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Abstract 

Natural Language Generation (NLG) is a 
way to automatically realize a correct ex-

pression in response to a communicative 

goal. This technology is mainly explored 

in the fields of machine translation, re-

port generation, dialog system etc. In this 

paper we have explored the NLG tech-

nique for another novel application-

assisting disabled children to take part in 

conversation. The limited physical ability 
and mental maturity of our intended users 

made the NLG approach different from 

others. We have taken a flexible ap-
proach where main emphasis is given on 

flexibility and usability of the system. 

The evaluation results show this tech-

nique can increase the communication 

rate of users during a conversation. 

1 Introduction 

‘Natural Language Generation’ also known as 

‘Automated Discourse Generation’ or simply 

‘Text Generation’, is a branch of computational 

linguistics, which deals with automatic genera-

tion of text in natural human language by the 
machine. It can be conceptualized as a process 

leading from a high level communicative goal to 

a sequence of communicative acts that accom-
plish this communicative goal (Rambow et. al., 

2001). Based on input representation, any NLG 

technique can be broadly classified into two 
paradigms viz. Template based Approach and 

Plan based approach. The template-based ap-

proach does not need large linguistic knowledge 

resource but it cannot provide the expressiveness 

or flexibility needed for many real domains 

(Langkilde and Knight, 1998). In (Deemter et. 
al., 1999), it has been tried to prove with the ex-

ample of a system (D2S: Direct to Speech) that 

both of the approaches are equally powerful and 
theoretically well founded. The D2S system uses 

a tree structured template organization that re-
sembles Tag Adjoining Grammar (TAG) struc-

ture. The template-based approach that has been 

taken in the system, enables the basic language 

generation algorithms application independent 

and language independent. At the final stage of 

language generation it checks the compatibility 

of the sentence structure with the current context 

and validates the result with Chomsky’s binding 

theory. For this reason it is claimed to be as well 
founded as any plan-based approach. As another 

practical example of NLG technique, we can 

consider the IBM MASTOR system (Liu et. al., 
2003). It is used as speech-to-speech translator 

between English and Mandarin Chinese. The 

NLG part of this system uses trigram language 

model for selecting appropriate inflectional form 

for target language generation. 

 When NLG (or NLP) technology is ap-

plied in assistive technology, the focus is shifted 

to increase communication rate rather than in-

creasing the efficiency of input representation. 
As for example, CHAT (Alm, 1992) software is 

an attempt to develop a predictive conversation 

model to achieve higher communication rate dur-
ing conversation. This software predicts different 

sentences depending on situation and mood of 

the user. The user is free to change the situation 
or mood with a few keystrokes. In “Compan-

sion” project (McCoy, 1997), a novel approach 

was taken to enhance the communication rate. 

The system takes telegraphic message as input 

and automatically produces grammatically cor-

rect sentences as output based on NLP tech-

niques. The KOMBE Project (Pasero, 1994) tries 

to enhance the communication rate in a different 

way. It predicts a sentence or a set of sentence by 

taking sequence of words from users. The San-

yog project (Sanyog, 2006)(Banerjee, 2005) ini-

tiates a dialog with the users to take different 

portions (eg. Subject, verb, predicate etc.) of a 

sentence and automatically constructs a gram-

matically correct sentence based on NLG tech-

niques.  
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2 The Proposed Approach 

The present system is intended to be used by 

children with severe speech and motor-

impairment. It will cater those children who can 

understand different parts of a sentence (like sub-
ject, object, verb etc.) but do not have the compe-

tence to construct a grammatically correct sen-

tence by properly arranging words. The intended 
audience offers both advantages and challenges 

to our NLG technique. The advantage is we can 

limit the extent of sentence types that have to be 

generated. But the challenges overwhelm this 

advantage. The main challenges identified so far 

can be summarized as follows. 

� Simplicity in interacting with user due to 

limited mental maturity level of users 

� Flexibility in taking input 

� Generating sentences with minimum 
number of keystrokes due to the limited 

physical ability of the users 

� Generating the most appropriate sen-

tence in the first chance since we do not 

have any scope to provide users a set of 

sentences and ask them to choose one 

from the set. 

In the next few sections the NLG technique 

adopted in our system will be discussed in de-
tails. Due to limited vocabulary and education 

level of our intended users, our NLG technique 

will generate only simple active voice sentences. 
The challenges are also tried to be addressed in 

developing the NLG technique. 

Generally an NLG system can be divided into 

three modules viz. Text Planning, MicroPlanning 

and Realization. In (Callaway and Lester, 1995), 

the first two modules are squeezed into a plan-

ning module and results only two subtasks in an 

NLG system. Generally in all the approaches of 

NLG, the process starts with different parts of a 
sentence and each of these parts can be desig-

nated as a template. After getting values for these 

templates the templates are arranged in a speci-
fied order to form an intermediate representation 

of a sentence. Finally the intermediate represen-

tation undergoes through a process viz. Surface 
realization to form a grammatically correct and 

fluent sentence. Thus any NLG technique can be 

broadly divided into two parts 

� Templates fill up 

� Surface realization 

Now each of these two steps for our system will 

be discussed in details. 

2.1 Templates fill up 

We defined templates for our system based on 

thematic roles and Parts of Speech of words. We 

tagged each sentence of our corpus (the corpus is 
discussed in section 4.1) and based on this 

tagged corpus, we have classified the templates 

in two classes. One class contains the high fre-

quency templates i.e. templates that are con-

tained in most of the sentences. Examples of this 

class of templates include subject, verb, object 
etc. The other class contains rest of the tem-

plates. Let us consider the first class of templates 

are designated by set A={a1,a2,a3,a4….} and 
other class is set B={b1,b2,b3,b4,…………..}. 

Our intention is to offer simplicity and flexibility 

to user during filling up the templates. So each 
template is associated with an easy to understand 

phrase like 

Subject=> Who 

Verb=> Action 

Object=> What 

Destination=>To Where 

Source=>From Where………..etc. 

To achieve the flexibility, we show all the tem-

plates in set A to user in the first screen (the 
screenshot is given in fig. 1, however the screen 

will not look as clumsy as it is shown because 

some of the options remain hidden by default and 

appear only on users’ request). The user is free to 

choose any template from set A to start sentence 

construction and is also free to choose any se-

quence during filling up values for set A. The 

system will be a free order natural language gen-

erator i.e. user can give input to the system using 

any order; the system will not impose any par-
ticular order on the user (as imposed by the San-

yog Project). Now if the user is to search for all 

the templates needed for his/her sentence, then 
both the number of keystrokes and cognitive load 

on user will increase.  So with each template of 

set A we defined a sequence of templates taking 

templates from both set A and set B. Let user 

chooses template ak. Now after filling up tem-

plate ak, user will be prompted with a sequence 

of templates like ak1, ak2, ak3, bk1, bk2, bk3, 

etc. to fill up. Again the actual sequence that will 

be prompted to user will depend on the input that 
is already given by user. So the final sequence 

shown to the user will be a subset of the prede-

fined sequence.  Let us clear the concept with an 
example. Say a user fills up the template <Desti-

nation>. Now s/he will be requested to give val-

ues for template like <Source>, <Conveyance>, 
<Time>, <Subject> etc, excluding those which 
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are already filled up. As the example shows, the 
user needs not to search for all templates as well 

as s/he needs not to fill up a template more than 

once. This strategy gives sentence composition 
with minimum number of keystrokes in most of 

the cases.  

2.2 Surface Realization 

It consists of following steps 

� Setting verb form according to the tense 

given by user 

� Setting Sense 

� Setting Mood 

� Phrase ordering to reflect users intention 

Each of these steps is described next. 

 

The verb form will be modified according to the 
person and number of the subject and the tense 

choice given by the user. 

 
The sense will decide the type of the sentence i.e. 

whether it is affirmative, negative, interrogative 

or optative. For negative sense, appropriate nega-
tive word (e.g. No, not, do not) will be inserted 

before the verb.  The relative position of the or-

der of the subject and verb will be altered for 

optative and interrogative sentences. 

 

The mood choice changes the main verb of the 

sentence to special verbs like need, must etc. It 
tries to reflect the mood of the user during sen-

tence composition.  

 

Finally the templates are grouped to constitute 

different phrases. These phrases are ordered ac-

cording to the order of the input given by the 

user. This step is further elaborated in section 

3.2. 

3 A Case Study 

In this section a procedural overview of the pre-
sent system will be described. The automatic 

language generation mechanism of the present 

system uses the following steps  
 

Taking Input from Users 
The user has to give input to the system using the 

form shown in fig. 1. As shown in the form the 

user can select any property (like tense, mood or 

sense) or template at any order. The user can se-

lect tense, mood or sentence type by clicking on 

appropriate option button. The user can give in-

put for the template by answering to the follow-

ing questions  

 
• Action 

• Who  

• Whom 

• With Whom  

• What  

• From Where  

• To Where  

• Vehicle Used ……etc. 

 

 After selecting a thematic role, a second form 

will come as shown in Fig. 2. From the form 
shown at Fig 2, the user can select as many 

words as they want. Even if they want they can 

type a word (e.g. his /her own name). The punc-
tuations and conjunction will automatically be 

inserted. 
 

 
Fig. 1: Screenshot of dialog based interface 
 

 
Fig. 2: Screenshot of word selection interface 
 

Template fill-up 

After giving all the input the user asks the system 

to generate the sentence by clicking on “generate 

sentence” Button. The system is incorporated 

with several template organizations and a default 

3



template organization. Examples of some of 
these template organizations are as follows 

 
• SUBJECT VERB 

• SUBJECT VERB INANIMATE OBJECT 

• SUBJECT VERB ANIMATE OBJECT 

• SUBJECT VERB WITH COAGENT 

• SUBJECT VERB INANIMATE OBJECT 

WITH COAGENT 

• SUBJECT VERB INANIMATE OBJECT 

WITH INSTRUMENT 

• SUBJECT VERB SOURCE DESTINA-

TION BY CONVEYANCE 

• SUBJECT VERB SOURCE DESTINA-

TION WITH COAGENT 

 
The system select one such template organization 

based on user input and generates the intermedi-

ate sentence representation. 
 

Verb modification according to tense 

The intermediate sentence is a simple present 

tense sentence.  According to the user chosen 

tense, the verb of the intermediate sentence get 

modified at this step. If no verb is specified, ap-

propriate auxiliary verb will be inserted. 

 

Changing Sentence Type 

Up to now the sentence remain as an affirmative 

sentence. According to the user chosen sense the 
sentence gets modified in this step. E.g. For 

question, the verb comes in front, for negative 

sentence not, do not, did not or does not is in-

serted appropriately. 

 

Inserting Modal Verbs 

Finally the users chosen modal verbs like must, 
can or need are inserted into the sentence. For 

some modal verbs (like can or need) the system 

also changes the form of the verb (like can or 
could). 

3.1 Example of Sentence Generation using 

Our Approach 

Let us consider some example of language gen-

eration using our system. 

 

Example 1 

Let the user wants to tell, “I am going to school 

with father” 

Step 1: The user inputs will be 

Who => I 

To Where => school 
With Whom => father 

Main Action => go 

Tense => Present Continuous 
Step 2: Template Organization Selection 

Based on user input the following template or-

ganization will be selected 
SUBJECT VERB DESTINATION WITH CO-

AGENT 

Step 3: Verb Modification according to tense 

Since the selected tense is present continuous 

and subject is first person singular number, so 

‘go’ will be changed to ‘am going’. 

Step 4: In this case there is no change of the sen-
tence due to step 4. 

Step 5: There is no change of the sentence due to 

step 5. 

So the final output will be “I am going to school 

with father”. It is same as the user intended sen-

tence. 

 

Example 2 

Let the user wants to tell, “You must eat it” 
Step 1: The user inputs will be 

Who => You 

Main Action => eat 
What => it 

Mood => must 

Tense => Present Simple 
Step 2: Template Organization Selection 

Based on user input the following template or-

ganization will be selected 
 SUBJECT VERB INANIMATE OBJECT 

Step 3: Verb Modification according to tense 
Since the tense is present simple so there will be 

no change in verb. 

Step 4: In this case there is no change of the sen-
tence due to step 4. 

Step 5: The modal verb will be inserted before 

the verb 
So the final output will be “You must eat it” 

 

Example 3  

Let the user wants to tell, “How are you” 

Step 1: The user inputs will be 

Who => You 

Sense => Question 

Wh-word => How 

Tense => Present Simple 
Step 2: Template Organization Selection 

There is no appropriate template for this input. 

Hence the default template organization will be 
chosen. 

Step 3: Verb Modification according to tense 
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Since no action is specified, the auxiliary verb 
will be selected as the main verb. Here the sub-

ject is second person and tense is present simple, 

so the verb selected is ‘are’. 
Step 4: Since the selected sentence type is 

‘Question’, so the verb will come in front of the 

sentence. Again, since a Wh-word has been se-

lected, it will come in front of the verb. A ques-

tion mark will automatically be appended at the 

end of the sentence. 
Step 5: There is no change of the sentence due to 

step 5. 

So the final output will be “How are you?” 

3.2 Phase ordering to reflect users’ inten-

tion 

An important part of any NLG system is prag-
matics that can be defined as the reference to the 

interlocutors and context in communication 

(Hovy, 1990). In (Hovy, 1990), a system viz. 
PAULINE has been described that is capable of 

generating different texts for the same communi-

cative goals based on pragmatics. In PAULINE, 
the pragmatics has been represented by rhetorical 

goals. The rhetorical goals defined several situa-

tions that dictate all the phases like topic collec-

tion, topic organization and realization. Inspired 

from the example of PAULINE the present sys-

tem has also tried to reflect users’ intention dur-

ing sentence realization. Here the problem is the 
limited amount of input for making any judicious 

judgment.  The input to the system is only a se-

quence of words with correspondence to a series 

of questions. A common finding is that we ut-

tered the most important concept in a sentence 

earlier than other parts of the sentence. So we 

have tried to get the users’ intention from the 

order of input given by user based on the belief 

that the user will fill up the slots in order of their 
importance according to his/her mood at that 

time.  We have associated a counter with each 

template. The counter value is taken from a 
global clock that is updated with each word se-

lection by the user. Each sentence is divided into 

several phrases before realization. Now each 
phrase constitute of several templates. For exam-

ple let S be a sentence. Now S can be divided 

into phrases like P1, P2, P3….. Again each 

phrase Pi can be divided into several templates 

like T1, T2, T3….Based on the counter value of 

each template, we have calculated the rank of 

each phrase as the minimum counter value of its 

constituent templates i.e. 

 
Rank(Pi)=Minimum(Counter(Tj)) for all j in Pi 

 

Now before sentence realization the phrases are 

ordered according to their rank. Each of these 
phrase orders produces a separate sentence. As 

for example let the communication goal is ‘I go 

to school from home with my father’. If the input 

sequence is (my father -> I -> go -> school -> 

home), the generated sentence will be ‘With my 

father I go from home to School’. Again if the 
input sequence is (school -> home -> I -> go -> 

my father), then the generated sentence will be 

‘From home to school I go with my father.’ 
Thus for the same communicative goal, the 

system produces different sentences based on 

order of input given by user. 

4 Evaluation 

The main goal of our system is to develop a 

communication aid for disabled children. So the 

performance metrics concentrated on measuring 

the communication rate that has little importance 

from NLG point of view. To evaluate our system 

from NLG point of view we emphasize on the 

expressiveness and ease of use of the system. 

The expressiveness is measured by the percent-

age of sentences that was intended by user and 
also successfully generated by our system. The 

ease of use is measured by the average number 

of inputs needed to generate each sentence. 

4.1 Measuring Expressiveness 

To know the type of sentences used by our in-

tended users during conversation, first we ana-

lyzed the communication boards used by dis-

abled children. Then we took part in some actual 

conversations with some spastic children in a 

Cerebral Palsy institute. Finally we interviewed 

their teachers and communication partners. 

Based on our research, we developed a list of 

around 1000 sentences that covers all types of 
sentences used during conversation. This list is 

used as a corpus in both development and 

evaluation stage of our system. During develop-
ment the corpus is used to get the necessary tem-

plates and for classification of templates (refer 

sec. 2.1). After development, we tested the scope 
of our system by generating some sentences that 

were exactly not in our corpus, but occurred in 

some sample conversations of the intended users. 

In 96% cases, the system is successful to gener-

ate the intended sentence. After analyzing the 

rest 4% of sentence, we have identified following 

problems at the current implementation stage. 
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� The system cannot handle gerunds as ob-
ject to preposition. (e.g. He ruins his 

eyes by reading small letters). 

� The system is yet not capable to generate 
correct sentence with an introductory 

‘It’. (e.g. It is summer). In these situa-

tions the sentence is correctly generated 

when ‘It’ is given as an agent, which is 

not intended. 

4.2 Measuring ease of use 

To calculate the performance of the system, we 

measured the number of inputs given by user for 

generating sentence. The input consists of words, 

tense choice, mood option and sense choice 

given by user. Next we plot the number of inputs 

w.r.t. the number of words for each sentence. 
Fig. 3 shows the plot. It can be observed from the 

plot that as the number of words increases (i.e. 

for longer sentences), the ratio of number of in-
puts to number of words decreases.  So effort 

from users’ side will not vary remarkably with 

sentence length. The overall communication rate 
is found to be 5.52 words/min (27.44 charac-

ters/min) that is better than (Stephanidis, 2003). 

Additionally it is also observed that the commu-

nication rate is increasing with longer conversa-

tions. 

5 Conclusion 

The present paper discusses a flexible ap-

proach for natural language generation for dis-
abled children. A user can start a sentence gen-

eration from any part of a sentence. The inherent 

sentence plan will guide him to realize a gram-

matically correct sentence with minimum num-

ber of keystrokes.  The present system respects 

the pragmatics of a conversation by reordering 

different parts of a sentence following users’ in-

tention. The system is evaluated both from ex-

pressiveness and performance point of views. 
Initial evaluation results show this approach can 

increase the communication rate of intended us-

ers during conversation.  
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Abstract 

An unsupervised part-of-speech (POS) 
tagging system that relies on graph 
clustering methods is described. Unlike 
in current state-of-the-art approaches, the 
kind and number of different tags is 
generated by the method itself. We 
compute and merge two partitionings of 
word graphs: one based on context 
similarity of high frequency words, 
another on log-likelihood statistics for 
words of lower frequencies. Using the 
resulting word clusters as a lexicon, a 
Viterbi POS tagger is trained, which is 
refined by a morphological component. 
The approach is evaluated on three 
different languages by measuring 
agreement with existing taggers.  

1 Introduction 

1.1 Motivation 

Assigning syntactic categories to words is an 
important pre-processing step for most NLP 
applications.  

Essentially, two things are needed to construct 
a tagger: a lexicon that contains tags for words 
and a mechanism to assign tags to running words 
in a text. There are words whose tags depend on 
their use. Further, we also need to be able to tag 
previously unseen words. Lexical resources have 
to offer the possible tags, and our mechanism has 
to choose the appropriate tag based on the 
context.  

Given a sufficient amount of manually tagged 
text, several approaches have demonstrated the 
ability to learn the instance of a tagging 
mechanism from manually labelled data and 
apply it successfully to unseen data. Those high-
quality resources are typically unavailable for 
many languages and their creation is labour-
intensive. We will describe an alternative 
needing much less human intervention. 

In this work, steps are undertaken to derive a 
lexicon of syntactic categories from unstructured 
text without prior linguistic knowledge. We 
employ two different techniques, one for high-
and medium frequency terms, one for medium- 
and low frequency terms. The categories will be 
used for the tagging of the same text where the 
categories were derived from. In this way, 
domain- or language-specific categories are 
automatically discovered. 

1.2 Existing Approaches 

There are a number of approaches to derive 
syntactic categories. All of them employ a 
syntactic version of Harris’ distributional 
hypothesis: Words of similar parts of speech can 
be observed in the same syntactic contexts. 
Contexts in that sense are often restricted to the 
most frequent words. The words used to describe 
syntactic contexts will be called feature words in 
the remainder. Target words, as opposed to this, 
are the words that are to be grouped into 
syntactic clusters.  

