principal contributions are the approaches we
take to evidence generation (leveraging three ways
of linking to other emails where evidence might be
found: reply chains, social interaction, and topical
similarity) and our approach to choosing among can-
didates (based on a generative model of reference
production). We evaluate the effectiveness of our
approach on four collections, three of which have
previously reported results for comparison, and one
that is considerably larger than the others.

The remainder of this paper is as follows. Sec-
tion 2 surveys prior work. Section 3 then describes
our approach to modeling identity and ranking can-
didates. Section 4 presents results, and Section 5
concludes.

2 Related Work

The problem of identity resolution in email is a spe-
cial case of the more general problem referred to as
“Entity Resolution.” Entity resolution is generically
defined as a process of determining the mapping
from references (e.g., names, phrases) observed in
data to real-world entities (e.g., persons, locations).
In our case, the problem is to map mentions in emails
to the identities of the individuals being referred to.

Various approaches have been proposed for en-
tity resolution. In structured data (e.g., databases),
approaches have included minimizing the number
of “matching” and “merging” operations (Benjel-
loun et al., 2006), using global relational informa-
tion(Malin, 2005; Bhattacharya and Getoor, 2007;
Reuther, 2006) and using a probabilistic generative
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model (Bhattacharya and Getoor, 2006). None of
these approaches, however, both make use of con-
versational, topical, and time aspects, shown impor-
tant in resolving personal names (Reuther, 2006),
and take into account global relational informa-
tion. Similarly, approaches in unstructured data
(e.g., text) have involved using clustering techniques
over biographical facts (Mann and Yarowsky, 2003),
within-document resolution (Blume, 2005), and dis-
criminative unsupervised generative models (Li et
al., 2005). These too are insufficient for our prob-
lem since they suffer from inability scale or to han-
dle early negotiation.

Specific to the problem of resolving mentions in
email collections, Abadi (Abadi, 2003) used email
orders from an online retailer to resolve product
mentions in orders and Holzer et al. (Holzer et al.,
2005) used the Web to acquire information about
individuals mentioned in headers of an email col-
lection. Our work is focused on resolving personal
name references in the full email including the mes-
sage body; a problem first explored by Diehl et al.
(Diehl et al., 2006) using header-based traffic anal-
ysis techniques. Minkov et al.(Minkov et al., 2006)
studied the same problem using a lazy graph walk
based on both headers and content. Those two re-
cent studies reported results on different test collec-
tions, however, making direct comparisons difficult.
We have therefore adopted their test collections in
order to establish a common point of reference.

3 Mention Resolution Approach

The problem we are interested in is the resolution
of a personal-name mention (i.e., a named reference
to a person) m, in a specific email em in the given
collection of emails E, to its true referent. We as-
sume that the user will designate such mention. This
can be formulated as a known-item retrieval problem
(Allen, 1989) since there is always only one right an-
swer. Our goal is to develop a system that provides a
list of potential candidates, ranked according to how
strongly the system believes that a candidate is the
true referent meant by the email author. In this pa-
per, we propose a probabilistic approach that ranks
the candidates based on the estimated probability of
having been mentioned. Formally, we seek to esti-
mate the probability p(c|m) that a potential candi-

date c is the one referred to by the given mention m,
over all candidates C.

We define a mention m as a tuple < lm, em >,
where lm is the “literal” string of characters that rep-
resentsm and em is the email wherem is observed.1

We assume that m can be resolved to a distinguish-
able participant for whom at least one email address
is present in the collection.2

The probabilistic approach we propose is moti-
vated by a generative scenario of mentioning people
in email. The scenario begins with the author of the
email em, intending to refer to a person in that email.
To do that s/he will:

1. Select a person c to whom s/he will refer

2. Select an appropriate context xk to mention c

3. Select a specific lexical reference lm to refer to
c given the context xk.

For example, suppose “John” is sending an email
to “Steve” and wants to mention a common friend
“Edward.” “John” knows that he and Steve know
2 people named Edward, one is a friend of both
known by “Ed” and the other is his soccer trainer.
If “John” would like to talk about the former, he
would use “Ed” but he would likely use “Edward”
plus some terms (e.g., “soccer”, “team”, etc) for the
latter. “John” relies on the social context, or the topi-
cal context, for “Steve” to disambiguate the mention.