The general methodology (Finch and Chater, 
1992; Schütze, 1995; inter al.) for inducing word 
class information can be outlined as follows: 

1. Collect global context vectors for target 
words by counting how often feature 
words appear in neighbouring positions. 

2. Apply a clustering algorithm on these 
vectors to obtain word classes 

Throughout, feature words are the 150-250 
words with the highest frequency. Contexts are 
the feature words appearing in the immediate 
neighbourhood of a word. The word’s global 
context is the sum of all its contexts. 

For clustering, a similarity measure has to be 
defined and a clustering algorithm has to be 
chosen. Finch and Chater (1992) use the 
Spearman Rank Correlation Coefficient and a 
hierarchical clustering, Schütze (1995) uses the 
cosine between vector angles and Buckshot 
clustering.  

An extension to this generic scheme is 
presented in (Clark, 2003), where morphological 
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information is used for determining the word 
class of rare words. Freitag (2004) does not sum 
up the contexts of each word in a context vector, 
but the most frequent instances of four-word 
windows are used in a co-clustering algorithm. 

Regarding syntactic ambiguity, most 
approaches do not deal with this issue while 
clustering, but try to resolve ambiguities at the 
later tagging stage.  

A severe problem with most clustering 
algorithms is that they are parameterised by the 
number of clusters. As there are as many 
different word class schemes as tag sets, and the 
exact amount of word classes is not agreed upon 
intra- and interlingually, inputting the number of 
desired clusters beforehand is clearly a 
drawback. In that way, the clustering algorithm 
is forced to split coherent clusters or to join 
incompatible sub-clusters. In contrast, 
unsupervised part-of-speech induction means the 
induction of the tag set, which implies finding 
the number of classes in an unguided way. 

1.3 Outline 

This work constructs an unsupervised POS 
tagger from scratch. Input to our system is a 
considerable amount of unlabeled, monolingual 
text bar any POS information. In a first stage, we 
employ a clustering algorithm on distributional 
similarity, which groups a subset of the most 
frequent 10,000 words of a corpus into several 
hundred clusters (partitioning 1). Second, we use 
similarity scores on neighbouring co-occurrence 
profiles to obtain again several hundred clusters 
of medium- and low frequency words 
(partitioning 2). The combination of both 
partitionings yields a set of word forms 
belonging to the same derived syntactic category. 
To gain on text coverage, we add ambiguous 
high-frequency words that were discarded for 
partitioning 1 to the lexicon. Finally, we train a 
Viterbi tagger with this lexicon and augment it 
with an affix classifier for unknown words.  

The resulting taggers are evaluated against 
outputs of supervised taggers for various 
languages. 

2 Method 

The method employed here follows the coarse 
methodology as described in the introduction, 
but differs from other works in several respects. 
Although we use 4-word context windows and 
the top frequency words as features (as in 
Schütze 1995), we transform the cosine 

similarity values between the vectors of our 
target words into a graph representation. 
Additionally, we provide a methdology to 
identify and incorporate POS-ambiguous words 
as well as low-frequency words into the lexicon. 

2.1 The Graph-Based View 

Let us consider a weighted, undirected graph 
G(V,E) (v∈V vertices, (vi,vj,wij)∈E edges with 
weights wij). Vertices represent entities (here: 
words); the weight of an edge between two 
vertices indicates their similarity.  

As the data here is collected in feature vectors, 
the question arises why it should be transformed 
into a graph representation. The reason is, that 
graph-clustering algorithms such as e.g. (van 
Dongen, 2000; Biemann 2006), find the number 
of clusters automatically1. Further, outliers are 
handled naturally in that framework, as they are 
represented as singleton nodes (without edges) 
and can be excluded from the clustering. A 
threshold s on similarity serves as a parameter to 
influence the number of non-singleton nodes in 
the resulting graph.  

For assigning classes, we use the Chinese 
Whispers (CW) graph-clustering algorithm, 
which has been proven useful in NLP 
applications as described in (Biemann 2006). It is 
time-linear with respect to the number of edges, 
making its application viable even for graphs 
with several million nodes and edges. Further, 
CW is parameter-free, operates locally and 
results in a partitioning of the graph, excluding 
singletons (i.e. nodes without edges). 

2.2 Obtaining the lexicon 

Partitioning 1: High and medium frequency 
words 

Four steps are executed in order to obtain 
partitioning 1: 

1. Determine 200 feature and 10.000 target 
words from frequency counts 

2. construct graph from context statistics 
3. Apply CW on graph. 
4. Add the feature words not present in the 

partitioning as one-member clusters. 
The graph construction in step 2 is conducted 

by adding an edge between two words a and b 

                                                 
1 This is not an exclusive characteristic for graph 
clustering algorithms. However, the graph model 
deals with that naturally while other models usually 
build some meta-mechanism on top for determining 
the optimal number of clusters. 
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with weight w=1/(1-cos(a,b)), if w exceeds a 
similarity threshold s. The latter influences the 
number of words that actually end up in the 
graph and get clustered. It might be desired to 
cluster fewer words with higher confidence as 
opposed to running in the danger of joining two 
unrelated clusters because of too many 
ambiguous words that connect them. 

After step 3, we already have a partition of a 
subset of our target words. The distinctions are 
normally more fine-grained than existing tag 
sets. 

As feature words form the bulk of tokens in 
corpora, it is clearly desired to make sure that 
they appear in the final partitioning, although 
they might form word classes of their own2. This 
is done in step 4. We argue that assigning 
separate word classes for high frequency words 
is a more robust choice then trying to 
disambiguate them while tagging.  

Lexicon size for partitioning 1 is limited by 
the computational complexity of step 2, which is 
time-quadratic in the number of target words. For 
adding words with lower frequencies, we pursue 
another strategy.  

Partitioning 2: Medium and low frequency 
words 

As noted in (Dunning, 1993), log-likelihood 
statistics are able to capture word bi-gram 
regularities. Given a word, its neighbouring co-
occurrences as ranked by the log-likelihood 
reflect the typical immediate contexts of the 
word. Regarding the highest ranked neighbours 
as the profile of the word, it is possible to assign 
similarity scores between two words A and B 
according to how many neighbours they share, 
i.e. to what extent the profiles of A and B 
overlap. This directly induces a graph, which can 
be again clustered by CW.  

This procedure is parametrised by a log-
likelihood threshold and the minimum number of 
left and right neighbours A and B share in order 
to draw an edge between them in the resulting 
graph. For experiments, we chose a minimum 
log-likelihood of 3.84 (corresponding to 
statistical dependence on 5% level), and at least 
four shared neighbours of A and B on each side.  

Only words with a frequency rank higher than 
2,000 are taken into account. Again, we obtain 
several hundred clusters, mostly of open word 
classes. For computing partitioning 2, an 
efficient algorithm like CW is crucial: the graphs 
                                                 
2 This might even be desired, e.g. for English not. 

as used for the experiments consisted of 
52,857/691,241 (English), 85,827/702,349 
(Finnish) and 137,951/1,493,571 (German) 
nodes/edges. 

The procedure to construct the graphs is faster 
than the method used for partitioning 1, as only 
words that share at least one neighbour have to 
be compared and therefore can handle more 
words with reasonable computing time. 

Combination of  partitionings 1 and 2 

Now, we have two partitionings of two different, 
yet overlapping frequency bands. A large portion 
of these 8,000 words in the overlapping region is 
present in both partitionings. Again, we construct 
a graph, containing the clusters of both 
partitionings as nodes; weights of edges are the 
number of common elements, if at least two 
elements are shared. And again, CW is used to 
cluster this graph of clusters. This results in 
fewer clusters than before for the following 
reason: While the granularities of partitionings 1 
and 2 are both high, they capture different 
aspects as they are obtained from different 
sources. Nodes of large clusters (which usually 
consist of open word classes) have many edges 
to the other partitioning’s nodes, which in turn 
connect to yet other clusters of the same word 
class. Eventually, these clusters can be grouped 
into one.  

Clusters that are not included in the graph of 
clusters are treated differently, depending on 
their origin: clusters of partition 1 are added to 
the result, as they are believed to contain 
important closed word class groups. Dropouts 
from partitioning 2 are left out, as they mostly 
consist of small, yet semantically motivated 
word sets. Combining both partitionings in this 
way, we arrive at about 200-500 clusters that will 
be further used as a lexicon for tagging. 

Lexicon construction 

A lexicon is constructed from the merged 
partitionings, which contains one possible tag 
(the cluster ID) per word. To increase text 
coverage, it is possible to include those words 
that dropped out in the distributional step for 
partitioning 1 into the lexicon. It is assumed that 
these words dropped out because of ambiguity. 
From a graph with a lower similarity threshold s 
(here: such that the graph contained 9,500 target 
words), we obtain the neighbourhoods of these 
words one at a time. The tags of those 
neighbours – if known – provide a distribution of 
possible tags for these words.  
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2.3 Constructing the tagger 

Unlike in supervised scenarios, our task is not to 
train a tagger model from a small corpus of 
hand-tagged data, but from our clusters of 
derived syntactic categories and a considerably 
large, yet unlabeled corpus.  

Basic Trigram Model 

We decided to use a simple trigram model 
without re-estimation techniques. Adopting a 
standard POS-tagging framework, we maximize 
the probability of the joint occurrence of tokens 
(ti) and categories (ci) for a sequence of length n: 

∏
=

−−=
n

i
iiiii tcPcccPCTP

1
21 )|(),|(),( . 

The transition probability P(ci|ci-1,ci-2) is 
estimated from word trigrams in the corpus 
whose elements are all present in our lexicon.  

The last term of the product, namely P(ci|ti), is 
dependent on the lexicon3. If the lexicon does not 
contain (ti), then (ci) only depends on 
neighbouring categories. Words like these are 
called out-of-vocabulary (OOV) words.  

Morphological Extension 

Morphologically motivated add-ons are used e.g. 
in (Clark, 2003) and (Freitag 2004) to guess a 
more appropriate category distribution based on 
a word’s suffix or its capitalization for OOV 
words. Here, we examine the effects of Compact 
Patricia Trie classifiers (CPT) trained on prefixes 
and suffixes.  We use the implementation of 
(Witschel and Biemann, 2005). For OOV words, 
the category-wise product of both classifier’s 
distributions serve as probabilities P(ci|ti): Let 
w=ab=cd be a word, a be the longest common 
prefix of w that can be found in all lexicon 
words, and d be the longest common suffix of w 
that can be found in all lexicon words. Then 

}|{
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Table 1: Characteristics of corpora: number of 
sentences, tokens, tagger and tagset size, corpus 
coverage of top 200 and 10,000 words. 

CPTs do not only smoothly serve as a 
substitute lexicon component, they also realize 
capitalization, camel case and suffix endings 
naturally. 

                                                 
3 Although (Charniak et al. 1993) report that using  
P(ti|ci) instead leads to superior results in the 
supervised setting, we use the ‘direct’ lexicon 
probability. Note that our training material size is 
considerably larger than hand-labelled POS corpora. 

3 Evaluation methodology 

We adopt the methodology of (Freitag 2004) and 
measure cluster-conditional tag perplexity PP as 
the average amount of uncertainty to predict the 
tags of a POS-tagged corpus, given the tagging 
with classes from the unsupervised method. Let  

∑−=
x

X xPxPI )(ln)(  

be the entropy of a random variable X and  

∑=
xy

XY yPxP
yxPyxPM

)()(
),(ln),(  

be the mutual information between two 
random variables X and Y. Then the cluster-
conditional tag perplexity for a gold-standard 
tagging T and a tagging resulting from clusters C 
is computed as  

)exp()exp( | TCTCT MIIPP −== . 
Minimum PP is 1.0, connoting a perfect 

congruence on gold standard tags.  
In the experiment section we report PP on 

lexicon words and OOV words separately. The 
objective is to minimize the total PP.  

4 Experiments 

4.1 Corpora 

For this study, we chose three corpora: the 
British National Corpus (BNC) for English, a 10 
Million sentences newspaper corpus from 
Projekt Deutscher Wortschatz4 for German, and 
3 million sentences from a Finnish web corpus 
(from the same source). Table 1 summarizes 
some characteristics. 
lang. sent. tok. tagger nr. 

tags 
200 
cov. 

10K 
cov. 

en 6M 100M BNC5 84 55% 90%
fi 3M 43M Connexor6 31 30% 60%
ger 10M 177M (Schmid,1994) 54 49% 78%

 
Since a high coverage is reached with few 

words in English, a strategy that assigns only the 
most frequent words to sensible clusters will take 
us very far here. In the Finnish case, we can 
expect a high OOV rate, hampering performance 

                                                 
4 See http://corpora.informatik.uni-leipzig.de. 
5 Semi-automatic tags as provided by BNC. 
6 Thanks goes to www.connexor.com for an academic 
license; the tags do not include interpunctuation 
marks, which are treated seperately. 
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of strategies that cannot cope well with low 
frequency or unseen words. 

4.2 Baselines 

To put our results in perspective, we computed 
the following baselines on random samples of 
the same 1000 randomly chosen sentences that 
we used for evaluation: 

• 1: the trivial top clustering: all words are in 
the same cluster 

• 200: The most frequent 199 words form 
clusters of their own; all the rest is put into 
one cluster.  

• 400: same as 200, but with 399 most 
frequent words 

Table 2 summarizes the baselines. We give PP 
figures as well as tag-conditional cluster 
perplexity PPG (uncertainty to predict the 
clustering from the gold standard tags, inverse 
direction of PP):  
lang English Finnish German 
base 1 200 400 1 200 400 1 200 400
PP 29 3.6 3.1 20 6.1 5.3 19 3.4 2.9 
PPG 1.0 2.6 3.5 1.0 2.0 2.5 1.0 2.5 3.1 

Table 2: Baselines for various tag set sizes 

4.3 Results 

We measured the quality of the resulting taggers 
for combinations of several substeps:  
• O: Partitioning 1  
• M: the CPT morphology extension  
• T: merging partitioning 1 and 2 
• A: adding ambiguous words to the lexicon 

Figure 2 illustrates the influence of the 
similarity threshold s for O,  OM and OMA for 
German – the other languages showed similar 
results. Varying s influences coverage on the 
10,000 target words. When clustering very few 
words, tagging performance on these words 
reaches a PP as low as 1.25 but the high OOV 
rate impairs the total performance. Clustering too 
many words results in deterioration of results - 
most words end up in one big partition. In the 
medium ranges, higher coverage and lower 
known PP compensate each other, optimal total 
PPs were observed at target coverages 4,000-
8,000. Adding ambiguous words results in a 
worse performance on lexicon words, yet 
improves overall performance, especially for 
high thresholds. 

For all further experiments we fixed the 
threshold in a way that partitioning 1 consisted of 
5,000 words, so only half of the top 10,000 
words are considered unambiguous. At this 

value, we found the best performance averaged 
over all corpora.  

 

 
Fig 2. Influence of threshold s on tagger 

performance: cluster-conditional tag perplexity 
PP as a function of target word coverage.  

 
lang  O OM OMA TM TMA

total 2.66 2.43 2.08 2.27 2.05
lex 1.25 1.51 1.58 1.83
oov 6.74 6.70 5.82 9.89 7.64
oov% 28.07 14.25 14.98 4.62

 
 

EN 

tags 619 345 
total 4.91 3.96 3.79 3.36 3.22
lex 1.60 2.04 1.99 2.29
oov 8.58 7.90 7.05 7.54 6.94
oov% 47.52 36.31 32.01 23.80

 
 

FI 

tags 625 466 
total 2.53 2.18 1.98 1.84 1.79
lex 1.32 1.43 1.51 1.57
oov 3.71 3.12 2.73 2.97 2.57
oov% 31.34 23.60 19.12 13.80

 
 
GER

tags 781 440 
Table 3: results for English, Finnish, German. 

oov% is the fraction of non-lexicon words. 
 
Overall results are presented in table 3. The 

combined strategy TMA reaches the lowest PP 
for all languages. The morphology extension (M) 
always improves the OOV scores. Adding 
ambiguous words (A) hurts the lexicon 
performance, but largely reduces the OOV rate, 
which in turn leads to better overall performance. 
Combining both partitionings (T) does not 
always decrease the total PP a lot, but lowers the 
number of tags significantly. Finnish figures are 
generally worse than for the other languages, 
akin to higher baselines.  

The high OOV perplexities for English in 
experiment TM and TMA can be explained as 
follows: The smaller the OOV rate gets, the more 
likely it is that the corresponding words were 
also OOV in the gold standard tagger. A remedy 
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would be to evaluate on hand-tagged data. 
Differences between languages are most obvious 
when comparing OMA and TM: whereas for 
English it pays off much more to add ambiguous 
words than to merge the two partitionings, it is 
the other way around in the German and Finnish 
experiments.   

To wrap up: all steps undertaken improve the 
performance, yet their influence's strength varies. 
As a flavour of our system's output, consider the 
example in table 4 that has been tagged by our 
English TMA model: as in the introductory 
example, "saw" is disambiguated correctly. 

 
Word cluster ID cluster members (size) 
I 166 I (1) 
saw 2 past tense verbs (3818) 
the 73 a, an, the (3) 
man 1 nouns (17418) 
with 13 prepositions (143) 
a 73 a, an, the (3) 
saw 1 nouns (17418) 
. 116 . ! ? (3) 

Table 4: Tagging example 
 

We compare our results to (Freitag, 2004), as 
most other works use different evaluation 
techniques that are only indirectly measuring 
what we try to optimize here. Unfortunately, 
(Freitag 2004) does not provide a total PP score 
for his 200 tags. He experiments with an hand-
tagged, clean English corpus we did not have 
access to (the Penn Treebank). Freitag reports a 
PP for known words of 1.57 for the top 5,000 
words (91% corpus coverage, baseline 1 at 23.6), 
a PP for unknown words without morphological 
extension of 4.8. Using morphological features 
the unknown PP score is lowered to 4.0. When 
augmenting the lexicon with low frequency 
words via their distributional characteristics, a 
PP as low as 2.9 is obtained for the remaining 
9% of tokens. His methodology, however, does 
not allow for class ambiguity in the lexicon, the 
low number of OOV words is handled by a 
Hidden Markov Model.  

5 Conclusion and further work 

We presented a graph-based approach to 
unsupervised POS tagging. To our knowledge, 
this is the first attempt to leave the decision on 
tag granularity to the tagger. We supported the 
claim of language-independence by validating 
the output of our system against supervised 
systems in three languages.  

The system is not very sensitive to parameter 
changes: the number of feature words, the 
frequency cutoffs, the log-likelihood threshold 
and all other parameters did not change overall 
performance considerably when altered in 
reasonable limits. In this way it was possbile to 
arrive at a one-size-fits-all configuration that 
allows the parameter-free unsupervised tagging 
of large corpora.  

To really judge the benefit of an unsupervised 
tagging system, it should be evaluated in an 
application-based way. Ideally, the application 
should tell us the granularity of our tagger: e.g. 
semantic class learners could greatly benefit 
from the high-granular word sets arising in both 
of our partitionings, which we endeavoured to 
lump into a coarser tagset here.  
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Abstract 

In this paper, we will present an efficient 
method to compute the co-occurrence 
counts of any pair of substring in a paral-
lel corpus, and an algorithm that make 
use of these counts to create sub-
sentential alignments on such a corpus. 
This algorithm has the advantage of be-
ing as general as possible regarding the 
segmentation of text. 

1 Introduction 

An interesting and important problem in the 
Statistical Machine Translation (SMT) domain is 
the creation of sub-sentential alignment in a par-
allel corpus (a bilingual corpus already aligned at 
the sentence level). These alignments can later be 
used to, for example, train SMT systems or ex-
tract bilingual lexicons. 

Many algorithms have already been proposed 
for sub-sentential alignment. Some of them focus 
on word-to-word alignment ((Brown,97) or 
(Melamed,97)). Others allow the generation of 
phrase-level alignments, such as (Och et al., 
1999), (Marcu and Wong, 2002) or (Zhang, Vo-
gel, Waibel, 2003). However, with the exception 
of Marcu and Wong, these phrase-level align-
ment algorithms still place their analyses at the 
word level; whether by first creating a word-to-
word alignment or by computing correlation co-
efficients between pairs of individual words. 

This is, in our opinion, a limitation of these al-
gorithms; mainly because it makes them rely 
heavily on our capacity to segment a sentence in 
words. And defining what a word is is not as 
easy as it might seem.  In peculiar, in many 
Asians writings systems (Japanese, Chinese or 
Thai, for example), there is not a special symbol 
to delimit words (such as the blank in most non-

Asian writing systems). Current systems usually 
work around this problem by using a segmenta-
tion tool to pre-process the data. There are how-
ever two major disadvantages: 

- These tools usually need a lot of linguistic 
knowledge, such as lexical dictionaries and 
hand-crafted segmentation rules. So using them 
somehow reduces the “purity” and universality 
of the statistical approach. 

- These tools are not perfect. They tend to be 
very dependent on the domain of the text they 
are used with. Besides, they cannot take advan-
tage of the fact that there exist a translation of the 
sentence in another language.  

(Xu, Zens and Ney,2004) have overcome part 
of these objections by using multiple segmenta-
tions of a Chinese sentence and letting a SMT 
system choose the best one, as well as creating a 
segmentation lexicon dictionary by considering 
every Chinese character to be a word in itself and 
then creating a phrase alignment. However, it is 
probable that this technique would meet much 
more difficulties with Thai, for example (whose 
characters, unlike Chinese, bear no specific sense) 
or even Japanese (which use both ideograms and 
phonetic characters). 

Besides, even for more “computer-friendly” 
languages, relying too much on typographic 
words may not be the best way to create an 
alignment. For example, the translation of a set 
phrase may contain no word that is a translation 
of the individual words of this set phrase. And 
one could consider languages such as German, 
which tend to merge words that are in relation in 
a single typographic word. For such languages, it 
could be a good thing to be able to create align-
ment at an even more basic level than the typo-
graphic words. 

These thoughts are the main motivations for 
the development of the alignment algorithm we 
will expose in this paper. Its main advantage is 
that it can be applied whatever is the smallest 
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unit of text we want to consider: typographic 
word or single character. And even when work-
ing at the character level, it can use larger se-
quence of characters to create correct alignments. 
The problem of the segmentation and of the 
alignment will be resolved simultaneously: a sen-
tence and its translation will mutually induce a 
segmentation on one another. Another advantage 
of this algorithm is that it is purely statistical: it 
will not require any information other than the 
parallel corpus we want to align. 

It should be noted here that the phrase-level 
joint-probability model presented in (Marcu and 
Wong) can pretend to have the same qualities. 
However, it was only applied to word-segmented 
texts by its authors. Making use of the EM train-
ing, it is also much more complex than our ap-
proach. 

Before describing our algorithm, we will ex-
plain in detail a method for extracting the co-
occurrence counts of any substring in a parallel 
corpus. Such co-occurrence counts are important 
to our method, but difficult to compute or store 
in the case of big corpora.  

2 Co-Occurrence counting algorithm 

2.1 Notation and definitions 

In the subsequent parts of this paper, a sub-
string will denote indifferently a sequence of 
characters or a sequence of words (or actually a 
sequence of any typographic unit we might want 
to consider). The terms “elements” will be used 
instead of “word” or “characters” to denote the 
fundamental typographic unit we chose for a 
given language. 

In general, the number of co-occurrences of 
two substrings S1 and S2 in a parallel corpus is 
the number of times they have appeared on the 
opposite sides of a bi-sentence in this corpus. It 
will be noted N(S1,S2). In the cases where S1 and 
S2 appears several times in a single bi-sentence 
(n1 and n2 times respectively), we might count 1, 
n1*n2 or min(n1,n2) co-occurrences. We will also 
note N(S1) the number of occurrences of S1 in the 
corpus.  

2.2 The Storage Problem 

Counting word co-occurrences over a parallel 
corpus and storing them in a data structure such 
as a Hash table is a trivial task. But storing the 
co-occurrences counts of every pair of substring 
presents much more technical difficulties. Basi-
cally, the problem is that the number of values to 
be stored is much greater when we consider sub-

strings. For two sentences with N1 and N2 words 
respectively, there are N1*N2 words that co-occur; 
but the number of substrings that co-occur is 
roughly proportional to (N1*N2)^2. Of course, 
most substrings in a pair of sentences are not 
unique in the corpus, which reduces the number 
of values to be stored. Still, in most cases, it re-
mains impractical. For example, the Japanese-
English BTEC corpus has more than 11 million 
unique English (word-) substrings and more than 
8 million unique Japanese (character-) substrings. 
So there are potentially 88,000 billion co-
occurrence values to be stored.  Again, most of 
these substrings do not co-occur in the corpus, so 
that non-zero co-occurrences values are only a 
fraction of this figure. However, a rough estima-
tion we performed showed that there still would 
be close to a billion values to store. 

With a bigger corpus such as the European 
Parliament Corpus (more than 600,000 sentences 
per languages)  we have more than 698 millions 
unique English (word-) substrings and 875 mil-
lions unique French (word-) substrings. And 
things get much worse if we want to try to work 
with characters substrings. 

To handle this problem, we decided not to try 
and store the co-occurrences count beforehand, 
but rather to compute them “on-the-fly”, when 
they are needed. For that we will need a way to 
compute co-occurrences very efficiently.   We 
will show how to do it with the data structure 
known as Suffix Array.  

2.3 Suffix Arrays 

Suffix Arrays are a data structure allowing for 
(among other things) the efficient computation of 
the number of occurrences of any substring 
within a text. They have been introduced by 
Mamber and Myers (1993) in a bioinformatics 
context. (Callison-Burch, Bannard and Scroeder, 
2005) used them (in a way similar to us) to com-
pute and store phrase translation probabilities 
over very large corpora. 

Basically, a Suffix Array is a very simple data 
structure: it is the sorted list of all the suffixes of 
a text. A suffix is a substring going from one 
starting position in the text to its end. So a text of 
T elements has T suffixes.  

An important point to understand is that we 
won’t have to store the actual suffixes in memory. 
We can describe any suffix by its starting posi-
tion in the text. Hence, every suffix occupies a 
constant space in memory. Actually, a common 
implementation is to represent a suffix by a 
memory pointer on the full text. So, on a ma-
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chine with 32-bit pointers, the Suffix Array of a 
text of T elements occupy 4*T bytes.  The time 
complexity of the Suffix Array construction is 
O(T*log(T)) if we build the array of the suffixes 
and then sort it. 

We will now describe the property of the Suf-
fix Array that interest us. Let S be a substring. 
Let pf be the position (in the Suffix Array) of the 
first suffix beginning with substring S and pl be 
the position of the last such suffix. Then every 
suffix in the Array between positions pf and pl 
corresponds to an occurrence of S. And every 
occurrence of S in the text corresponds to a suf-
fix between pf and pl.  

pf and pl can be retrieved in O(|S|*log T) with 
a dichotomy search. Beside, N(S)=pl-pf+1; so 
we can compute N(S) in O(|S|*log T). We will 
now see how to compute N(S1,S2) for two sub-
strings S1 and S2 in a parallel corpus. 

2.4 Computing Co-Occurrences using Suf-
fix Array 

A Suffix Array can be created not only from 
one text, but also from a sequence of texts. In the 
present case, we will consider the sequence of 
sentences formed by one side of a parallel corpus. 
The Suffix Array is then the sorted list of all the 
suffixes of all the sentences in the sequence. Suf-
fixes may be represented as a pair of integer (in-
dex of the sentence, position in the sentence) or 
again as a pointer (an example using integer pairs 
is shown on Figure 1). 

We can implement the Suffix Array so that, 
from a suffix, we can determine the index of the 
sentence to which it belongs (the computational 
cost of this is marginal in practical cases and will 
be neglected). We can now compute pf and pl for 
a substring S such as previously, and retrieve the 
sentence indexes corresponding to every suffix 
between positions pf and pl in the Suffix Array, 
This allow us to create an “occurrence vector”: a 
mapping between sentence indexes and the num-
ber of occurrences of S in those sentences. This 
operation takes O(pl-pf), that is O(N(S)). (Figure 
1. shows an occurrence vector for the substring 
“red car”) 

We can now efficiently compute the co-
occurrence counts of two substrings S1 and S2 in 
a parallel corpus.  

We compute beforehand the two Suffix Arrays 
for the 2 sides of the parallel corpus. We can 
then compute two occurrence vectors V1 and V2 
for S1 and S2 in O(N(S1)+|S1|*log(T1)) and 
O(N(S2)+|S2|*log(T2)) respectively. 

 
With a good implementation, we can use these 

two vectors to obtain N(S1,S2) in 
O(min(size(V1),size(V2))), that is 
O(min(N(S1),N(S2)). 

Hence we can compute NbCoOcc(S1,S2) for 
any substring pair (S1,S2) in 
O(N(S2)+|S2|*log(T2)+N(S1)+|S1|*log(N1))). This 
is much better than a naive approach that takes 
O(T1*T2) by going through the whole corpus. 
Besides, some simple optimizations will substan-
tially improve the average performances. 

2.5 Some Important Optimizations 

There are two ways to improve performances 
when using the previous method for co-
occurrences computing. 

 Firstly, we won’t compute co-occurrences for 
any substrings at random. Typically, in the algo-
rithm described in the following part, we com-
pute N(S1,S2) for every substring pairs in a given 
bi-sentence. So we will compute the occurrence 
vector of a substring only once per sentence. 

Secondly, the time taken to retrieve the co-
occurrence count of two substrings S1 and S2 is 
more or less proportional to their frequency in 
the corpus. This is a problem for the average per-
formance: the most frequent substrings will be 
the one that take longer to compute. This sug-
gests that by caching the occurrence vectors of 
the most frequent substrings (as well as their co-
occurrence counts), we might expect a good im-
provement in performance. (We will see in the 
next sub-section that caching the 200 most fre-

 

A small monolingual corpus 
index sentence 
1 The red car is here 
2 I saw a blue car 
3 I saw a red car   

Occurrence Vector of 
“red car” 
index nbOcc
1 1 
2 0 
3 1 

Suffix Array 
Array 
index 

Suffix Position Suffix 

0 2,3 a blue car 
1 3,4 a red car 
2 2,4 blue car 
3 2,6 car 
4 3,5 car 
5 1,3 car is here 
6 1,5 here 
7 2,1 I saw a blue car 
8 1,1 I saw a red car 
9 1,4 is here 
10 1,2 red car is here 
11 3,5 red car 
12 2,2 saw a blue car 
13 3,3 saw a red car 
14 1,1 The red car is here 

Figure 1. A small corpus, the corresponding suf-
fix array, and an occurrence vector 
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quent substrings is sufficient to multiply the av-
erage speed by a factor of 50) 

2.6 Practical Evaluation of the Perform-
ances 

We will now test the computational practicality 
of our method. For this evaluation, we will con-
sider the English-Japanese BTEC corpus 
(170,000 bi-sentences, 12MB), and the English-
French Europarl corpus (688,000 bi-sentences, 
180 MB). We also want to apply our algorithm to 
western languages at the character level. How-
ever, working at a character level multiply the 
size of the suffix array by about 5, and increase 
the size of the cached vectors as well. So, be-
cause of memory limitations, we extracted a 
smaller corpus from the Europarl one (100,000 
bi-sentences, 20MB) for experimenting on char-
acters substrings. 

The base elements we will choose for our sub-
strings will be: word/characters for the BTEC, 
word/word for the bigger EuroParl, and 
word/characters for the smaller EuroParl. We 
computed the co-occurrence counts of every sub-
strings pair in a bi-sentence for the 100 first bi-
sentences of every corpus, on a 2.5GHz x86 
computer. We give the average figures for dif-
ferent corpora and caching strategies. 

These results are good enough and show that 
the algorithm we are going to introduce is not 
computationally impracticable. The cache allows 
an interesting trade-off between the perform-
ances and the used memory. We note that the 
proportional speedup depends on the corpus used. 
We did not investigate this point, but the differ-
ent sizes of corpora (inducing different average 
occurrence vectors sizes), and the differences in 
the frequency distribution of words and charac-
ters are probably the main factors. 

3 Sub-sentential alignment 

3.1 The General Principle 

Given two substrings S1 and S2, we can use 
their occurrence and co-occurrence counts to 
compute a correlation coefficient (such as the 

chi-square statistic, the point-wise mutual infor-
mation or the Dice coefficient).  

The basic principle of our sub-sentential align-
ment algorithm will simply be to compute a cor-
relation coefficient between every substring in a 
bi-sentence, and align the substrings with the 
highest correlation. This idea needs, however, to 
be refined. 

First, we have to take care of the indirect asso-
ciation problem. The problem, which was de-
scribed in (Melamed, 1997) in a word-to-word 
alignment context, is as follows: if e1 is the trans-
lation of f1 and f2 has a strong monolingual asso-
ciation with f1, e1 and f2 will also have a strong 
correlation. Melamed assumed that indirect asso-
ciations are weaker than direct ones, and pro-
vided a Competitive Linking Algorithm that does 
not allow for a word already aligned to be linked 
to another one. We will make the same assump-
tion and apply the same solution. So our algo-
rithm will align the substring pairs with the high-
est correlation first, and will forbid the subse-
quent alignment of substrings having a part in 
common with an already aligned substring. A 
side-effect of this procedure is that we will be 
constrained to produce a single segmentation on 
both sentences and a single alignment between 
the components of this segmentation. According 
to the application, this might be what we are 
looking for or not. But it must be noted that, 
most of the time, alignments with various 
granularities are possible, and we will only be 
able to find one of them. We will discuss the is-
sue of the granularity of the alignment in part 3.3. 

Besides, our approach implicitly considers that 
the translation of a substring is a substring (there 
are no discontinuities). This is of course not the 
case in general (for example, the English word 
“not” is usually translated in French by 
“ne…pas”). However, there is most of the time a 
granularity of alignment at which there is no dis-
continuity in the alignment components. 

Also, it is frequent that a word or a sequence 
of words in a sentence has no equivalent in the 
opposite sentence. That is why it will not be 
mandatory for our algorithm to align every ele-
ment of the sentences at all cost. If, at any point, 
the substrings that are yet to be linked have cor-
relation coefficients below a certain threshold, 
the algorithm will not go further.  

So, the algorithm can be described as follow: 
1- Compute a correlation coefficient for all the 

substrings pairs in e and f  and mark all the ele-
ments in e and f as free. 

Corpus Cache 
(cached 
substrg ) 

Allocated 
Memory 
(MB) 

CoOcc 
computed 
(per sec.) 

bisentences 
processed (per 
sec.) 

BTEC 0 22  7k 1.2 
BTEC  200 120 490k 85 
EuroParl 0 270  3k 0.4 
EuroParl 400 700 18k 1.2 
Small 
EuroParl 

0 100 4k 0.04 

Small 
EuroParl  

400 300 30k 0.3 
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2- Among the substrings which contain only 
free element, find the pair with the highest corre-
lation. If this correlation is not above a certain 
threshold, end the algorithm. Else, output a link 
between the substrings of the pair. 

3- Mark all the elements belonging to the 
linked pair as non-free. 

4- Go back to 2 
It should be noted that correlation coefficients 

are only meaningful data is sufficiently available; 
but many substrings will appear only a couple of 
times in the corpus. That is why, in our experi-
ments we have set to zero the correlation coeffi-
cient of substring pairs that co-occur less than 5 
times (this might be a bit conservative, but the 
BTEC corpus we used being very redundant, it 
was not too much of a restriction). 

3.2 Giving a preference to bigger align-
ments. 

A problem that arose in applying the previous 
algorithm is a tendency to link incomplete sub-
strings. Typically, this happen when a substring 
S1 can be translated by two substrings S2 and S2’, 
S2 and S2’ having themselves a common sub-
string. S1 will then be linked to the common part 
of S2 and S2’. For example, the English word 
“museum” has two Japanese equivalents: 博物館 
and 美術館. In the BTEC corpus, the common 
part (館) will have a stronger association with 
“museum”, and so will be linked instead of the 
correct substring (博物館 or 美術館). 

To prevent this problem, we have tried to 
modify the correlation coefficients so that they 
slightly penalize shorter alignment. Precisely, for 
a substring pair (S1,S2), we define its area as 
“length of S1”*”length of S2”. We then multiply 
the Dice coefficient by area(S1,S2) and the chi-
square coefficient by log(area(S1,S2)+1). These 
formulas are very empiric, but they created a 
considerable improvement in our experimental 
results. 

Linking the bigger parts of the sentences first 
has another interesting effect: bigger substrings 
present less ambiguity, and so linking them first 
may prevent further ambiguities to arise. For ex-
ample, with the bi-sentence “the cat on the 
wall”/”le chat sur le mur”. Each “the” in the 
English sentence will have the same correlation 
with each “le” in the French sentence, and so the 
algorithm cannot determine which “the” corre-
spond to which “le”. But if, for example “the 
cat” has been previously linked to “le chat”, 
there is no more ambiguity. 

We mentioned previously the issue of the 
granularity of alignments. These “alignment size 
penalties” could also be used to tune the granu-
larity of the alignment produced.  

3.3 Experiments and Evaluations 

Although we made some tests to confirm that 
computation time did not prevent our algorithm 
to work with bigger corpus such as the EuroParl 
corpus, we have until now limited deeper ex-
periments to the Japanese-English BTEC Corpus. 

That is why we will only present results for 
this corpus. For comparison, we re-implemented 
the ISA (Integrated Segmentation Alignment) 
algorithm described in (Zhang, Vogel and 
Waibel, 2003). This algorithm is interesting be-
cause it is somehow similar to our own approach, 
in that it can be seen as a generalization of 
Melamed’s Competitive Linking Algorithm. It is 
also fairly easy to implement. A comparison with 
the joint probability model of Marcu and Wong 
(which can also work at the phrase/substring 
level) would have also been very interesting, but 
the difficulty of implementing and adapting the 
algorithm made us delay the experiment. 

After trying different settings, we chose to use 
chi-square statistic as the correlation coefficient 
for the ISA algorithm, and the dice coefficient 
for our own algorithm. ISA settings as well as 
the “alignment size penalties” of our algorithm 
were also tuned to give the best results possible 
with our test set. For our algorithm, we consid-
ered word-substrings for English and characters 
substrings for Japanese. For the ISA algorithm, 
we pre-segmented the Japanese corpus, but also 
tried to apply it directly to Japanese by consider-
ing characters as words. 

Estimating the quality of an alignment is not an 
easy thing. We tried to compute a precision and a 
recall score in the following manner. Precision 
was such that: 

    Nb of correct links   
 Precision= Nb of outputted links  
Correct link are counted by manual inspection 

of the results. Appreciating what is a correct link 
is subjective; especially here, where we consider 
many-words-to-many-characters links. Overall, 
the evaluation was pretty indulgent, but tried to 
be consistent, so that the comparison would not 
be biased. 

Computing recall is more difficult: for a given 
bi-sentence, multiple alignments with different 
granularities are possible. As we are only trying 
to output one of these alignments, we cannot de-
fine easily a “gold standard”. What we did was to 
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count a missed link for every element that was 
not linked correctly and could have been. We 
then compute a recall measure such that: 

                Nb of correct links                 . Recall= Nb of correct links+ Nb of missed links 
These measures are not perfect and induce 

some biases in the evaluation (they tend to favor 
algorithms aligning bigger part of the sentence, 
for example), but we think they still give a good 
summary of the results we have obtained so far. 

As can be seen in the following table, our al-
gorithm performed quite well. We are far from 
the results obtained with a pre-segmentation, but 
considering the simplicity of this algorithm, we 
think these results are encouraging and justify 
our initial ideas. There is still a lot of room for 
improvement: introducing a n-gram language 
model, using multiple iterations to re-estimate 
the correlation of the substrings...  

That is why we are pretty confident that we 
can hope to compete in the end with algorithms 
using pre-segmentation. 