The steps of this scenario impose a certain struc-
ture to our solution. First, we need to have a
representational model for each candidate identity.
Second, we need to reconstruct the context of the
queried mention. Third, it requires a computational
model of identity that supports reasoning about iden-
tities. Finally, it requires a resolution technique that
leverages both the identity models and the context
to rank the potential candidates. In this section,
we will present our resolution approach within that
structure. We first discuss how to build both repre-
sentational and computational models of identity in
section 3.1. Next, we introduce a definition of the
contextual space and how we can reconstruct it in

1The exact position in em where lm is observed should also
be included in the definition, but we ignore it assuming that all
matched literal mentions in one email refer to the same identity.

2Resolving mentions that refer to non-participants is outside
the scope of this paper.
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section 3.2. Finally, we link those pieces together
by the resolution algorithm in section 3.3.

3.1 Computational Model of Identity

Representation: In a collection of emails, indi-
viduals often use different email addresses, multi-
ple forms of their proper names, and different nick-
names. In order to track references to a person over
a large collection, we need to capture as many as
possible of these referential attributes in one rep-
resentation. We extend our simple representation
of identity proposed in (Elsayed and Oard, 2006)
where an identity is represented by a set of pair-
wise co-occurrence of referential attributes (i.e., co-
occurrence “associations”), and each extracted as-
sociation has a frequency of occurrence. The at-
tributes are extracted from the headers and saluta-
tion and signature lines. For example, an “address-
nickname” association < a, n > is inferred when-
ever a nickname n is usually observed in signature
lines of emails sent from email address a. Three
types of referential attributes were identified in the
original representation: email addresses, names, and
nicknames. We add usernames as well to account
for the absence of any other type of names. Names,
nicknames, and usernames are distinguishable based
on where each is extracted: email addresses and
names from headers, nicknames from salutation
and signature lines, and usernames from email ad-
dresses. Since (except in rare cases) an email ad-
dress is bound to one personal identity, the model
leverages email addresses as the basis by mandat-
ing that at least one email address must appear in
any observed association. As an off-line preprocess-
ing step, we extract the referential attributes from the
whole collection and build the identity models. The
first step in the resolution process is to determine the
list of identity models that are viable candidates as
the true referent. For the experiments reported in this
paper, any identity model with a first name or nick-
name that exactly matches the mention is considered
a candidate.
Labeling Observed Names: For the purpose of re-
solving name mentions, it is necessary to compute
the probability p(l|c) that a person c is referred to by
a given “literal” mention l. Intuitively, that probabil-
ity can be estimated based on the observed “name-
type” of l and how often that association occurs in

the represented model. We define T as the set of
3 different types of single-token name-types: first,
last, and nickname. We did not handle middle names
and initials, just for simplicity. Names that are ex-
tracted from salutation and signature lines are la-
beled as nicknames whereas full names extracted
from headers are first normalized to “First Last”
form and then each single token is labeled based on
its relative position as being the first or last name.
Usernames are treated similarly to full names if they
have more than one token, otherwise they are ig-
nored. Note that the same single-token name may
appear as a first name and a nickname.

Figure 1: A computational model of identity.

Reasoning: Having tokenized and labeled all
names, we propose to model the association of a
single-token name l of type t to an identity c by a
simple 3-node Bayesian network illustrated in Fig-
ure 1. In the network, the observed mention l is
distributed conditionally on both the identity c and
the name-type t. p(c) is the prior probability of ob-
serving the identity c in the collection. p(t|c) is the
probability that a name-type t is used to refer to c.
p(l|t, c) is the probability of referring to c by l of
type t. These probabilities can be inferred from the
representational model as follows:

p(c) =
|assoc(c)|∑

c′∈C |assoc(c
′)|

p(t|c) =
freq(t, c)∑

t′∈T freq(t
′ , c)

p(l|t, c) =
freq(l, t, c)∑

l′∈assoc(c) freq(l
′ , t, c)

where assoc(c) is the set of observed associations of
referential attributes in the represented model c.

The probability of observing a mention l given
that it belongs to an identity c, without assuming a
specific token type, can then be inferred as follows:

p(l|c) =
∑
t∈T

p(t|c) p(l|t, c)

In the case of a multi-token names (e.g., John
Smith), we assume that the first is either a first name
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or nickname and the last is a last name, and compute
it accordingly as follows:

p(l1l2|c) = {
∑

t∈{f,n}

p(t|c) p(l1|t, c)} · p(l2|last, c)

where f and n above denotes first name and nick-
name respectively.