Also, although we did not make any thorough 
evaluation, we also applied the algorithm to a 
subset of the Europarl corpus (cf. 2.6), where 
characters where considered the base unit for 
French. The alignments were mostly satisfying 
(seemingly better than with the BTEC). But 
hardly any sub-word alignments were produced. 
Some variations on the ideas of the algorithm, 
however, allowed us to get interesting (if infre-
quent) results. For example, in the pair (‘I would 
like’/ ‘Je voudrais’), ‘would’ was aligned with 
‘rais’ and ‘voud’ with ‘like’.  

4 Conclusion and future work 

In this paper we presented both a method for 
accessing the co-occurrences count for any sub-
string pair in a parallel corpus and an algorithm 
taking advantage of this method to create sub-
sentential alignments in such a corpus. 

We showed our co-occurrence counting 
method performs well with corpus commonly 
used in Statistical Machine Translation research, 
and so we think it can be a useful tool for the 
statistical processing of parallel corpora. 

Our phrase level alignment algorithm gave en-
couraging results, especially considering there 
are many possibilities for further improvement. 

In the future, we will try to improve the algo-
rithm as well as perform more extensive evalua-
tions on different language pairs. 
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Abstract

Most of the work on treebank-based sta-
tistical parsing exclusively uses the Wall-
Street-Journal part of the Penn treebank
for evaluation purposes. Due to the pres-
ence of this quasi-standard, the question of
to which degree parsing results depend on
the properties of treebanks was often ig-
nored. In this paper, we use two similar
German treebanks, TüBa-D/Z and NeGra,
and investigate the role that different an-
notation decisions play for parsing. For
these purposes, we approximate the two
treebanks by gradually taking out or in-
serting the corresponding annotation com-
ponents and test the performance of a stan-
dard PCFG parser on all treebank versions.
Our results give an indication of which
structures are favorable for parsing and
which ones are not.

1 Introduction

The Wall-Street-Journal part (WSJ) of the Penn
Treebank (Marcus et al., 1994) plays a central role
in research on statistical treebank-based parsing.
It has not only become a standard for parser eval-
uation, but also the foundation for the develop-
ment of new parsing models. For the English WSJ,
high accuracy parsing models have been created,
some of them using extensions to classical PCFG
parsing such as lexicalization and markovization
(Collins, 1999; Charniak, 2000; Klein and Man-
ning, 2003). However, since most research has
been limited to a single language (English) and
to a single treebank (WSJ), the question of how
portable the parsers and their extensions are across
languages and across treebanks often remained
open.

Only recently, there have been attempts to eval-
uate parsing results with respect to the proper-
ties and the language of the treebank that is used.
Gildea (2001) investigates the effects that cer-
tain treebank characteristics have on parsing re-
sults, such as the distribution of verb subcatego-
rization frames. He conducts experiments on the
WSJ and the Brown Corpus, parsing one of the
treebanks while having trained on the other one.
He draws the conclusion that a small amount of
matched training data is better than a large amount
of unmatched training data. Dubey and Keller
(2003) analyze the difficulties that German im-
poses on parsing. They use the NeGra treebank
for their experiments and show that lexicalization,
while highly effective for English, has no bene-
fit for German. This result motivates them to cre-
ate a parsing model for German based on sister-
head-dependencies. Corazza et al. (2004) con-
duct experiments with model 2 of Collins’ parser
(Collins, 1999) and the Stanford parser (Klein and
Manning, 2003) on two Italian treebanks. They re-
port disappointing results which they trace back to
the different difficulties of different parsing tasks
in Italian and English and to differences in anno-
tation styles across treebanks.

In the present paper, our goal is to determine
the effects of different annotation decisions on
the results of plain PCFG parsing without exten-
sions. Our motivation is two-fold: first, we want
to present research on a language different from
English, second, we want to investigate the influ-
ences of annotation schemes via a realistic com-
parison, i.e. use two different annotation schemes.
Therefore, we take advantage of the availability
of two similar treebanks of German, TüBa-D/Z
(Telljohann et al., 2003) and NeGra (Skut et al.,
1997). The strategy we adopt extends Kübler
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(2005). Treebanks and their annotation schemes
respectively are compared using a stepwise ap-
proximation. Annotation components correspond-
ing to certain annotation decisions are taken out or
inserted, submitting each time the resulting mod-
ified treebank to the parser. This method allows
us to investigate the role of single annotation deci-
sions in two different environments.

In section 2, we describe the annotation of
both treebanks in detail. Section 3 introduces the
methodology used. In section 4, we describe our
experimental setup and discuss the results. Section
5 presents a conclusion and plans for future work.

2 The Treebanks: TüBa-D/Z and NeGra

With respect to treebanks, German is in a priv-
ileged position. Various treebanks are avail-
able, among them are two similar ones: Ne-
Gra (Skut et al., 1997), from Saarland University
at Saarbrücken and TüBa-D/Z (Telljohann et al.,
2003), from the University of Tübingen. NeGra
contains about 20,000 sentences, TüBa-D/Z about
15,000, both consist of newspaper text. In both
treebanks, predicate argument structure is anno-
tated, the core principle of the annotation being its
theory independence. Terminal nodes are labeled
with part-of-speech tags and morphological labels,
non-terminal nodes with phrase labels. All edges
are labeled with grammatical functions. Anno-
tation was accomplished semi-automatically with
the same software tools.

The main difference between the treebanks is
rooted in the partial free word order of Ger-
man sentences: the positions of complements
and adjuncts are of great variability. This leads
to a high number of discontinuous constituents,
even in short sentences. An annotation scheme
for German must account for that. NeGra al-
lows for crossing branches, thereby giving up the
context-free backbone of the annotation. With
crossing branches, discontinuous constituents are
not a problem anymore: all children of every
constituent, discontinuous or not, can always be
grouped under the same node. The inconvenience
of this method is that the crossing branches must
be resolved before the treebank can be used with
a (PCFG) parser. However, this can be accom-
plished easily by reattaching children of discon-
tinuous constituents to higher nodes.

TüBa-D/Z uses another mechanism to account
for the free word order. Above the phrase level,

an additional layer of annotation is introduced. It
consists of topological fields (Drach, 1937; Höhle,
1986). The concept of topological fields is widely
accepted among German grammarians. It reflects
the empirical observation that German has three
possible sentence configurations with respect to
the position of the finite verb. In its five fields
(initial field, left sentence bracket, middle field,
right sentence bracket, final field), verbal mate-
rial generally resides in the two sentence brackets,
while the initial field and the middle field contain
all other elements. The final field contains mostly
extraposed material. Since word order variations
generally do not cross field boundaries, with the
model of topological fields, the free word order of
German can be accounted for in a natural way.

On the phrase level, the treebanks show great
differences, too. NeGra does not allow for any in-
termediate (“bar”) phrasal projections. Addition-
ally, no unary productions are allowed. This re-
sults in very flat phrases: pre- and postmodifiers
are attached directly to the phrase, nominal sub-
jects are attached directly to the sentence, nominal
material within PPs doesn’t project to NPs, com-
plex (non-coordinated) NPs remain flat. TüBa-
D/Z, on the contrary, allows for “deep” annota-
tion. Intermediate productions and unary produc-
tions are allowed and extensively used.

To illustrate the annotation principles, the fig-
ures 1 and 2 show the annotation of the sentences
(1) and (2) respectively.

(1) Darüber
About-that

muß
must

nachgedacht
tought

werden.
be

‘This must be tought about.’

(2) Schillen
Schillen

wies
rejected

dies
that

gestern
yesterday

zurück:
VPART

‘Schillen rejected that yesterday.’
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Figure 1: A NeGra tree

20



0 1 2 3 4 5

500 501 502 503 504

505 506 507

508

Schillen

NE

nsf

wies

VVFIN

3sit

dies

PDS

asn

gestern

ADV

−−

zurück

PTKVZ

−−

:

$.

−−

HD HD HD HD VPT

NX

ON

VXFIN

HD

NX

OA

ADVX

V−MOD

VF

−

LK

−

MF

−

VC

−

SIMPX

Figure 2: A TüBa-D/Z tree

3 Treebanks, Parsing, and Comparisons

Our goal is to determine which components of
the annotation schemes of TüBa-D/Z and NeGra
have which influence on parsing results. A direct
comparison of the parsing results shows that the
TüBa-D/Z annotation scheme is more appropriate
for PCFG parsing than NeGra’s (see tables 2 and
3). However, this doesn’t tell us anything about
the role of the subparts of the annotation schemes.

A first idea for a more detailed comparison
could be to compare the results for different phrase
types. The problem is that this would not give
meaningful results. NeGra noun phrases, e.g.,
cover a different set of constituents than TüBa-D/Z
noun phrases, due to NeGra’s flat annotation and
avoidance of annotation of unary NPs. Further-
more, both annotation schemes contain categories
not contained in the other one. There are, e.g.,
no categories in NeGra that correspond to TüBa-
D/Z’s field categories, while in TüBa-D/Z, there
are no categories equivalent to NeGra’s categories
for coordinated phrases or verb phrases.

We therefore pursue another approach. We use
a method introduced by Kübler (2005) to investi-
gate the usefulness of different annotation compo-
nents for parsing. We gradually modify the tree-
bank annotations in order to approximate the an-
notation style of the treebanks to one another. This
is accomplished by taking out or inserting cer-
tain components of the annotation. For our tree-
banks, this generally results in reduced structures
for TüBa-D/Z and augmented structures for Ne-
Gra. Table 1 presents three measures that cap-
ture the changes between each of the modifica-
tions. The average number of child nodes of non-
terminal nodes shows the degree of flatness of the
annotation on phrase level. Here, the unmodi-
fied NeGra consequently shows the highest values.

The average tree height relates directly to the num-
ber of annotation hierarchies in the tree. Here, the
unmodified TüBa-D/Z has the highest values.

4 Experimental Setup

For our experiments, we uselopar (Schmid,
2000), a standard PCFG parser. We read the gram-
mar and the lexicon directly off the trees together
with their frequencies. The parser is given the
gold POS tagging to avoid parsing errors that are
caused by wrong POS tags. Only sentences up to a
length of 40 words are considered due to memory
limitations.

Traditionally, most of the work on WSJ uses the
same section of the treebank for testing. How-
ever, for our aims, this method has a shortcom-
ing: since both treebanks consist of text created
by different authors, linguistic phenomena are not
evenly distributed over the treebank. When using
a whole section as test set, some phenomena may
only occur there and thus not occur in the gram-
mar. To reduce data sparseness, we use another
test/training-set split for the treebanks and their
variations. Each 10th sentence is put into the test
set, all other sentences go into the training set.

4.1 Preprocessing the Treebanks

Since we want to read the grammars for our parser
directly off the treebanks, preprocessing of the
treebanks is necessary due to the non-context-free
nature of the original annotation. In both tree-
banks, punctuation is not included in the trees,
furthermore, sentence splitting in both treebanks
does not always coincide with the linguistic no-
tion of a sentence. This leads to sentences con-
sisting of several unconnected trees. All nodes in
a sentence, i.e. the roots and the punctation, are
grouped by a virtual root node, which may cause
crossing branches. Furthermore, the NeGra anno-
tation scheme allows for crossing branches for lin-
guistic reasons, as described in section 2. All of
the crossing branches have to be removed before
parsing.

The crossing branches caused by the NeGra an-
notation scheme are removed with a small pro-
gram by Thorsten Brants. It attaches some of the
children of discontinuous constituents to higher
nodes. The virtual root node is made continu-
ous by attaching all punctuation to the highest
possible location in the tree. Pairs of parenthe-
sis and quotation marks are preferably attached to
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NeGra NE fi. NE NP NE tr. TüBa Tü NF Tü NU Tü f Tü f NU Tü f NU NF
N/T 0.41 0.70 0.50 0.41 1.21 0.89 0.54 1.00 0.42 0.35
µ D/N 2.92 2.22 2.59 2.92 1.61 1.89 2.53 1.83 2.93 3.35
µ H(T) 4.86 5.81 5.16 4.68 6.88 5.68 5.45 5.94 4.72 4.15

Table 1: Properties of the treebank modifications1

the same node, to avoid low-frequent productions
in the grammar that only differ by the position of
parenthesis marks on their right hand side.

4.2 Results of the Comparison

We use the standard parseval measures for the
evaluation of parser output. They measure the per-
centage of correctly parsed constituents, in terms
of precision, recall, and F-Measure. The parser
output of each modified treebank version is evalu-
ated against the correspondingly modified test set.
Unparsed sentences are fully included in the eval-
uation.

NeGra. Along with the unmodified treebank,
two modifications of NeGra are tested. Both of
them introduce annotation components present in
TüBa-D/Z but not in NeGra. In the first one,
NE fi, we add an annotation layer oftopologi-
cal fields2, as existing in TüBa-D/Z. The precision
value benefits the most from this modification.
When parsing without grammatical functions, it
increases about 6,5%. When parsing with gram-
matical functions, it increases about 14%. Thus,
the additional rules provided by a topological field
level that groups phrases below the clausal level
are favorable for parsing. The average number of
crossing brackets per sentence increases, which is
due to the fact that there are simply more brackets
to create.

A detailed evaluation of the results for node
categories shows that the new field categories are
easy to recognize (e.g. LF gets 97.79 F-Measure).
Nearly all categories have a better precision value.
However, the F-Measure for VPs is low (only
26.70 while 59.41 in the unmodified treebank),
while verb phrases in the unmodified TüBa-D/Z
(see below) are recognized with nearly 100 points
F-Measure. The problem here is the following. In
the original NeGra annotation, a verb and its com-
plements are grouped under the same VP. To pre-

1explanation: N/T = node/token ratio,µ D/N = average
number of daughters of non-terminal nodes,µ H(T) = average
tree height

2We are grateful to the DFKI Saarbrücken for providing
us with the topological field annotation.

serve as much of the annotation as possible, the
topological fields are insertedbelowthe VP (com-
plements are grouped by a middle field node, the
verb complex by the right sentence bracket). Since
this way, the phrase node VP resides above the
field level, it becomes difficult to recognize.

In the second modification,NE NP, we approx-
imate NeGra’s PPs to TüBa-D/Z’s by grouping
all nominal material below the PPs to separate
NPs. This modification gives us a small bene-
fit in terms of precision and recall (about 2-3%).
Although there are more brackets to place, the
number of crossing parents increases only slightly,
which can be attributed to the fact that below PPs,
there is no room to get brackets wrong.

We finally parse a version of NeGra where
for each node movement during the resolution of
crossing edges, atrace label was created in the
corresponding edge (NE tr). Although this brings
the treebank closer to the format of TüBa-D/Z, the
results get even worse than in the version without
traces. However, the high number of unparsed sen-
tences indicates that the result is not reliable due to
data sparseness.

NeGra NE fi. NE NP NE tr.
without grammatical functions

cross. br. 1.10 1.67 1.14 —
lab. prec. 68.14% 74.96% 70.43% —
lab. rec. 69.98% 70.37% 72.81% —
lab. F1 69.05 72.59 71.60 —
not parsed 1.00% 0.10% 0.15% —

with grammatical functions
cross. br. 1.10 1.21 1.27 1.05
lab. prec. 52.67% 67.90% 59.77% 51.81%
lab. rec. 52.17% 65.18% 60.36% 49.19%
lab. F1 52.42 66.51 60.06 50.47
not parsed 12.90% 1.66% 9.88% 16.01%

Table 2: Parsing NeGra: Results

TüBa-D/Z. Apart from the original treebank,
we test six modifications of TüBa-D/Z. In each
of the modifications, annotation material is re-
moved in order to obtain NeGra-like structures.
Since they are equally absent in NeGra, we delete
the annotation oftopological fields in the first
modification,Tü NF. This results in small losses.
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TüBa Tü NF Tü NU Tü flat Tü f NU Tü f NU NF
without grammatical functions

crossing brackets 2.21 1.82 1.67 1.04 0.80 1.03
labeled precision 87.39% 86.31% 79.97% 86.22% 75.18% 63.05%
labeled recall 83.57% 83.43% 78.52% 85.41% 76.11% 66.86%
labeled F-Measure 85.44 84.85 79.24 85.81 75.64 64.90
not parsed 0.07% 0.07% 2.45% 0.07% 2.99% 6.87%

with grammatical functions
crossing brackets 1.84 1.82 1.79 0.98 1.01 1.12
labeled precision 76.99% 68.55% 63.71% 76.93% 58.91% 45.15%
labeled recall 75.30% 68.40% 62.79% 77.21% 58.92% 44.76%
labeled F-Measure 76.14 68.47 63.25 77.07 58.92 44.96
not parsed 0.07% 0.27% 4.49% 0.07% 7.21% 17.76%

Table 3: Parsing TüBa-D/Z: Results

A closer look at category results shows that
losses are mainly due to categories on the clausal
level; structures within fields do not deteriorate.
Field categories are thus especially helpful for the
clausal level.

In the second modification of TüBa-D/Z,
Tü NU, unary nodesare collapsed with the goal
to get structures comparable to NeGra’s. As the
figures show, the unary nodes are very helpful,
the F-Measure drops about 6 points without them.
The number of crossing brackets also drops, along
with the total number of nodes. When parsing
with grammatical functions, taking out unary pro-
ductions has a detrimental effect, F-Measure drops
about 13 points. A plausible explanation could be
data sparseness. 32.78% of the rules that the parser
needs to produce a correct parse don’t occur in the
training set.

An evaluation of the results for the different
categories shows that all major phrase categories
loose both in precision and recall. Since field
nodes are mostly unary, many of them disappear,
but most of the middle field nodes stay because
they generally contain more than one element.
However, their recall drops about 10%. Suppos-
edly it is more difficult for the parser to annotate
the middle field “alone” without the other field cat-
egories.

We also test a version of TüBa-D/Z withflat-
tened phrasesthat mimic NeGra’s flat phrases,
Tü flat. With this treebank version, we get results
very similar to those of the unmodified treebank.
The F-Measure values are slightly higher and the
parser produces less crossing brackets. A single
category benefits the most from this treebank mod-
ification: EN-ADD, its F-Measure rising about 45
points. It was originally introduced as a marker
for named entities, which means that it has no spe-

cific syntactic function. In the TüBa-D/Z version
with flattened phrases, many of the nominal nodes
below EN-ADD are taken out, bringing EN-ADD
closer to the lexical level. This way, the category
has more meaningful context and therefore pro-
duces better results.

Furthermore, we test combinations of the mod-
ifications. Apart from the average tree height, the
dimensions of TüBa-D/Z withflattened phrases
and without unary productions (Tü f NU) re-
semble those of the unmodified NeGra treebank,
which indicates their similarity. Nevertheless,
parser results are worse on NeGra. This indicates
that TüBa-D/Z still benefits from the remaining
field nodes. The number of crossing branches is
the lowest in this treebank version.

In the last modification thatcombines all mod-
ifications made before (TÜ f NU NF), as ex-
pected, all values drop dramatically. F-Measure
is about 5 points worse than with the unmodified
NeGra treebank.

POS tagging. In a second round, we investigate
the benefits that gold POS tags have when making
them available in the parser input. We repeat all
experiments without giving the parser the perfect
tagging.

This leads to higher time and space require-
ments during parsing, caused by the additional
tagging step. With TüBa-D/Z, NeGra, and all their
modifications, the F-Measure results are about 3-
5 points worse when parsing with grammatical
functions. When parsing without them, they drop
3-6 points. We can determine two exceptions:
TüBa-D/Z with flattened phrases, where the F-
Score drops more than 9 points when parsing with
grammatical functions, and the TüBa-D/Z version
with all modifications combined, where F-Score
drops only a little less than 2 points. The behavior
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of the flattened TüBa-D/Z relates directly to the
fact that the categories that loose the most with-
out gold POS tags are phrase categories (partic-
ularly infinite VPs and APs). They are directly
conditioned on the POS tagging and thus behave
accordingly to its quality. For the TüBa-D/Z ver-
sion with all modifications combined, one could
argue that the results are not reliable because of
data sparseness, which is confirmed by the high
number of unparsed sentences in this treebank ver-
sion. However, in all cases, less crossing brackets
are produced.

To sum up, obviously, it is more difficult for the
parser to build a parse tree onto an already exist-
ing layer of POS-tagging. This explains the bigger
number of unparsed sentences. Nevertheless, in
terms of F-Score, the parsing results profit visibly
from the gold POS tagging.

5 Conclusions and Outlook

We presented an analysis of the influences of the
particularities of annotation schemes on parsing
results via a comparison of two German tree-
banks, NeGra and TüBa-D/Z, based on a step-
wise approximation of both treebanks. The exper-
iments show that as treebanks are approximated,
the parsing results also get closer. When annota-
tion structure is deleted in TüBa-D/Z, the number
of crossing brackets drops, but F-Measure drops,
too. When annotation structure is added in Ne-
Gra, the contrary happens. We can conclude that,
being interested in good F-Measure results, the
deep TüBa-D/Z structures are more appropriate
for parsing than NeGra’s flat structures. Moreover,
we have observed that it is beneficial to provide
the parser with the gold POS tags at parsing time.
However, we see that especially when parsing with
grammatical functions, data sparseness becomes a
serious problem, making the results less reliable.

Seen in the context of a parse tree, the expansion
probability of a PCFG rule just covers a subtree of
height 1. This is a clear deficiency of PCFGs since
this way, e.g., the expansion probability of a VP is
independent of the choice of the verb. Our future
work will start at this point. We will conduct fur-
ther experiments with the Stanford Parser (Klein
and Manning, 2003) which considers broader con-
texts in its probability. It uses markovization to re-
duce horizontal context (right hand sides of rules
are broken up) and add vertical context (rule prob-
abilities are conditioned on (grand-)parent-node

information). This way, we expect further insights
in NeGra’s an TüBa-D/Z’s annotation schemes.
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Abstract

It has previously been assumed in the
psycholinguistic literature that finite-state
models of language are crucially limited
in their explanatory power by the local-
ity of the probability distribution and the
narrow scope of information used by the
model. We show that a simple computa-
tional model (a bigram part-of-speech tag-
ger based on the design used by Corley
and Crocker (2000)) makes correct predic-
tions on processing difficulty observed in a
wide range of empirical sentence process-
ing data. We use two modes of evaluation:
one that relies on comparison with a con-
trol sentence, paralleling practice in hu-
man studies; another that measures prob-
ability drop in the disambiguating region
of the sentence. Both are surprisingly
good indicators of the processing difficulty
of garden-path sentences. The sentences
tested are drawn from published sources
and systematically explore five different
types of ambiguity: previous studies have
been narrower in scope and smaller in
scale. We do not deny the limitations of
finite-state models, but argue that our re-
sults show that their usefulness has been
underestimated.

1 Introduction

The main purpose of the current study is to inves-
tigate the extent to which a probabilistic part-of-
speech (POS) tagger can correctly model human
sentence processing data. Syntactically ambigu-
ous sentences have been studied in great depth in
psycholinguistics because the pattern of ambigu-
ity resolution provides a window onto the human

sentence processing mechanism (HSPM).Prima
facie it seems unlikely that such a tagger will be
adequate, because almost all previous researchers
have assumed, following standard linguistic the-
ory, that a formally adequate account of recur-
sive syntactic structure is an essential component
of any model of the behaviour. In this study, we
tested a bigram POS tagger on different types of
structural ambiguities and (as a sanity check) to
the well-known asymmetry of subject and object
relative clause processing.

Theoretically, the garden-path effect is defined
as processing difficulty caused by reanalysis. Em-
pirically, it is attested as comparatively slower
reading time or longer eye fixation at a disam-
biguating region in an ambiguous sentence com-
pared to its control sentences (Frazier and Rayner,
1982; Trueswell, 1996). That is, the garden-path
effect detected in many human studies, in fact, is
measured through a “comparative” method.

This characteristic of the sentence processing
research design is reconstructed in the current
study using a probabilistic POS tagging system.
Under the assumption that larger probability de-
crease indicates slower reading time, the test re-
sults suggest that the probabilistic POS tagging
system can predict reading time penalties at the
disambiguating region of garden-path sentences
compared to that of non-garden-path sentences
(i.e. control sentences).

2 Experiments

A Hidden Markov Model POS tagger based on bi-
grams was used. We made our own implementa-
tion to be sure of getting as close as possible to
the design of Corley and Crocker (2000). Given
a word string,w0, w1, · · · , wn, the tagger calcu-
lates the probability of every possible tag path,
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t0, · · · , tn. Under the Markov assumption, the
joint probability of the given word sequence and
each possible POS sequence can be approximated
as a product of conditional probability and transi-
tion probability as shown in (1).

(1) P (w0, w1, · · · , wn, t0, t1, · · · , tn)

≈ Πn

i=1
P (wi|ti) · P (ti|ti−1), wheren ≥ 1.

Using the Viterbi algorithm (Viterbi, 1967), the
tagger finds the most likely POS sequence for a
given word string as shown in (2).

(2) arg max P (t0, t1, · · · , tn|w0, w1, · · · , wn, µ).

This is known technology, see Manning and
Scḧutze (1999), but the particular use we make
of it is unusual. The tagger takes a word string
as an input, outputs the most likely POS sequence
and the final probability. Additionally, it presents
accumulated probability at each word break and
probability re-ranking, if any. Probability re-
ranking occurs when a previously less preferred
POS sequence is more favored later. Note that the
running probability at the beginning of a sentence
will be 1, and will keep decreasing at each word
break since it is a product of conditional probabil-
ities.

We tested the predictability of the model on
empirical reading data with the probability de-
crease and the presence or absence of probabil-
ity re-ranking. Probability re-ranking occurs when
a less preferred POS sequence is selected later
over a temporarily favored sequence. Adopting
the standard experimental design used in human
sentence processing studies, where word-by-word
reading time or eye-fixation time is compared be-
tween an experimental sentence and its control
sentence, this study compares probability at each
word break between a pair of sentences. Compar-
atively faster drop of probability is expected to be
a good indicator of comparative processing diffi-
culty. Probability re-ranking, which is a simpli-
fied model of the reanalysis process assumed in
many human studies, is also tested as another indi-
cator of garden-path effect. Probability re-ranking
will occur when an initially dispreferred POS sub-
sequence becomes the preferred candidate later in
the parse, because it fits in better with later words.

The model parameters, P (wi|ti) and
P (ti|ti−1), are estimated from a small sec-
tion (970,995 tokens,47,831 distinct words) of

the British National Corpus (BNC), which is a
100 million-word collection of British English,
both written and spoken, developed by Oxford
University Press (Burnard, 1995). The BNC was
chosen for training the model because it is a
POS-annotated corpus, which allows supervised
training. In the implementation we use log
probabilities to avoid underflow, and we report
log probabilities in the sequel.

2.1 Hypotheses

If the HSPM is affected by frequency information,
we can assume that it will be easier to process
events with higher frequency or probability com-
pared to those with lower frequency or probability.
Under this general assumption, the overall diffi-
culty of a sentence is expected to be measured or
predicted by the mean size of probability decrease.
That is, probability will drop faster in garden-path
sentences than in control sentences (e.g. unam-
biguous sentences or ambiguous but non-garden-
path sentences).

More importantly, the probability decrease pat-
tern at disambiguating regions will predict the
trends in the reading time data. All other things be-
ing equal, we might expect a reading time penalty
for a garden-path region when the size of the prob-
ability decrease at the disambiguating region of a
garden-path sentence will be greater than that of
control sentences. This is a simple and intuitive
assumption that can be easily tested. We could
have formed the sum over all possible POS se-
quences in association with the word strings, but
for the present study we simply used the Viterbi
path: justifying this because this is the best single-
path approximation to the joint probability.

Lastly, re-ranking of POS sequences is expected
to predict reanalysis of lexical categories. This is
because re-ranking in the tagger is parallel to re-
analysis in human subjects, which is known to be
cognitively costly.

2.2 Materials

In this study, five different types of ambigu-
ity were tested including Lexical Category am-
biguity, Reduced-relative ambiguity (RR am-
biguity), Preposition-phrase attachment ambi-
guity (PP ambiguity), Direct-object/Sentential-
complement ambiguity (DO/SC ambiguity), and
Clausal Boundary ambiguity. The following are
example sentences for each ambiguity type, shown
with the ambiguous region italicized and the dis-
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ambiguating region bolded. All of the example
sentences are garden-path sentneces.

(3) Lexical Category ambiguity
The foreman knows that the warehouse
pricesthe beer very modestly.

(4) RR ambiguity
The horseracedpast the barnfell.

(5) PP ambiguity
Katie laid the dresson the flooronto the bed.

(6) DO/SC ambiguity
He forgot Pamneeded a ride with him.

(7) Clausal Boundary ambiguity
Though George kept on readingthe storyre-
ally bothered him.

The test materials are constructed such that
a garden-path sentence and its control sentence
share exactly the same word sequence except for
the disambiguating word so that extraneous vari-
ables such as word frequency effect can be con-
trolled. We inherit this careful design.

In this study, a total of 76 sentences were
tested: 10 for lexical category ambiguity, 12 for
RR ambiguity, 20 for PP attachment ambigu-
ity, 16 for DO/SC ambiguity, and 18 for clausal
boundary ambiguity. This set of materials is, to
our knowledge, the most comprehensive yet sub-
jected to this type of study. The sentences are di-
rectly adopted from various psycholinguistic stud-
ies (Frazier, 1978; Trueswell, 1996; Ferreira and
Henderson, 1986).

As a baseline test case of the tagger, the
well-established asymmetry between subject- and
object-relative clauses was tested as shown in (8).

(8) a. The editor who kicked the writer fired the
entire staff. (Subject-relative)
b. The editor who the writer kicked fired the
entire staff. (Object-relative)

The reading time advantage of subject-relative
clauses over object-relative clauses is robust in En-
glish (Traxler et al., 2002) as well as other lan-
guages (Mak et al., 2002; Homes et al., 1981). For
this test, materials from Traxler et al. (2002) (96
sentences) are used.

3 Results

3.1 The Probability Decrease per Word

Unambiguous sentences are usually longer than
garden-path sentences. To compare sentences of
different lengths, the joint probability of the whole
sentence and tags was divided by the number of
words in the sentence. The result showed that
the average probability decrease was greater in
garden-path sentences compared to their unam-
biguous control sentences. This indicates that
garden-path sentences are more difficult than un-
ambiguous sentences, which is consistent with
empirical findings.

Probability decreased faster in object-relative
sentences than in subject relatives as predicted.
In the psycholinguistics literature, the comparative
difficulty of object-relative clauses has been ex-
plained in terms of verbal working memory (King
and Just, 1991), distance between the gap and the
filler (Bever and McElree, 1988), or perspective
shifting (MacWhinney, 1982). However, the test
results in this study provide a simpler account for
the effect. That is, the comparative difficulty of
an object-relative clause might be attributed to its
less frequent POS sequence. This account is par-
ticularly convincing since each pair of sentences in
the experiment share the exactly same set of words
except their order.

3.2 Probability Decrease at the
Disambiguating Region

A total of 30 pairs of a garden-path sentence
and its ambiguous, non-garden-path control were
tested for a comparison of the probability decrease
at the disambiguating region. In 80% of the cases,
the probability drops more sharply in garden-path
sentences than in control sentences at the critical
word. The test results are presented in (9) with
the number of test sets for each ambiguous type
and the number of cases where the model correctly
predicted reading-time penalty of garden-path sen-
tences.

(9) Ambiguity Type (Correct Predictions/Test
Sets)
a. Lexical Category Ambiguity (4/4)
b. PP Attachment Ambiguity (10/10)
c. RR Ambiguity (3/4)
d. DO/SC Ambiguity (4/6)
e. Clausal Boundary Ambiguity (3/6)
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Figure 1: Probability Transition (Garden-Path vs.
Non Garden-Path)
(a)− ◦− : Non-Garden-Path (Adjunct PP),− ∗− : Garden-
Path (Complement PP)
(b) − ◦ − : Non-Garden-Path (DO-Biased, DO-Resolved),
− ∗ − : Garden-Path (DO-Biased, SC-Resolved)

The two graphs in Figure 1 illustrate the com-
parison of probability decrease between a pair of
sentence. They-axis of both graphs in Figure 1 is
log probability. The first graph compares the prob-
ability drop for PP ambiguity (Katie put the dress
on the floor and/onto the bed....) The empirical re-
sult for this type of ambiguity shows that reading
time penalty is observed when the second PP,onto
the bed, is introduced, and there is no such effect
for the other sentence. Indeed, the sharper proba-
bility drop indicates that the additional PP is less
likely, which makes a prediction of a comparative
processing difficulty. The second graph exhibits
the probability comparison for the DO/SC ambi-
guity. The verbforget is a DO-biased verb and
thus processing difficulty is observed when it has
a sentential complement. Again, this effect was
replicated here.

The results showed that the disambiguating
word given the previous context is more difficult
in garden-path sentences compared to control sen-
tences. There are two possible explanations for
the processing difficulty. One is that the POS se-
quence of a garden-path sentence is less probable
than that of its control sentence. The other account
is that the disambiguating word in a garden-path
sentence is a lower frequency word compared to

that of its control sentence.
For example, slower reading time was observed

in (10a) and (11a) compared to (10b) and (11b) at
the disambiguating region that is bolded.

(10) Different POS at the Disambiguating Region

a. Katie laid the dresson the floor onto
(−57.80) the bed.

b. Katie laid the dresson the floor after
(−55.77) her mother yelled at her.

(11) Same POS at the Disambiguating Region

a. The umpire helped the childon (−42.77)
third base.

b. The umpire helped the childto (−42.23)
third base.

The log probability for each disambiguating word
is given at the end of each sentence. As ex-
pected, the probability at the disambiguating re-
gion in (10a) and (11a) is lower than in (10b) and
(11b) respectively. The disambiguating words in
(10) have different POS’s; Preposition in (10a) and
Conjunction (10b). This suggests that the prob-
abilities of different POS sequences can account
for different reading time at the region. In (11),
however, both disambiguating words are the same
POS (i.e. Preposition) and the POS sequences
for both sentences are identical. Instead, “on”
and “to”, have different frequencies and this in-
formation is reflected in the conditional probabil-
ity P (wordi|state). Therefore, the slower read-
ing time in (11b) might be attributable to the lower
frequency of the disambiguating word, “to” com-
pared to “on”.

3.3 Probability Re-ranking

The probability re-ranking reported in Corley and
Crocker (2000) was replicated. The tagger suc-
cessfully resolved the ambiguity by reanalysis
when the ambiguous word was immediately fol-
lowed by the disambiguating word (e.g. With-
out her he was lost.). If the disambiguating word
did not immediately follow the ambiguous region,
(e.g. Withouther contributionswould be very in-
adequate.) the ambiguity is sometimes incorrectly
resolved.

When revision occurred, probability dropped
more sharply at the revision point and at the dis-
ambiguation region compared to the control sen-
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tences. When the ambiguity was not correctly re-
solved, the probability comparison correctly mod-
eled the comparative difficulty of the garden-path
sentences

Of particular interest in this study is RR ambi-
guity resolution. The tagger predicted the process-
ing difficulty of the RR ambiguity with probabil-
ity re-ranking. That is, the tagger initially favors
the main-verb interpretation for the ambiguous-ed
form, and later it makes a repair when the ambigu-
ity is resolved as a past-participle.

The RR ambiguity is often categorized as a syn-
tactic ambiguity, but the results suggest that the
ambiguity can be resolved locally and its pro-
cessing difficulty can be detected by a finite state
model. This suggests that we should be cautious
in assuming that a structural explanation is needed
for the RR ambiguity resolution, and it could be
that similar cautions are in order for other ambi-
guities usually seen as syntactic.

4 Discussion

The current study explores Corley and Crocker’s
model(2000) further on the model’s account of hu-
man sentence processing data seen in empirical
studies. Although there have been studies on a
POS tagger evaluating it as a potential cognitive
module of lexical category disambiguation, there
has been little work that tests it as a modeling tool
of syntactically ambiguous sentence processing.

The findings here suggest that a statistical POS
tagging system is more informative than Crocker
and Corley demonstrated. It has a predictive
power of processing delay not only for lexi-
cally ambiguous sentences but also for structurally
garden-pathed sentences. This model is attractive
since it is computationally simpler and requires
few statistical parameters. More importantly, it is
clearly defined what predictions can be and can-
not be made by this model. This allows system-
atic testability and refutability of the model un-
like some other probabilistic frameworks. Also,
the model training and testing is transparent and
observable, and true probability rather than trans-
formed weights are used, all of which makes it
easy to understand the mechanism of the proposed
model.

Although the model we used in the current
study is not a novelty, the current work largely dif-
fers from the previous study in its scope of data
used and the interpretation of the model for human

sentence processing. Corley and Crocker clearly
state that their model is strictly limited to lexical
ambiguity resolution, and their test of the model
was bounded to the noun-verb ambiguity. How-
ever, the findings in the current study play out dif-
ferently. The experiments conducted in this study
are parallel to empirical studies with regard to the
design of experimental method and the test mate-
rial. The garden-path sentences used in this study
are authentic, most of them are selected from the
cited literature, not conveniently coined by the
authors. The word-by-word probability compar-
ison between garden-path sentences and their con-
trols is parallel to the experimental design widely
adopted in empirical studies in the form of region-
by-region reading or eye-gaze time comparison.
In the word-by-word probability comparison, the
model is tested whether or not it correctly pre-
dicts the comparative processing difficulty at the
garden-path region. Contrary to the major claim
made in previous empirical studies, which is that
the garden-path phenomena are either modeled by
syntactic principles or by structural frequency, the
findings here show that the same phenomena can
be predicted without such structural information.

Therefore, the work is neither a mere extended
application of Corley and Crocker’s work to a
broader range of data, nor does it simply con-
firm earlier observations that finite state machines
might accurately account for psycholinguistic re-
sults to some degree. The current study provides
more concrete answers to what finite state machine
is relevant to what kinds of processing difficulty
and to what extent.

5 Conclusion

Our studies show that, at least for the sample of
test materials that we culled from the standard lit-
erature, a statistical POS tagging system can pre-
dict processing difficulty in structurally ambigu-
ous garden-path sentences. The statistical POS
tagger was surprisingly effective in modeling sen-
tence processing data, given the locality of the
probability distribution. The findings in this study
provide an alternative account for the garden-path
effect observed in empirical studies, specifically,
that the slower processing times associated with
garden-path sentences are due in part to their rela-
tively unlikely POS sequences in comparison with
those of non-garden-path sentences and in part to
differences in the emission probabilities that the

29



tagger learns. One attractive future direction is
to carry out simulations that compare the evolu-
tion of probabilities in the tagger with that in a
theoretically more powerful model trained on the
same data, such as an incremental statistical parser
(Wang et al., 2004; Roark, 2001). In so doing we
can find the places where the prediction problem
faced both by the HSPM and the machines that
aspire to emulate it actually warrants the greater
power of structurally sensitive models, using this
knowledge to mine large corpora for future exper-
iments with human subjects.

We have not necessarily cast doubt on the hy-
pothesis that the HSPM makes crucial use of struc-
tural information, but we have demonstrated that
much of the relevant behavior can be captured in
a simple model. The ’structural’ regularities that
we observe are reasonably well encoded into this
model. For purposes of initial real-time process-
ing it could be that the HSPM is using a similar
encoding of structural regularities into convenient
probabilistic or neural form. It is as yet unclear
what the final form of a cognitively accurate model
along these lines would be, but it is clear from our
study that it is worthwhile, for the sake of clarity
and explicit testability, to consider models that are
simpler and more precisely specified than those
assumed by dominant theories of human sentence
processing.
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Abstract

In order to build a simulated robot that
accepts instructions in unconstrained nat-
ural language, a corpus of 427 route in-
structions was collected from human sub-
jects in the office navigation domain. The
instructions were segmented by the steps
in the actual route and labeled with the
action taken in each step. This flat
formulation reduced the problem to an
IE/Segmentation task, to which we applied
Conditional Random Fields. We com-
pared the performance of CRFs with a set
of hand-written rules. The result showed
that CRFs perform better with a73.7%
success rate.