Email addresses are also handled, but in a differ-
ent way. Since we assume each of them uniquely
identifies the identity, all email addresses for one
identity are mapped to just one of them, which then
has half of the probability mass (because it appears
in every extracted co-occurrence association).

Our computational model of identity can be
thought of as a language model over a set of per-
sonal references and thus it is important to account
for unobserved references. If we know that a spe-
cific first name often has a common nickname (by a
dictionary of commonly used first to nickname map-
pings (e.g., Robert to Bob)), but this nickname was
not observed in the corpus, we will need to apply
smoothing. We achieve that by assuming the nick-
name would have been observed n times where n is
some fraction (0.75 in our experiments) of the fre-
quency of the observed name. We repeat that for
each unobserved nickname and then treat them as if
they were actually observed.

3.2 Contextual Space

Figure 2: Contextual Space
It is obvious that understanding the context of an

ambiguous mention will help with resolving it.
Fortunately, the nature of email as a conversa-

tional medium and the link-relationships between
emails and people over time can reveal clues that can
be exploited to partially reconstruct that context.

We define the contextual space X(m) of a men-
tion m as a mixture of 4 types of contexts with λk as
the mixing coefficient of context xk. The four con-
texts (illustrated in Figure 2) are:

(1) Local Context: the email em where the named
person is mentioned.
(2) Conversational Context: emails in the broader
discussion that includes em, typically the thread that
contains it.
(3) Social Context: discussions that some or all of
the participants (sender and receivers) of em joined
or initiated at around the time of the mention-email.
These might bear some otherwise-undetected rela-
tionship to the mention-email.
(4) Topical Context: discussions that are topically
similar to the mention-discussion that took place at
around the time of em, regardless of whether the dis-
cussions share any common participants.

These generally represent a growing (although not
strictly nested) contextual space around the queried
mention. We assume that all mentions in an email
share the same contextual space. Therefore, we can
treat the context of a mention as the context of its
email. However, each email in the collection has
its own contextual space that could overlap with an-
other email’s space.

3.2.1 Formal Definition
We define K as the set of the 4 types of contexts.

A context xk is represented by a probability distri-
bution over all emails in the collection. An email ej
belongs to the kth context of another email ei with
probability p(ej |xk(ei)). How we actually represent
each context and estimate the distribution depends
upon the type of the context. We explain that in de-
tail in section 3.2.2.

3.2.2 Context Reconstruction
In this section, we describe how each context is

constructed.
Local Context: Since this is simply em, all of the
probability mass is assigned to it.
Conversational Context: Threads (i.e., reply
chains) are imperfect approximations of focused
discussions, since people sometimes switch topics
within a thread (and indeed sometimes within the
same email). We nonetheless expect threads to ex-
hibit a useful degree of focus and we have there-
fore adopted them as a computational representation
of a discussion in our experiments. To reconstruct
threads in the collection, we adopted the technique
introduced in (Lewis and Knowles, 1997). Thread

944



reconstruction results in a unique tree containing the
mention-email. Although we can distinguish be-
tween different paths or subtrees of that tree, we
elected to have a uniform distribution over all emails
in the same thread. This also applies to threads re-
trieved in the social and topical contexts as well.
Social Context: Discussions that share common
participants may also be useful, though we expect
their utility to decay somewhat with time. To recon-
struct that context, we temporally rank emails that
share at least one participant with em in a time pe-
riod around em and then expand each by its thread
(with duplicate removal). Emails in each thread are
then each assigned a weight that equals the recip-
rocal of its thread rank. We do that separately for
emails that temporally precede or follow em. Fi-
nally, weights are normalized to produce one distri-
bution for the whole social context.
Topical Context: Identifying topically-similar con-
tent is a traditional query-by-example problem that
has been well researched in, for example, the TREC
routing task (Lewis, 1996) and the Topic Detection
and Tracking evaluations (Allan, 2002). Individual
emails may be quite terse, but we can exploit the
conversational structure to obtain topically related
text. In our experiments, we tracked back to the
root of the thread in which em was found and used
the subject line and the body text of that root email
as a query to Lucene3 to identify topically-similar
emails. Terms found in the subject line are dou-
bled in the query to emphasize what is sometimes
a concise description of the original topic. Subse-
quent processing is then similar to that used for the
social context, except that the emails are first ranked
by their topical, rather than temporal, similarity.

The approaches we adopted to reconstruct the so-
cial and topical contexts were chosen for their rel-
ative simplicity, but there are clearly more sophis-
ticated alternatives. For example, topic modeling
techniques (McCallum et al., 2005) could be lever-
aged in the reconstruction of the topical context.

3.3 Mention Resolution

Given a specific mention m and the set of identity
models C, our goal now is to compute p(c|m) for
each candidate c and rank them accordingly.

3http://lucene.apache.org

3.3.1 Context-Free Mention Resolution
If we resolve m out of its context, then we can

compute p(c|m) by applying Bayes’ rule as follows:

p(c|m) ≈ p(c|lm) =
p(lm|c) p(c)∑

c′∈C p(l
m|c′) p(c′)

All the terms above are estimated as discussed ear-
lier in section 3.1. We call this approach “backoff”
since it can be used as a fall-back strategy. It is con-
sidered the baseline approach in our experiments.

3.3.2 Contextual Mention Resolution
We now discuss the more realistic situation in

which we use the context to resolve m. By expand-
ing the mention with its context, we get

p(c|m) = p(c|lm, X(em))
We then apply Bayes’ rule to get

p(c|lm, X(em)) =
p(c, lm, X(em))
p(lm, X(em))

where p(lm, X(em)) is the probability of observ-
ing lm in the context. We can ignore this probabil-
ity since it is constant across all candidates in our
ranking. We now restrict our focus to the numera-
tor p(c, lm, X(em)), that is the probability that the
sender chose to refer to c by lm in the contextual
space. As we discussed in section 3.2, X is defined
as a mixture of contexts therefore we can further ex-
pand it as follows:

p(c, lm, X(em)) =
∑

k

λk p(c, lm, xk(em))

Following the intuitive generative scenario we intro-
duced earlier, the context-specific probability can be
decomposed as follows:

p(c, lm, xk(em)) = p(c)
∗ p(xk(em)|c)
∗ p(lm|xk(em), c)

where p(c) is the probability of selecting a can-
didate c, p(xk(em)|c) is the probability of select-
ing xk as an appropriate context to mention c, and
p(lm|xk(em), c) is the probability of choosing to
mention c by lm given that xk is the appropriate con-
text.
Choosing person to mention: p(c) can be estimated
as discussed in section 3.1.
Choosing appropriate context: By applying Bayes’
rule to compute p(xk(em)|c) we get

p(xk(em)|c) =
p(c|xk(em)) p(xk(em))

p(c)
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p(xk(em)) is the probability of choosing xk to gen-
erally mention people. In our experiments, we
assumed a uniform distribution over all contexts.
p(c|xk(em)) is the probability of mentioning c in
xk(em). Given that the context is defined as a distri-
bution over emails, this can be expanded to

p(c|xk(em)) =
∑
ei∈E

p(ei|xk(em) p(c|ei))

where p(c|ei) is the probability that c is mentioned
in the email ei. This, in turn, can be estimated us-
ing the probability of referring to c by at least one
unique reference observed in that email. By assum-
ing that all lexical matches in the same email refer to
the same person, and that all lexically-unique refer-
ences are statistically independent, we can compute
that probability as follows:

p(c|ei) = 1− p(c is not mentioned in ei)

= 1−
∏

m′∈M(ei)

(1− p(c|m′))

where p(c|m′) is the probability that c is the true
referent of m

′
. This is the same general problem

of resolving mentions, but now concerning a related
mention m

′
found in the context of m. To handle

this, there are two alternative solutions: (1) break the
cycle and compute context-free resolution probabil-
ities for those related mentions, or (2) jointly resolve
all mentions. In this paper, we will only consider the
first, leaving joint resolution for future work.
Choosing a name-mention: To estimate
p(lm|xk(em), c), we suggest that the email au-
thor would choose either to select a reference (or a
modified version of a reference) that was previously
mentioned in the context or just ignore the context.
Hence, we estimate that probability as follows:

p(lm|xk(em), c) = α p(lm ∈ xk(em)|c)
+(1− α) p(lm|c)