1 Introduction

To have seamless interactions with computers, ad-
vances in task-oriented deep semantic understand-
ing are of utmost importance. The examples in-
clude tutoring, dialogue systems and the one de-
scribed in this paper, a natural language interface
to mobile robots. Compared to more typical text
processing tasks on newspapers for which we at-
tempt shallow understandings and broad coverage,
for these domains vocabulary is limited and very
strong domain knowledge is available. Despite
this, deeper understanding of unrestricted natural
language instructions poses a real challenge, due
to the incredibly rich structures and creative ex-
pressions that people use. For example,

”Just head straight through the hallway
ignoring the rooms to the left and right
of you, but while going straight your go-
ing to eventually see a room facing you,
which is north, enter it.”

”Head straight. continue straight past
the first three doors until you hit a cor-
ner. On that corner there are two doors,
one straight ahead of you and one on the
right. Turn right and enter the room to
the right and stop within.”

These utterances are taken from an office navi-
gation corpus collected from undergrad volunteers
at SUNY/Albany. There is a good deal of variety.

Previous efforts in this domain include the clas-
sic SHRDLU program by Winograd (1972), us-
ing a simulated robot, and the more ambitious IBL
(Instruction-based Learning for Mobile Robots)
project (Lauria et al, 2001) which tried to inte-
grate vision, voice recognition, natural language
understanding and robotics. This group has yet to
publish performance statistics. In this paper we
will focus on the application of machine learning
to the understanding of written route instructions,
and on testing by following the instructions in a
simulated office environment.

2 Task

2.1 Input and Output

Three inputs are required for the task:

• Directions for reaching an office, written in
unrestricted English.

• A description of the building we are traveling
through.

• The agent’s initial position and orientation.

The output is the location of the office the direc-
tions aim to reach.
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2.2 Corpus Collection

In an experiment to collect the corpus, (Haas,
1995) created a simulated office building modeled
after the actual computer science department at
SUNY/Albany. This environment was set up like
a popular first person shooter game such as Doom,
and the subject saw a demonstration of the route
he/she was asked to describe. The subject wrote
directions and sent them to the experimenter, who
sat at another computer in the next room. The
experimenter tried to follow the directions; if he
reaches the right destination, the subject got $1.
This process took place 10 times for each subject;
instructions that the experimenter could not fol-
low correctly were not added to the corpus. In this
manner, they were able to elicit 427 route instruc-
tions from the subject pool of 44 undergraduate
students.

2.3 Abstract Map

To simplify the learning task, the map of our
computer science department was abstracted to a
graph. Imagine a track running down the halls of
the virtual building, with branches into the office
doors. The nodes of the graph are the intersec-
tions, the edges are the pieces of track between
them. We assume this map can either be prepared
ahead of time, or dynamically created as a result of
solving Simultaneous Localization and Mapping
(SLAM) problem in robotics (Montemerlo et al,
2003).

2.4 System Components

Since it is difficult to jump ahead and learn the
whole input-output association as described in the
task section, we will break down the system into
two components.

Front End:
RouteInstruction→ ActionList

Back End:
ActionList×Map× Start→ Goal

The front-end is an information extraction sys-
tem, where the system extracts how one should
move from a route instruction. The back-end is a
reasoning system which takes a sequence of moves
and finds the destination in the map. We will first
describe the front-end, and then show how to inte-
grate the back-end to it.

One possibility is to keep the semantic repre-
sentation close to the surface structure, including
under-specification and ambiguity, and leaving the

back-end to resolve the ambiguity. We will pursue
a different route. The disambiguation will be done
in the front-end; the representation that it passes
to the back-end will be unambiguous, describing
at most one path through the building. The task
of the back-end is simply to check the sequence
of moves the front-end produced against the map
and see if there is a path leading to a point in the
map or not. The reason for this is two fold. One is
to have a minimal annotation scheme for the cor-
pus, and the other is to enable the learning of the
whole task including the disambiguation as an IE
problem.

3 Semantic Analysis

Note that in this paper, given an instruction, one
step in the instruction corresponds to oneaction
shown to the subject, oneepisodeof action detec-
tion and tracking, and onesegmentof the text.

In order to annotate unambiguously, we need to
detect and track both landmarks and actions. A
landmark is a hallway or a door, and anaction
is a sequence of a few moves one will make with
respect to a specific landmark.

The moves one can make in this map are:
(M1). Advancing to x,
(M2). Turning left/right to face x, and
(M3). Entering x.
Here, x is a landmark. Note that all three moves

have to do with the same landmark, and two or
three moves on the same landmark constitute one
action. An action is ambiguous until x is filled
with an unambiguous landmark. The following is
a made-up example in which each move in an ac-
tion is mentioned explicitly.

a. ”Go down the hallway to the second
door on the right. Turn right. Enter the
door.”

But you could break it down even further.

b. ”Go down the hallway. You will see
two doors on the right. Turn right and
enter the second.”

One can add any amount of extra information to an
instruction and make it longer, which people seem
to do. However, we see the following as well.

c. ”Enter the second door on the right.”

In one sentence, this sample contains the advance,
the turn and the entering. In the corpus, the norm
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is to assume the move (M1) when an expression
indicating the move (M2) is present. Similarly, an
expression of move (M3) often implicitly assumes
the move (M1) and (M2). However, in some cases
they are explicitly stated, and when this happens,
the action that involves the same landmark must
be tracked across the sentences.

Since all three samples result in the same action,
for the back-end it is best not to differentiate the
three. In order to do this, actions must be tracked
just like landmarks in the corpus.

The following two samples illustrate the need to
track actions.

d. ”Go down the hallway until you see
two doors. Turn right and enter the sec-
ond door on the right.”

In this case, there is only one action in the instruc-
tion, and ”turn right” belongs to the action”ad-
vance to the second door on the right, and then
turn right to face it, and then enter it.”

e. ”Proceed to the first hallway on the
right. Turn right and enter the second
door on the right.”

There are two actions in this instruction. The first
is ”advance to the first hallway on the right, and
then turn right to face the hallway.”The phrase
”turn right” belongs to this first action. The second
action is the same as the one in the example (d).
Unless we can differentiate between the two, the
execution of the unnecessary turn results in failure
when following the instructions in the case (d).

This illustrates the need to track actions across
a few sentences. In the last example, it is impor-
tant to realize that ”turn right” has something to do
with a door, so that it means ”turn right to face a
door”. Furthermore, since ”enter the second door
on the right” contains ”turning right to face a door”
in its semantics as well, they can be thought of as
the same action. Thus, the critical feature required
in the annotation scheme is to track actions and
landmarks.

The simplest annotation scheme that can show
how actions are tracked across the sentences is
to segment the instruction into different episodes
of action detection and tracking. Note that each
episode corresponds to exactly one action shown
to the subject during the experiment. The annota-
tion is based on the semantics, not on the themen-
tionsof moves or landmarks. Since each segment

Token Node Part Transition Part
make 〈B-GHL1, 0〉 〈B-GHL1, I-GHL1, 0, 1〉
left 〈I-GHL1, 1〉 〈I-GHL1, I-GHL1, 1, 2〉
, 〈I-GHL1, 2〉 〈I-GHL1, B-EDR1, 2, 3〉
first 〈B-EDR1, 3〉 〈B-EDR1, I-EDR1, 3, 4〉
door 〈I-EDR1, 4〉 〈I-EDR1, I-EDR1, 4, 5〉
on 〈I-EDR1, 5〉 〈I-EDR1, I-EDR1, 5, 6〉
the 〈I-EDR1, 6〉 〈I-EDR1, I-EDR1, 6, 7〉
right 〈I-EDR1, 7〉

Table 1: Example Parts: linear-chain CRFs

involves exactly one landmark, we can label the
segment with an action and a specific landmark.
For example,

GHR1 := ”advance to the first hallway on the
right, then turn right to face it.”

EDR2 := ”advance to the second door on the
right, then turn right to face it, then enter it.”

GHLZ := ”advance to the hallway on the left at
the end of the hallway, then turn left to face it.”

EDSZ := ”advance to the door straight ahead of
you, then enter it.”

Note that GH=go-hall, ED=enter-door,
R1=first-right, LZ=left-at-end, SZ=ahead-of-you.
The total number of possible actions is 15.

This way, we can reduce the front-end task into
a sequence of tagging tasks, much like the noun
phrase chunking in the CoNLL-2000 shared task
(Tjong Kim Sang and Buchholz, 2000). Given
a sequence of input tokens that forms a route in-
struction, a sequence of output labels, with each
label matching an input token was prepared. We
annotated with the BIO tagging scheme used in
syntactic chunkers (Ramshaw and Marcus, 1995).

make B-GHL1
left I-GHL1
, I-GHL1
first B-EDR1
door I-EDR1
on I-EDR1
the I-EDR1
right I-EDR1

4 Systems

4.1 System 1: CRFs

4.1.1 Model: A Linear-Chain Undirected
Graphical Model

From the output labels, we create the parts in a
linear-chain undirected graph (Table 1). Our use
of termpart is based on (Bartlett et al, 2004).

For each pair(xi, yi) in the training set,xi is
the token (in the first column, Table 1), andyi
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Transition Node
〈L0, L, j − 1, j〉 〈L, j〉

no lexicalization no lexicalization
xj−4

xj−3

xj−2

xj−1

xj

xj+1

xj+2

xj+3

xj−1, xj

xj+0, xj+1

Table 2: Features

is the part (in the second and third column, Ta-
ble 1). There are two kinds of parts: node and
transition. A node part tells us the position and
the label,〈B-GHL1, 0〉, 〈I-GHL1, 1〉, and so on. A
transition part encodes a transition. For example,
between tokens 0 and 1 there is a transition from
tag B-GHL1 to I-GHL1. The part that describes
this transition is:〈B-GHL1, I-GHL1, 0, 1〉.

We factor the score of this linear node-transition
structure as the sum of the scores of all the parts in
y, where the score of a part is again the sum of the
feature weights for that part.

To score a pair(xi, yi) in the training set, we
take each part inyi and check the features associ-
ated with it via lexicalization. For example, a part
〈I-GHL1, 1〉 could give rise to binary features such
as,

• Does(xi, yi) contain a label ”I-GHL1”? (No
Lexicalization)

• Does(xi, yi) contain a token ”left” labeled
with ”I-GHL1”? (Lexicalized byx1)

• Does(xi, yi) contain a token ”left” labeled
with ”I-GHL1” that’s preceded by ”make”?
(Lexicalized byx0, x1)

and so on. The features used in this experiment are
listed in Table 2.

If a feature is present, the feature weight is
added. The sum of the weights of all the parts
is the score of the pair(xi, yi). To represent
this summation, we writes(xi, yi) = w

⊤
f(xi, yi)

wheref represents the feature vector andw is the
weight vector. We could also havew⊤

f(xi, {p})
wherep is a single part, in which case we just write
s(p).

Assuming an appropriate feature representation
as well as a weight vectorw, we would like to find
the highest scoringy = argmaxy′(w⊤

k f(y′, x))
given an input sequencex. We next present a ver-
sion of this decoding algorithm that returns the
besty consistent with the map.

4.1.2 Decoding: the Viterbi Algorithm and
Inferring the Path in the Map

The action labels are unambiguous; given the
current position, the map, and the action label,
there is only one position one can go to. This back-
end computation can be integrated into the Viterbi
algorithm. The function ’go’ takes a pair of (ac-
tion label, start position) and returns the end posi-
tion or null if the action cannot be executed at the
start position according to the map. The algorithm
chooses the best among the label sequences with a
legal path in the map, as required by the condition
(cost > bestc ∧ end 6= null). Once the model
is trained, we can then use the modified version of
the Viterbi algorithm (Algorithm 4.1) to find the
destination in the map.

Algorithm 4.1: DECODE PATH(x, n, start, go)

for each labely1

node[0][y1].cost← s(〈y1, 0〉)
node[0][y1].end← start;

for j ← 1 to n− 1
for each labelyj+1

bestc← −∞;
end← null;
for each labelyj

cost← node[j][yj ].cost
+s(〈yj, yj+1, j, j + 1〉)
+s(〈yj+1, j + 1〉);

end← node[j][yj ].end;
if (yj 6= yj+1)

end← go(yj+1, end);
if (cost > bestc ∧ end 6= null)

bestc← cost;
if (bestc 6= −∞)

node[j + 1][yj+1].cost← bestc;
node[j + 1][yj+1].end← end;

bestc← −∞;
end← null;
for each labelyn

if (node[j][yn].cost > bestc)
bestc← node[j][yn].cost;
end← node[j][yn].end;

return (bestc, end)
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4.1.3 Learning: Conditional Random Fields

Given the above problem formulation, we
trained the linear-chain undirected graphical
model as Conditional Random Fields (Lafferty et
al, 2001; Sha and Pereira, 2003), one of the best
performing chunkers. We assume the probability
of seeingy givenx is

P (y|x) =
exp(s(x, y))

∑
y′ exp(s(x, y′))

wherey′ is all possible labeling forx , Now, given
a training setT = {(xiyi)}mi=1, We can learn
the weights by maximizing the log-likelihood,
∑

i logP (yi|xi). A detailed description of CRFs
can be found in (Lafferty et al, 2001; Sha and
Pereira, 2003; Malouf, 2002; Peng and McCallum,
2004). We used an implementation called CRF++
which can be found in (Kudo, 2005)

4.2 System 2: Baseline

Suppose we have clean data and there is no need to
track an action across sentences or phrases. Then,
the properties of an action are mentioned exactly
once for each episode.

For example, in”go straight and make the first
left you can, then go into the first door on the right
side and stop”, LEFT and FIRST occur exactly
once for the first action, and FIRST, DOOR and
RIGHT are found exactly once in the next action.
In a case like that, the following baseline algo-
rithm should work well.

• Find all the mentions of LEFT/RIGHT,

• For each occurrence of LEFT/RIGHT, look
for an ordinal number, LAST, or END (= end
of the hallway) nearby,

• Also, for each LEFT/RIGHT, look for a men-
tion of DOOR. If DOOR is mentioned, the
action is about entering a door.

• If DOOR is not mentioned around
LEFT/RIGHT, then the action is about
going to a hallway by default,

• If DOOR is mentioned at the end of an in-
struction without LEFT/RIGHT, then the ac-
tion is to go straight into the room.

• Put the sequence of action labels together ac-
cording to the mentions collected.

count average length
GHL1 128 8.5
GHL2 4 7.7
GHLZ 36 14.4
GHR1 175 10.8
GHR2 5 15.8
GHRZ 42 13.6
EDL1 98 10.5
EDL2 81 12.3
EDL3 24 13.9
EDLZ 28 13.7
EDR1 69 10.4
EDR2 55 12.9
EDR3 6 13.0
EDRZ 11 16.4
EDSZ 55 16.2

Table 3: Steps found in the dataset

In this case, all that’s required is a dictionary of
how a word maps to a concept such as DOOR. In
this corpus, ”door”, ”office”, ”room”, ”doorway”
and their plural forms map to DOOR, and the or-
dinal number 1 will be represented by ”first” and
”1st”, and so on.

5 Dataset

As noted, we have 427 route instructions, and the
average number of steps was 1.86 steps per in-
struction. We had 189 cases in which a sentence
boundary was found in the middle of a step. Ta-
ble 3 shows how often action steps occurred in the
corpus and average length of the segments.

One thing we noticed is that somehow people do
not use a short phrase to say the equivalent of ”en-
ter the door straight ahead of you”, as seen by the
average length of EDSZ. Also, it is more common
to say the equivalent of ”take a right at the end of
the hallway” than that of ”go to the second hallway
on the right”, as seen by the count of GHR2 and
GHRZ. The distribution is highly skewed; there
are a lot more GHL1 than GHL2.

6 Results

We evaluated the performance of the systems us-
ing three measures: overlap match, exact match,
and instruction follow through, using 6-fold cross-
valiadation on 427 samples. Only the action
chunks were considered for exact match and over-
lap match. Overlap match is a lenient measure
that considers a segmentation or labeling to be cor-
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Exact Match Recall Precision F-1
CRFs 66.0% 67.0% 66.5%

Overlap Match Recall Precision F-1
Baseline 62.8% 49.9% 55.6%
CRFs 85.7% 87.0% 86.3%

Instruction Follow Through success rate
Baseline 39.5%
CRFs 73.7%

Table 4: Recall, Precision, F-1 and Success Rate

rect if it overlaps with any of the annotated labels.
Instruction follow through is the success rate for
reaching the destination, and the most important
measure of the performance in this domain. Since
the baseline algorithm does not identify the token
labeled with B-prefix, no exact match comparison
is made. The result (Table 4) shows that CRFs per-
form better with a73.7% success rate.

7 Future Work

More complex models capable of representing
landmarks and actions separately may be applica-
ble to this domain, and it remains to be seen if such
models will perform better. Also, some form of
co-reference resolution or more sophisticated ac-
tion tracking should also be considered.

Acknowledgement

We thank Dr. Andrew Haas for introducing us to
the problem, collecting the corpus and being very
supportive in general.

References

P. Bartlett, M. Collins, B. Taskar and D. McAllester.
2004. Exponentiated gradient algorithms for large-
margin structured classification. InAdvances in
Neural Information Processing Systems (NIPS)

A. Haas 1995. Testing a Simulated Robot that Follows
Directions.unpublished

T. Kudo 2005. CRF++: Yet An-
other CRF toolkit. Available at
http://chasen.org/˜taku/software/CRF++/

J. Lafferty, A. McCallum, and F. Pereira. 2001. Condi-
tional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. InProceed-
ings of International Conference on Machine Learn-
ing .

R. Malouf. 2002. A Comparison of Algorithms for
Maximum Entropy Parameter Estimation. InPro-
ceedings of Conference of Computational Natural
Language Learning

F. Peng and A. McCallum. 2004. Accurate Informa-
tion Extraction from Research Papers using Condi-
tional Random Fields. InProceedings of Human
Language Technology Conference .

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fields. InProceedings of Human
Language Technology Conference .

S. Lauria, G. Bugmann, T. Kyriacou, J. Bos, and E.
Klein. 2001. Personal Robot Training via Natural-
Language Instructions.IEEE Intelligent Systems,
16:3, pp. 38-45.

C. Manning and H. Schutze. 1999.Foundations of Sta-
tistical Natural Language Processing. MIT Press.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit.
2003. FastSLAM 2.0: An improved particle fil-
tering algorithm for simultaneous localization and
mapping that provably converges. InProceedings of
the International Joint Conference on Artificial In-
telligence (IJCAI).

L. Ramshaw and M. Marcus. 1995. Text chunking us-
ing transformation-based learning. InProceedings
of Third Workshop on Very Large Corpora. ACL

E. F. Tjong Kim Sang and S. Buchholz. 2000. In-
troduction to the CoNLL-2000 shared task: Chunk-
ing. InProceedings of Conference of Computational
Natural Language Learning .

T. Winograd. 1972.Understanding Natural Language.
Academic Press.

36



Proceedings of the COLING/ACL 2006 Student Research Workshop, pages 37–42,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Investigations on Event-Based Summarization 

 
 

Mingli Wu 
Department of Computing 

The Hong Kong Polytechnic University 
Kowloon, Hong Kong 

csmlwu@comp.polyu.edu.hk 
 

  
 

Abstract 

We investigate independent and relevant 
event-based extractive mutli-document 
summarization approaches. In this paper, 
events are defined as event terms and as-
sociated event elements. With independ-
ent approach, we identify important con-
tents by frequency of events. With rele-
vant approach, we identify important 
contents by PageRank algorithm on the 
event map constructed from documents. 
Experimental results are encouraging. 

1 Introduction 

With the growing of online information, it is in-
efficient for a computer user to browse a great 
number of individual news documents. Auto-
matic summarization is a powerful way to over-
come such difficulty. However, the research lit-
erature demonstrates that machine summaries 
need to be improved further.  