where α ∈ [0, 1] is a mixing parameter (set at 0.9
in our experiments), and p(lm|c) is estimated as in
section 3.1. p(lm ∈ xk(em)|c) can be estimated as
follows:

p(lm ∈ xk(em)|c) =∑
m′∈xk

p(lm|lm
′
)p(lm

′
|xk) p(c|lm

′
)

where p(lm|lm
′
) is the probability of modifying lm

′

into lm. We assume all possible mentions of c

are equally similar to m and estimate p(lm|lm
′
) by

1
|possible mentions of c| . p(lm

′
|xk) is the probability of

observing lm
′

in xk, which we estimate by its rel-
ative frequency in that context. Finally, p(c|lm′) is
again a mention resolution problem concerning the
reference ri which can be resolved as shown earlier.

The Aho-Corasick linear-time algorithm (Aho
and Corasick, 1975) is used to find mentions of
names, using a corpus-based dictionary that includes
all names, nicknames, and email addresses extracted
in the preprocessing step.

4 Experimental Evaluation

We evaluate our mention resolution approach using
four test collections, all are based on the CMU ver-
sion of the Enron collection; each was created by se-
lecting a subset of that collection, selecting a set of
query-mentions within emails from that subset, and
creating an answer key in which each query-mention
is associated with a single email address.

The first two test collections were created by
Minkov et al (Minkov et al., 2006). These test col-
lections correspond to two email accounts, “sager-
e” (the “Sager” collection) and “shapiro-r” (the
“Shapiro” collection). Their mention-queries and
answer keys were generated automatically by iden-
tifying name mentions that correspond uniquely to
individuals referenced in the cc header, and elimi-
nating that cc entry from the header.

The third test collection, which we call the
“Enron-subset” is an extended version of the test
collection created by Diehl at al (Diehl et al., 2006).
Emails from all top-level folders were included
in the collection, but only those that were both
sent by and received by at least one email address
of the form <name1>.<name2>@enron.com were
retained. A set of 78 mention-queries were manu-
ally selected and manually associated with the email
address of the true referent by the third author using
an interactive search system developed specifically
to support that task. The set of queries was lim-
ited to those that resolve to an address of the form
<name1>.<name2>@enron.com. Names found in
salutation or signature lines or that exactly match
<name1> or <name2> of any of the email partic-
ipants were not selected as query-mentions. Those
78 queries include the 54 used by Diehl et al.
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Table 1: Test collections used in the experiments.
Test Coll. Emails IDs Queries Candidates

Sager 1,628 627 51 4 (1-11)
Shapiro 974 855 49 8 (1-21)

Enron-sub 54,018 27,340 78 152 (1-489)
Enron-all 248,451 123,783 78 518 (3-1785)

For our fourth test collection (“Enron-all”), we
used the same 78 mention-queries and the answer
key from the Enron-subset collection, but we used
the full CMU version of the Enron collection (with
duplicates removed). We use this collection to as-
sess the scalability of our techniques.

Some descriptive statistics for each test collection
are shown in Table 1. The Sager and Shapiro col-
lections are typical of personal collections, while
the other two represent organizational collections.
These two types of collections differ markedly in
the number of known identities and the candidate
list sizes as shown in the table (the candidate list
size is presented as an average over that collection’s
mention-queries and as the full range of values).

4.1 Evaluation Measures
There are two commonly used single-valued eval-
uation measures for “known item”-retrieval tasks.
The “Success @ 1” measure characterizes the ac-
curacy of one-best selection, computed as the mean
across queries of the precision at the top rank for
each query. For a single-valued figure of merit that
considers every list position, we use “Mean Recip-
rocal Rank” (MRR), computed as the mean across
queries of the inverse of the rank at which the cor-
rect referent is found.

4.2 Results
There are four basic questions which we address in
our experimental evaluation: (1) How does our ap-
proach perform compared to other approaches?, (2)
How is it affected by the size of the collection and
by increasing the time period?, (3) Which context
makes the most important contribution to the resolu-
tion task? and (4) Does the mixture help?

In our experiments, we set the mixing coefficients
λk and the context priors p(xk) to a uniform distri-
bution over all reconstructed contexts.