The previous research on text summarization 
can date back to (Luhn 1958) and (Edmundson 
1969). In the following periods, some researchers 
focus on extraction-based summarization, as it is 
effective and simple. Others try to generate ab-
stractions, but these works are highly domain-
dependent or just preliminary investigations. Re-
cently, query-based summarization has received 
much attention. However, it is highly related to 
information retrieval, another research subject. In 
this paper, we focus on generic summarization. 
News reports are crucial to our daily life. In this 
paper, we focus on effective summarization ap-
proaches for news reports.  

Extractive summarization is widely investi-
gated in the past. It extracts part of document(s) 
based on some weighting scheme, in which dif-

ferent features are exploited, such as position in 
document, term frequency, and key phrases. Re-
cent extraction approaches may also employ ma-
chine learning approaches to decide which sen-
tences or phrases should be extracted. They 
achieve preliminary success in different applica-
tion and wait to be improved further. 

Previous extractive approaches identify the 
important content mainly based on terms. Bag of 
words is not a good representation to specify an 
event. There are multiple possible explanations 
for the same collection of words. A predefined 
template is a better choice to represent the event. 
However it is domain-dependent and need much 
effort to create and fill it. This tension motivates 
us to seek a balance between effective imple-
mentation and deep understanding. 

According to related works (Filatovia and 
Hatzivassiloglou, 2004) (Vanderwende et al., 
2004), we assume that event may be a natural 
unit to convey meanings of documents. In this 
paper, event is defined as the collection of event 
terms and associated event elements in clause 
level. Event terms express the meaning of actions 
themselves, such as “incorporate”. In addition to 
verbs, action nouns can also express meaning of 
actions and should be regarded as event terms. 
For example, “incorporation” is action noun. 
Event elements include named entities, such as 
person name, organization name, location, time. 
These named entities are tagged with GATE 
(Cunningham et al., 2002). Based on our event 
definition, independent and relevant event-based 
approaches are investigated in this research. Ex-
periments show that both of them achieve en-
couraging results.  

The related works are discussed in Section 2. 
Independent event-based summarization ap-
proach is described in Section 3. Relevant event-
based summarization approach is described in 
Section 4. Section 5 presents the experiments and 
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evaluations. Then the strength and limitation of 
our approaches are discussed in Section 6. Fi-
nally, we conclude the work in Section 7. 

2 Related Work 

Term-based extractive summarization can date 
back to (Luhn, 1958) and (Edmundson, 1969). 
This approach is simple but rather applicable. It 
represents the content of documents mainly by 
bag of words. Luhn (1958) establishes a set of 
“significant” words, whose frequency is between 
a higher bound and a lower bound. Edmundson 
(1969) collects common words, cue words, ti-
tle/heading words from documents. Weight 
scores of sentences are computed based on 
type/frequency of terms. Sentences with higher 
scores will be included in summaries. Later re-
searchers adopt tf*idf score to discriminate 
words (Brandow et al., 1995) (Radev et al., 
2004). Other surface features are also exploited 
to extract important sentence, such as position of 
sentence and length of sentence (Teufel and 
Moens, 1999) (Radev et al., 2004). To make the 
extraction model suitable for documents in dif-
ferent domains, recently machine learning ap-
proaches are widely employed (Kupiec et al., 
1995) (Conroy and Schlesinger, 2004).  

To represent deep meaning of documents, 
other researchers have investigated different 
structures. Barzilay and Elhadad (1997) segment 
the original text and construct lexical chains. 
They employ strong chains to represent impor-
tant parts of documents. Marcu (1997) describes 
a rhetorical parsing approach which takes unre-
stricted text as input and derives the rhetorical 
structure tree. They express documents with 
structure trees. Dejong (1978) adopts predefined 
templates to express documents. For each topic, 
the user predefines frames of expected informa-
tion types, together with recognition criteria. 
However, these approaches just achieve moder-
ate results. 

Recently, event receives attention to represent 
documents. Filatovia and Hatzivassiloglou 
(2004) define event as action (verbs/action 
nouns) and named entities. After identifying ac-
tions and event entities, they adopt frequency 
weighting scheme to identify important sentence. 
Vanderwende et al. (2004) represent event by 
dependency triples. After analysis of triples they 
connect nodes (words or phrases) by way of se-
mantic relationships. Yoshioka and Haraguchi 
(2004) adopt a similar approach to build a map, 
but they regard sentence as the nodes of the map. 

After construction of a map representation for 
documents, Vanderwende et al. (2004), and Yo-
shioka and Haraguchi (2004) all employ PageR-
ank algorithm to select the important sentences. 
Although these approaches employ event repre-
sentation and PageRank algorithm, it should be 
noted that our event representation is different 
with theirs. Our event representation is based on 
named entities and event terms, without help of 
dependency parsing. These previous event-based 
approaches achieved promising results.  

3 Independent Event-based Summari-
zation 

Based on our observation, we assume that events 
in the documents may have different importance. 
Important event terms will be repeated and al-
ways occur with more event elements, because 
reporters hope to state them clearly. At the same 
time, people may omit time or location of an im-
portant event after they describe the event previ-
ously. Therefore in our research, event terms oc-
curs in different circumstances will be assigned 
different weights. Event terms occur between 
two event elements should be more important 
than event terms occurring just beside one event 
elements. Event terms co-occurring with partici-
pants may be more important than event terms 
just beside time or location.  

The approach on independent event-based 
summarization involves following steps.  

1. Given a cluster of documents, analyze 
each sentence one at a time. Ignore sen-
tences that do not contain any event ele-
ment. 

2. Tag the event terms in the sentence, which 
is between two event elements or near an 
event element with the distance limitation. 
For example, [Event Element A, Even 
Term, Event Element B], [Event Term, 
Event Element A], [Event Element A, 
Event Term] 

3. Assign different weights to different event 
terms, according to contexts of event 
terms. Different weight configurations are 
described in Section 5.2. Contexts refer to 
number of event elements beside event 
terms and types of these event elements. 

4. Get the average tf*idf score as the weight 
of every event term or event element. The 
algorithm is similar with Centroid.  

38



5. Sum up the weights of event terms and 
event elements in a sentence. 

6. Select the top sentences with highest 
weights, according to the length of sum-
mary. 

4 Relevant Event-based Summarization  

Independent event-based approaches do not ex-
ploit relevance between events. However, we 
think that it may be useful to identify important 
events. After a document is represented by 
events, relevant events are linked together. We 
made the assumption that important events may 
be mentioned often and events associated to im-
portant events may be important also. PageRank 
is a suitable algorithm to identify the importance 
of events from a map, according to the previous 
assumption. In the following sections, we will 
discuss how to represent documents by events 
and how to identify important event with PageR-
ank algorithm. 

4.1 Document Representation 

We employ an event map to represent content of 
a document cluster, which is about a certain 
topic. In an event map, nodes are event terms or 
event elements, and edges represent association 
or modification between two nodes. Since the 
sentence is a natural unit to express meanings, 
we assume that all event terms in a sentence are 
all relevant and should be linked together. The 
links between every two nodes are undirectional.  

In an ideal case, event elements should be 
linked to the associated event terms. At the same 
time, an event element may modify another ele-
ment. For example, one element is a head noun 
and another one is the modifier. An event term 
(e.g., verb variants) may modify an event ele-
ment or event term of another event. In this case, 
a full parser should be employed to get associa-
tions or modifications between different nodes in 
the map. Because the performance of current 
parsing technology is not perfect, an effective 
approach is to simulate the parse tree to avoid 
introducing errors of a parser. The simplifica-
tions are described as follows. Only event ele-
ments are attached with corresponding event 
terms. An event term will not be attached to an 
event element of another event. Also, an event 
element will not be attached to another event 
element. Heuristics are used to attach event ele-
ments with corresponding event terms. 
Given a sentence “Andrew had become little 
more than a strong rainstorm early yesterday, 

moving across Mississippi state and heading for 
the north-eastern US”, the event map is shown in 
Fig. 1. After each sentence is represented by a 
map, there will be multiple maps for a cluster of 
documents. If nodes from different maps are 
lexical match, they may denote same thing and 
should be linked. For example, if named entity 
“Andrew” occurred in Sentence A, B and C, then 
the three occurrences OA, OB and OC will be 
linked as OA—OB, OB—OC, OC—OA. By this 
way, maps for sentences can be linked based on 
same concepts. 

 

 
Figure 1. Document representation with event 

map 

4.2 Importance Identification by PageRank 

Given a whole map for a cluster of documents, 
the next step is to identify focus of these docu-
ments. Based on our assumption about important 
content in the previous section, PageRank algo-
rithm (Page et al., 1998) is employed to fulfill 
this task. PageRank assumes that if a node is 
connected with more other nodes, it may be more 
likely to represent a salient concept. The nodes 
relevant to the significant nodes are closer to the 
salient concept than those not. The algorithm 
assigns the significance score to each node ac-
cording to the number of nodes linking to it as 
well as the significance of the nodes. In PageR-
ank algorithm, we use two directional links in-
stead for every unidirectional link in Figure 1. 

 The equation to calculate the importance (in-
dicated by PR) of a certain node A is shown as 
follows: 
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Where B1, B2,…, Bt are all nodes which link to 
the node A. C(Bi) is the number of outgoing links 
from the node Bi. The weight score of each node 
can be gotten by this equation recursively. d is 
the factor used to avoid the limitation of loop in 
the map structure. As the literature (Page et al., 
1998) suggested, d is set as 0.85. The signifi-
cance of each sentence to be included in the    
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summary is then derived from the significance of 
the event terms and event elements it contains. 

5 Evaluation 

5.1 Dataset and Evaluation Metrics 

DUC 2001 dataset is employed to evaluate our 
summarization approaches. It contains 30 clus-
ters and a total of 308 documents. The number of 
documents in each cluster is between 3 and 20. 
These documents are from some English news 
agencies, such as Wall Street Journal. The con-
tents of each cluster are about some specific 
topic, such as the hurricane in Florida. For each 
cluster, there are 3 different model summaries, 
which are provided manually. These model 
summaries are created by NIST assessors for the 
DUC task of generic summarization. Manual 
summaries with 50 words, 100 words, 200 words 
and 400 words are provided. 

Since manual evaluation is time-consuming 
and may be subjective, the typical evaluation 
package, ROUGE (Lin and Hovy, 2003), is em-
ployed to test the quality of summaries. ROUGE 
compares the machine-generated summaries with 
manually provided summaries, based on uni-
gram overlap, bigram overlap, and overlap with 
long distance. It is a recall-based measure and 
requires that the length of the summaries be lim-
ited to allow meaningful comparison. ROUGE is 
not a comprehensive evaluation method and in-
tends to provide a rough description about the 
performance of machine generated summary. 

5.2 Experimental Configuration 

In the following experiments for independent 
event-based summarization, we investigate the 
effectiveness of the approach. In addition, we 
attempt to test the importance of contextual in-
formation in scoring event terms. The number of 
associated event terms and the type of event 
terms are considered to set the weights of event 
terms. The weights parameters in the following 
experiments are chosen according to empirical 
estimations. 

Experiment 1: Weight of any entity is 1. 
Weight of any verb/action noun, which is be-
tween two entities or just beside one entity, is 1. 

Experiment 2: Weight of any entity is 1. 
Weight of any verb/action noun, which is be-
tween two entities, is 3. Weight of any 
verb/action noun, which is just beside one entity, 
is 1. 

Experiment 3: Weight of any entity is 1. 
Weight of any verb/action noun, which is be-

tween two entities and the first entity is person or 
organization, is 5. Weight of any verb/action 
noun, which is between two entities and the first 
entity is not person and not organization, is 3. 
Weight of any verb/action noun, which is just 
after a person or organization, is 2. Weight of 
any verb/action noun, which is just before one 
entity, is 1. Weight of any verb/action noun, 
which is just after one entity and the entity is not 
person and not organization, is 1. 

In the following experiments, we investigate 
the effectiveness of our approaches on under dif-
ferent length limitation of summary. Based on 
the algorithm of experiment 3, we design ex-
periment to generate summaries with length 50 
words, 100 words, 200 words, 400 words. They 
are named Experiment 4, Experiment 5, Ex-
periment 3 and Experiment 6. 

In other experiments for relevant event-based 
summarization, we investigate the function of 
relevance between events. The configurations are 
described as follows. 

Experiment 7: Event terms and event ele-
ments are identified as we discussed in Section 3. 
In this experiment, event elements just include 
named entities. Occurrences of event terms or 
event elements are linked with by exact matches. 
Finally, the PageRank is employed to select im-
portant events and then important sentences. 

Experiment 8: For reference, we select one of 
the four model summaries as the final summary 
for each cluster of documents. ROUGE is em-
ployed to evaluate the performance of these 
manual summaries. 

5.3 Experimental Results 

The experiment results on independent event-
based summarization are shown in table 1. The 
results for relevant event-based summarization 
are shown in table 3. 
 

 Exp. 1 Exp. 2 Exp. 3 
Rouge-1 0.315 0.322 0.323 
Rouge-2 0.049 0.055 0.055 
Rouge-L 0.299 0.305 0.306 
Table 1. Results on independent event-based 
summarization (summary with length of 200 

words) 
 

From table 1, we can see that results of Ex-
periment 2 are better than those of Experiment 1. 
It proves our assumption that importance of 
event terms is different when these event terms 
occur with different number of event elements. 
Results of Experiment 3 are not significant better 
than those of Experiment 2, so it seems that the 
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assumption that importance of event terms is not 
very different when these event terms occur with 
different types of event elements. Another possi-
ble explanation is that after adjustment of the 
weight for event terms, the difference between 
the results of Experiment 2 and Experiment 3 
may be extended.  
\ 

Table 2. Results on independent event-based 
summarization (summary with different length)  

 

Four experiments of table 2 show that per-
formance of our event based summarization are 
getting better, when the length of summaries is 
expanded. One reason is that event based ap-
proach prefers sentences with more event terms 
and more event elements, so the preferred 
lengths of sentences are longer. While in a short 
summary, people always condense sentences 
from original documents, and use some new 
words to substitute original concepts in docu-
ments. Then the Rouge score, which evaluates 
recall aspect, is not good in our event-based ap-
proach. In contrast, if the summaries are longer, 
people will adopt detail event descriptions in 
original documents, and so our performance is 
improved. 
 
 

 Exp. 7 Exp. 8 
Rouge-1 0.325 0.595 
Rouge-2 0.060 0.394 
Rouge-L 0.305 0.586 

Table 3. Results on relevant event-based 
summarization and a reference experiment 
(summary with length of 200 words) 

 

In table 3, we found the Rouge-score of rele-
vant event-based summarization (Experiment 7) 
is better than independent approach (Experiment 
1). In Experiment 1, we do not discriminate the 
weight of event element and event terms. In Ex-
periment 7, we also did not discriminate the 
weight of event element and event terms. It is 
fair to compare Experiment 7 with Experiment 1 
and it’s unfair to compare Experiment 7 with 
Experiment 3. It looks like the relevance between 
nodes (event terms or event elements) can help to 
improve the performance. However, performance 
of both dependent and independent event-based 
summarization need to be improved further, 
compared with human performance in Experi-
ment 8. 

6 Discussion 

As discussed in Section 2, event-based ap-
proaches are also employed in previous works. 
We evaluate our work in this context. As event-
based approaches in this paper are similar with 
that of Filatovia and Hatzivassiloglou (2004), and 
the evaluation data set is the same one, the re-
sults are compared with theirs.  Exp. 4 Exp. 5 Exp. 3 Exp. 6 

Rouge-1 0.197 0.249 0.323 0.382 
Rouge-2 0.021 0.031 0.055 0.081 
Rouge-L 0.176 0.231 0.306 0.367 

 
Fi t-gure 2. Results reported in (Filatovia and Ha

zivassiloglou 2004) 
 

 
Figure 3. Results of relevant event-based ap-

proach 
 

Filatovia and Hatzivassiloglou (2004) report 
the ROUGE scores according to each cluster of 
DUC 2001 data collection in Figure 2. In this 
figure, the bold line represents their event-based 
approach and the light line refers to tf*idf ap-
proach. It can be seen that the event-based ap-
proach performs better. The evaluation of the 
relevant event-based approach presented this pa-
per is shown in Figure 3. The proposed approach 
achieves significant improvement on most 
document clusters. The reason seems that the 
relevance between events is exploited.  

Centroid is a successful term-based summari-
zation approach. For caparison, we employ 
MEAD (Radev et.al., 2004) to generate Cen-
troid-based summaries. Results show that Cen-
troid is better than our relevant event-based ap-
proach. After comparing the summaries given by 
the two approaches, we found some limitation of 
our approach.   
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Event-based approach does not work well on 
documents with rare events. We plan to dis-
criminate the type of documents and apply event-
based approach on suitable documents. Our rele-
vant event-based approach is instance-based and 
too sensitive to number of instances of entities. 
Concepts seem better to represent meanings of 
events, as they are really things we care about. In 
the future, the event map will be build based on 
concepts and relationships between them. Exter-
nal knowledge may be exploited to refine this 
concept map. 

7 Conclusion 

In this study, we investigated generic summari-
zation. An event-based scheme was employed to 
represent document and identify important con-
tent. The independent event-based approach 
identified important content according to event 
frequency. We also investigated the different 
importance of event terms in different context. 
Experiment showed that this idea achieved prom-
ising results. Then we explored summarization 
under different length limitation. We found that 
our independent event-based approaches acted 
well with longer summaries. 

In the relevant event-based approach, events 
were linked together by same or similar event 
terms and event elements. Experiments showed 
that the relevance between events can improve 
the performance of summarization. Compared 
with close related work, we achieved encourag-
ing improvement.  
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Abstract 

Both rhetorical structure and punctuation 
have been helpful in discourse processing. 
Based on a corpus annotation project, this 
paper reports the discursive usage of 6 
Chinese punctuation marks in news 
commentary texts: Colon, Dash, Ellipsis, 
Exclamation Mark, Question Mark, and 
Semicolon. The rhetorical patterns of 
these marks are compared against patterns 
around cue phrases in general. Results 
show that these Chinese punctuation 
marks, though fewer in number than cue 
phrases, are easy to identify, have strong 
correlation with certain relations, and can 
be used as distinctive indicators of 
nuclearity in Chinese texts.  

1 Introduction 

Rhetorical structure has been proven useful in 
NLP projects such as text generation, 
summarization, machine translation and essay 
scoring. Automatic discourse parsing remains an 
elusive task, however, despite much rule-based 
research on lexical cues such as anaphora and 
conjunctions. Parsing through machine learning 
has encountered a bottleneck, due to limited 
resources--there is only one English RST 
treebank publicly available, and one 
RST-annotated German corpus on its way.  

Punctuation marks (PMs) have been proven 
useful in RST annotation as well as in many other 
NLP tasks such as Part-of-Speech tagging, Word 
Sense Disambiguation, Near-duplicate detection, 
bilingual alignment (e.g. Chuang and Yeh, 2005), 
etc. Dale (1991) noticed the role of PMs in 
determining rhetorical relations. Say (1998) did a 
study on their roles in English discourse structure. 

Marcu (1997) and Corston-Oliver (1998) based 
their automatic discourse parser partially on PMs 
and other orthographical cues. Tsou et al. (1999) 
and Chan et al. (2000) use PMs to disambiguate 
candidate Discourse Markers for a Chinese 
summarization system. Reitter (2003) also used 
PMs to distinguish ATTRIBUTION and 
ELABORATION relations in his Feature-rich 
SVM rhetorical analysis system.  

All these inspired us to survey on the rhetorical 
patterns around Chinese PMs, so as to provide 
more direct a priori scores for the coarse 
rhetorical analyzer by Zhang et al. (2000) in their 
hybrid summarization system.  

This paper is organized into 5 parts: Section 2 
gives an overview of a Chinese RST treebank 
under construction, and a survey on the syntax of 
six main PMs in the corpus: Colon, Dash, 
Ellipses, Exclamation Mark, Question Mark, and 
Semicolon. Section 3 reports rhetorical patterns 
around these PMs. Section 4 is a discussion on the 
effectiveness of these PMs in comparison with 
Chinese cue phrases. Section 5 is a summary and 
Section 6 directions for future work. 