To compare our system performance with results

Table 2: Accuracy results with different time periods.
Period MRR Success @ 1
(days) Prob. Minkov Prob. Minkov

10 0.899 0.889 0.843 0.804
Sager 100 0.911 0.889 0.863 0.804

200 0.911 0.889 0.863 0.804
10 0.913 0.879 0.857 0.779

Shapiro 100 0.910 0.879 0.837 0.779
200 0.911 0.837 0.878 0.779
10 0.878 - 0.821 -

Enron-sub 100 0.911 - 0.846 -
200 0.911 - 0.846 -
10 0.890 - 0.821 -

Enron-all 100 0.888 - 0.821 -
200 0.888 - 0.821 -

previously reported, we experimented with differ-
ent (symmetric) time periods for selecting threads
in the social and topical contexts. Three represen-
tative time periods, in days, were arbitrarily chosen:
10 (i.e., +/- 5) days, 100 (i.e., +/- 50) days, and 200
(i.e., +/- 100) days. In each case, the mention-email
defines the center of this period.

A summary of the our results (denoted by “Prob.”)
are shown in Table 2 with the best results for each
test collection highlighted in bold. The table also in-
cludes the results reported in Minkov et al (Minkov
et al., 2006) for the small collections for comparison
purposes.4 Each score for our system was the best
over all combinations of contexts for these collec-
tions and time periods. Given these scores, our re-
sults compare favorably with the previously reported
results for both Sager and Shapiro collections.

Another notable thing about our results is that
they seem to be good enough for practical appli-
cations. Specifically, our one-best selection (over
all tried conditions) is correct at least 82% of the
time over all collections, including the largest one.
Of course, the Enron-focused selection of mention-
queries in every case is an important caveat on these
results; we do not yet know how well our techniques
will hold up with less evidence, as might be the case
for mentions of people from outside Enron.

It is encouraging that testing on the largest col-

4For the “Enron-subset” collection, we do not know which
54 mention-queries Diehl et al used in (Diehl et al., 2006)
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lection (with all unrelated and thus noisy data) did
not hurt the effectiveness much. For the three differ-
ent time periods we tried, there was no systematic
effect.

Figure 3: Individual contexts, period set to 100 days.

Individual Contexts: Our choice of contexts was
motivated by intuition rather than experiments, so
we also took this opportunity to characterize the
contribution of each context to the results. We
did that by setting some of the context mixing-
coefficients to zero and leaving the others equally-
weighted. Figure 3 shows the MRR achieved with
each context. In that figure, the “backoff” curve in-
dicates how well the simple context-free resolution
would do. The difference between the two small-
est and the two largest collections is immediately
apparent–this backoff is remarkably effective for the
smaller collections, and almost useless for the larger
ones, suggesting that the two smaller collections are
essentially much easier. The social context is clearly
quite useful, more so than any other single context,
for every collection. This tends to support our ex-
pectation that social networks can be as informative
as content networks in email collections. The topical
context also seems to be useful on its own. The con-
versational context is moderately useful on its own
in the larger collections. The local context alone is
not very informative for the larger collections.
Mixture of Contexts: The principal motivation for
combining different types of contexts is that differ-
ent sources may provide complementary evidence.
To characterize that effect, we look at combinations
of contexts. Figure 4 shows three such context com-
binations, anchored by the social context alone, with
a 100-day window (the results for 10 and 200 day
periods are similar). Reassuringly, adding more con-
texts (hence more evidence) turns out to be a rea-

Figure 4: Mixture of contexts, period set to 100 days.

sonable choice in most cases. For the full combi-
nation, we notice a drop in the effectiveness from
the addition of the topical context.5 This suggests
that the construction of the topical context may need
more careful design, and/or that learned λk’s could
yield better evidence combination (since these re-
sults were obtained with equal λk’s).

5 Conclusion

We have presented an approach to mention resolu-
tion in email that flexibly makes use of expanding
contexts to accurately resolve the identity of a given
mention. Our approach focuses on four naturally
occurring contexts in email, including a message,
a thread, other emails with senders and/or recipi-
ents in common, and other emails with significant
topical content in common. Our approach outper-
forms previously reported techniques and it scales
well to larger collections. Moreover, our results
serve to highlight the importance of social context
when resolving mentions in social media, which is
an idea that deserves more attention generally. In fu-
ture work, we plan to extend our test collection with
mention queries that must be resolved in the “long
tail” of the identity distribution where less evidence
is available. We are also interested in exploring iter-
ative approaches to jointly resolving mentions.
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