2 Overview of Chinese RST treebank 
under construction 

2.1 Corpus data 

For the purpose of language engineering and 
linguistic investigation, we are constructing a 
Chinese corpus comparable to the English 
WSJ-RST treebank and the German Potsdam 
Commentary Corpus (Carlson et al. 2003; Stede 
2004). Texts in our corpus were downloaded 
from the official website of People’s Daily 1 , 
where important Caijingpinlun2 (CJPL) articles 

                                                      
1 www.people.com.cn. 
2 Caijinpinglun (CJPL) in Chinese means “financial and 
business commentary”, and usually covers various topics in 
social economic life, such as fiscal policies, financial reports, 
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by major media entities were republished. With 
over 400 authors and editors involved, our texts 
can be regarded as a good indicator of the general 
use of Chinese by Mainland native speakers.  

At the moment our CJPL corpus has a total of 
395 texts, 785,045 characters, and 84,182 
punctuation marks (including pruned spaces). 
Although on average there are 9.3 characters 
between every two marks, sentences in CJPL are 
long, with 51.8 characters per common sentence 
delimiters (Full Stop, Question Mark and 
Exclamation Mark).  

2.2 Segmentation 

We are informed of the German Potsdam 
Commentary Corpus construction, in which they 
(Reitter 2003) designed a program for automatic 
segmentation at clausal level after each 
Sign=“$.”(including {., ?, !, ;, :, …}) and 
Sign=“$,”(including {,}) 3 . Human interference 
with the segmentation results was not allowed, 
but annotators could retie over-segmented bits by 
using the JOINT relation. 

Given the workload of discourse annotation, 
we decided to design a similar segmentation 
program. So we first normalized different 
encoding systems and variants of PMs (e.g. 
Dashes and Ellipses of various lengths), and then 
conducted a survey on the distribution (Fig. 1) 
and syntax of major Chinese punctuation marks 
(e.g. syntax of Chinese Dash in Table 1).  
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Figure 1: Percentage of major punctuation 

marks in the Chinese corpus4

 
C-Comma-1 is the most frequently used PM in 

the Chinese corpus. While it does delimit clauses, 
a study on 200 randomly selected C-Comma-1 
tokens in our corpus shows that 55 of them are 

                                                                                 
trading, management, economic conferences, transportation, 
entertainment, education, etc.  

Collected by professional editors, most texts in our corpus 
are commentaries; some are of marginal genres by the 
Chinese standards. 
3 Dash, as a Sign= “$(”, was not selected as a unit delimiter 
in the Potsdam Commentary Corpus. 
4 PMs are counted by individual symbols. 

used after an independent NP or discourse 
marker. This rate, times the total number of 
C-Comma-1, means we would have to retie a 
huge number of over-segmented elements. So we 
decided not to take C-Comma-1 as a delimiter of 
our Elementary Unit of Discourse Analysis 
(EUDA) for the present. 

Structure of C-——5 % 
[NP+——NP+]NP 3.12%
[s+——s+]NP 0.44%
S*[NP——NP——VP]S 1.78%
S*[NP——s——VP]S 0.89%
S*[s——s——s]S 6.22%
<title>s+——Source：s+</title> 2.67%
<title>Source：s——s+</title> 0.44%
<para>S*s——</para> 1.33%
<para>S——S+</para> 2.22%
<para>S*s”——s+</para> 7.56%
<para>——S+</para> 12.44%
<para>S*s——s+</para> 60.89%
TTL 100.00%

Table 1: Syntax of Chinese Dash 
 

42.9% of the colons in CJPL are used in the 
structural elements6 of the texts. Other than these, 
56.5% of the colons are used between clausal 
strings, only 0.6% of the colons are used after 
non-clausal strings.  

99.6% instances of Exclamation Mark, 
Question Mark, Dash, Ellipses and Semicolon in 
the Chinese corpus are used after clausal strings. 

In our corpus, 4.3% of the left quotation marks 
do not have a right match to indicate the end of a 
quote. Because many articles do not give clear 
indications of direct or indirect quotes7, it is very 
difficult for the annotator to makeup.  

Parentheses and brackets have a similar 
problem, with 3.2% marks missing their matches. 

                                                      
5 The symbol “S” donates sentences with a common end 
mark, while “s” denotes structures orthographically end with 
one of the PMs studied here. “+” means one or more 
occurrences, “*” means zero or more occurrences. The 
category after a bracket pair indicates the syntactic role 
played by the unit enclosed, for example “[……]NP” means 
the ellipses functions as an NP within a clausal structure. 
“<para></para>” denotes paragraph opening and ending. 
6 By “Structural elements” we mean documentary 
information, such as Publishing Date, Source, Link, Editor, 
etc. Although these are parts of a news text, they are not the 
article proper, on which we annotate rhetorical relations. 
7 After a comparative study on the rhetorical structure of 
news published by some Hong Kong newspapers in both 
English and Chinese, Scollon and Scollon (1997) observed 
that “quotation is at best ambiguous in Chinese. No standard 
practice has been observed across newspapers in this set and 
even within a newspaper, it is not obvious which portions of 
the text are attributed to whom.” We notice that Mainland 
newspapers have a similar phenomenon. 
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Besides, 53.9% of the marks appear in structural 
elements that we didn’t intend to analyze8. 

Finally, we decided to use Period, the 
End-of-line symbol, and these six marks 
(Question Mark, Exclamation Mark, Colon, 
Semicolon, Ellipsis and Dash) as delimiters of 
our EUDA. Quotation mark, Parentheses, and 
Brackets were not selected.  

A special program was designed to conduct 
the segmentation after each delimiter, with 
proper adjustment in cases when the delimiter is 
immediately followed by a right parenthesis, a 
right quotation mark, or another delimiter. 

A pseudo-relation, SAME-UNIT, has been used 
during annotation to re-tie any discourse segment 
cut by the segmentation program into fragments. 

2.3 Annotation and Validity Control 

We use O’Donnell’s RSTTool V3.43 9  as our 
annotation software. We started from the 
Extended-RST relation set embedded in the 
software, adding gradually some new relations, 
and finally got an inventory of 47 relations. We 
take the same rhetorical predicate with switched 
arguments as different relations, for instance, 
SOLUTIONHOOD-S, SOLUTIONHOOD-M and 
SOLUTIONHOOD-N are regarded as 3 relations. 

Following Carlson et al. (2001) and Marcu’s 
(1999) examples, we’ve composed a 60-page 
Chinese RST annotation manual, which includes 
preprocessing procedures, segmentation rules, 
definitions and examples of the relations, tag 
definitions for structural elements, tagging 
conventions for special structures, and a relation 
selection protocol. When annotating, we choose 
the most indicative relation according to the 
manual. Trees are constructed with binary 
branches except for multinuclear relations. 

One experienced annotator had sketched trees 
for all the 395 files before the completion of the 
manual. Then she annotated 97 shortest files 
from 197 randomly selected texts, working 
independently and with constant reference to the 
manual. After a one-month break, she 
re-annotated the 97 files, with reference to the 
manual and with occasional consultation with 
Chinese journalists and linguists. The last 
version, though far from error-free, is currently 
taken as the right version for reliability tests and 
other statistics.  

                                                      
8 Parentheses, and other PMs used in structural elements of 
CJPL texts, are of high relevance to discourse parsing, since 
they can be used in a preprocessor to filter out text 
fragments that do not need be annotated in terms of RST. 
9 Publicly downloadable at www.wagsoft.com. 

An intra-coder accuracy test has bee taken 
between the 1st and 2nd versions of 97 finished 
trees. The intra-coder accuracy rate (Rv) for a 
particular variable is defined as 
 

Rv=  *100%           2*(AT-AS) 
TT-TS 

Where  
AT= number of agreed tags; 
TT= number of total tags; 
TS= number of total tags for structural 

elements; 
AS= number of agreed tags for structural 

elements. 
Rr for relation tags is 84.39%, Ru for unit tags is 
85.61%, and Rn for nuclearity tags is 88.12%.  

Because SPSS can only calculate Kappa 
Coefficient for symmetric data, we’ve only 
measured Kappa for relation tags to the EUDAs. 
The outcome, Kr=.738, is quite high.  

3 Results 

The 97 double-annotated files have in the main 
body of their texts a total of 677 paragraphs and 
1,914 EUDAs. Relational patterns of those PMs 
are reported in Table 2-7 below10. The “N”, “S” 
or “M” tags after each relation indicate the 
nuclearity status of each EUDA ended with a 
certain PM. The number of those PMs used in 
structural elements of CJPL texts are also 
reported as they make up the total percentage. 

Relation (C-？) P(r|pm) P(pm|r) 
Antithesis-N 1.14% 2.70%
Background-N 2.27% 3.39%
Concession-N 7.95% 7.29%
Conjunction-M 30.68% 5.24%
Disjunction-M 4.55% 36.36%
Elaboration-N 2.27% 1.10%
Elaboration-S 2.27% 1.10%
Evaluation-N 1.14% 0.72%
Interpretation-N 1.14% 0.67%
Joint-M 4.55% 6.90%
Justify-N 4.55% 1.75%
Justify-S 4.55% 1.75%
Nonvolitional-cause-S 2.27% 1.43%
Nonvolitional-result-S 1.14% 0.71%
Otherwise-S 1.14% 16.67%
Solutionhood-M 4.55% 5.33%
Solutionhood-S 14.78% 17.33%
Volitional-cause-N 1.14% 1.32%
Structural elements 7.96% 0.99%
TTL 100.00% N/A 

Table 2: Rhetorical pattern of C-Question 

                                                      
10  Based on data from the 2nd version of annotated texts. 
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Relation (C-！) P(r|pm) P(pm|r)

Addition-S 5.26% 14.29%
Conjunction-M 15.79% 0.58%
Elaboration-S 5.26% 0.55%
Evaluation-S 10.53% 1.44%
Evidence-S 10.53% 2.33%
Joint-M 5.26% 1.72%
Justify-N 5.26% 0.44%
Justify-S 5.26% 0.44%
Nonvolitional-cause-N 5.26% 0.71%
Solutionhood-N 5.26% 1.33%
Volitional-cause-S 5.26% 1.32%
Structural elements 21.05% 0.57%
TTL 100.00% N/A 
Table 3: Rhetorical pattern of C-Exclamation 

 
Relation (C-：) P(r|pm) P(pm|r)

Attribution-S 10.93% 68.00%
Background-N 0.64% 3.39%
Background-S 0.32% 1.69%
Concession-N 0.32% 1.04%
Elaboration-N 18.97% 32.42%
Evaluation-N 0.64% 1.44%
Justify-S 0.32% 0.44%
Nonvolitional-cause-N 0.32% 0.71%
Preparation-S 4.18% 13.40%
Same-unit-S 0.32% 4.35%
Volitional-cause-N 0.32% 1.32%
Structural elements 62.70%11 27.70%
TTL  100.00% N/A 

Table 4: Rhetorical pattern of C-Colon 
 

Relation (C-；) P(r|pm) P(pm|r) 
Antithesis-S 1.00% 2.70%
Background-N 1.00% 1.69%
Background-S 1.00% 1.69%
Conjunction-M 59.00% 11.46%
Contrast-M 7.00% 7.69%
Disjunction-M 2.00% 18.18%
List-M 23.00% 24.73%
Purpose-N 1.00% 6.67%
Same-unit-M 2.00% 8.70%
Sequence-M 3.00% 6.12%
TTL 100.00% N/A 

Table 5: Rhetorical pattern of C-Semicolon 
 

Relation (C-……) P(r|pm) P(pm|r) 
Conjunction-M 12.50% 0.19%
Disjunction-M 12.50% 9.09%
Elaboration-S 25.00% 1.10%
Evidence-S 25.00% 2.33%

                                                      
11 This is higher than the overall 42.93% rate for colons 
used in structural elements, for we’ve only finished 97 
shortest ones from the 197 randomly selected files. 

Evaluation-N 12.50% 0.72%
Volitional-result-S 12.50% 1.32%
TTL 100.00% N/A 

Table 6: Rhetorical pattern of C-Ellipses 
 

Relation (C-——) P(r|pm) P(pm|r) 
Elaboration-N 32.00% 4.40%
Elaboration-S 4.00% 0.55%
Evaluation-N 12.00% 2.16%
Evaluation-S 4.00% 0.72%
Nonvolitional-cause-S 4.00% 0.71%
Nonvolitional-result-S 4.00% 0.71%
Otherwise-S 4.00% 16.67%
Preparation-N 4.00% 1.03%
Purpose-N 4.00% 6.67%
Restatement-N 4.00% 14.29%
Same-unit-M 24.00% 26.09%
TTL 100.00% N/A 

Table 7: Rhetorical pattern of C-Dash 
 
The above data suggest at least the following:  
1) There is no one-to-one mapping between any 

of PM studied and a rhetorical relation. But 
some PMs have dominant rhetorical usages. 

2) C-Question Mark is not most frequently 
related with SOLUTIONHOOD, but with 
CONJUNCTION. That is because a high 
percentage of questions in our corpus are 
rhetorical and used in groups to achieve 
certain argumentative force.  

3) C-Colon is most frequently related with 
ATTRIBUTION and ELABORATION, apart 
from its usage in structural elements. 

4) C-Semicolon is overwhelmingly associated 
with multinuclear relations, particularly with 
CONJUNCTION. 

5) C-Dash usually indicates an ELABORATION 
relation. But since it is often used in pairs, it 
is often bound to both the Nucleus and 
Satellite units of a relation. 

6) 82.3% tokens of the six Chinese PMs are 
uniquely related to EUDAs of certain 
nucleus status in a rhetorical relation, taking 
even C-Dash into account.  

7) The following relations have more than 10% 
of their instances related to one of the six 
PMs studied here: ADDITION, 
ATTRIBUTION, CONJUNCTION, 
DISJUNCTION, ELABORATION, LIST, 
OTHERWISE, PREPARTION, 
RESTATEMENT and SOLUTIONHOOD. 

8) Chinese PMs are used somewhat differently 
from their German equivalents, Exclamation 
Mark for instance (Fig.2):  
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Figure 2: Rhetorical Function of Exclamation 

Mark in Chinese and German corpora 

4 Discussion  

How useful are these six PMs in the prediction of 
rhetorical relations in Chinese texts? In our 
opinion, this question can be answered partly 
through a comparison with Chinese cue phrases. 

Cue phrases are widely discussed and 
exploited in the literature of both Chinese studies 
and RST applications as a major surface device. 
Unfortunately, Chinese cue phrases in natural 
texts are difficulty to identify automatically. As 
known, Chinese words are made up of 1, 2, or 
more characters, but there is no explicit word 
delimiter between any pair of adjacent words in a 
string of characters. Thus, they are not known 
before tokenization (“fenci” in Chinese, meaning 
“separating into words”, or “word segmentation” 
so as to recognize meaningful words out of 
possible overlaps or combinations). The task 
may sound simple, but has been the focus of 
considerable research efforts (e.g. Webster and 
Kit, 1992; Guo 1997; Wu, 2003).  

Since many cue phrases are made up of 
high-frequency characters (e.g. “而-ER” in “而
-er” meaning “but/so/and”, “ 然 而 -ran’er” 
meaning “but/however”, “因而-yin’er” meaning 
“so/because of this”, “而且-erqie” meaing “in 
addition” etc.; “此-ci” in “此后-cihou” meaning 
“later/hereafter”, “因此 -yinci” meaning “as a 
result”, “由此看来-youcikanlai” meaning “on 
this ground/hence”, etc.), a considerable amount 
of computation must be done before these cue 
phrases can ever been exploited.  

Apart from tokenization, POS and WSD are 
other necessary steps that should be taken before 
making use of some common cue phrases. They 
are all hard nuts in Chinese language engineering. 
Interestingly, many researches done in these 
three areas have made use of the information 
carried by PMs (e.g. Sun et al. 1998).  

Chan et al. (2000) did a study on identify 
Chinese connectives as signals of rhetorical 

relations for their Chinese summarizer. Their 
tests were successful. But like PMs, Chinese cue 
phrases are not in a one-to-one mapping 
relationship with rhetorical relations, either. 

In our finished portion of CJPL corpus, we’ve 
identified 161 Types of cue phrases12 at or above 
our EUDA level, recording 539 tokens. These 
cue phrases are scattered in 477 EDUAs, 
indicating 20.5% of the total relations in our 
finished portion of the corpus. Our six PMs, on 
the other hand, have 551 tokens in the same 
finished portion, delimiting 345 EUDAs (and 
206 structural elements), and indicating 14.8% of 
the total relations. However, since there are far 
more types of cue phrases than types of 
punctuation marks, 90.1% of cue phrases are 
sparser at or above our EDUA level than the 
least frequently used PM—Ellipsis in this case.  

And Chinese cue phrases don’t signal all the 
rhetorical relations at all levels. For instance, 
CONJUNTION is the most frequently used 
relation in our annotated text (taking 22.1% of all 
the discursive relations), but it doesn’t have 
strong correlation with any lexical item. Its most 
frequent lexical cue is “也-ye”, taking 2.4%. 
ELABORATION is another common relation in 
CJPL, but it is rarely marked by cue phrases. 
ATTRIBUTION, SOLUTIONHOOD and 
DISJUNCTION are amongst other lowest marked 
relations in Chinese—they happen to be signaled 
quite significantly by a punctuation mark.  

Given the cost to recognize Chinese cue 
phrases accurately, the sparseness of many of 
these cues, and the risk of missing all cue phrases 
for a particular discursive relation, punctuation 
marks with strong rhetorical preferences appear 
to be useful supplements to cue phrases.  

5 Conclusion  

Because rhetorical structure in Chinese texts is 
not explicit by itself, systematic and quantitative 
evaluation of various factors that can contribute 
to the automatic analysis of texts is quite 
necessary. The purpose of this study is to look 
into the discursive patterns of Chinese PMs, to 
see if they can facilitate discourse parsing 
without deep semantic analysis.  

We have in this study observed the discursive 
usage of six Chinese PMs, from their overall 
distribution in our Chinese discourse corpus, 
their syntax in context, to their rhetorical roles at 

                                                      
12 We are yet to give a theoretical definition of Cue Phrases 
in our study. But the identified ones range similarly to those 
English cue phrases listed in Marcu (1997).  
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or above our EUDA level. Current statistics seem 
to suggest clear patterns of their rhetorical roles, 
and their distinctive correlation with nuclearity in 
most relations. These patterns and correlation 
may be useful in NLP projects. 

6 Future Work 

We are conscious of the size and granularity of 
our treebank on which this analysis is based. We 
plan to get a larger team to work on the project, 
so as to make it more comparable to the English 
and German RST treebanks.  

Since the distinctive nucleus status of EUDAs 
ended with these PMs may be useful in deciding 
growth point for RS-tree construction or for tree 
pruning in summarization, we are also interested 
in testing how well a baseline relation classifier 
performs if it always predicts the most frequent 
relations for these PMs. 
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Abstract

Current parsing models are not immedi-
ately applicable for languages that exhibit
strong interaction between morphology
and syntax, e.g., Modern Hebrew (MH),
Arabic and other Semitic languages. This
work represents a first attempt at model-
ing morphological-syntactic interaction in
a generative probabilistic framework to al-
low for MH parsing. We show that mor-
phological information selected in tandem
with syntactic categories is instrumental
for parsing Semitic languages. We further
show that redundant morphological infor-
mation helps syntactic disambiguation.

1 Introduction

Natural Language Processing is typically viewed
as consisting of different layers,1 each of which is
handled separately. The structure of Semitic lan-
guages poses clear challenges to this traditional
division of labor. Specifically, Semitic languages
demonstrate strong interaction between morpho-
logical and syntactic processing, which limits the
applicability of standard tools for, e.g., parsing.

This work focuses on MH and explores the
ways morphological and syntactic processing in-
teract. Using a morphological analyzer, a part-of-
speech tagger, and a PCFG-based general-purpose
parser, we segment and parse MH sentences based
on a small, annotated corpus. Our integrated
model shows that percolating morphological am-
biguity to the lowest level of non-terminals in the
syntactic parse tree improves parsing accuracy.

1E.g., phonological, morphological, syntactic, semantic
and pragmatic.

Moreover, we show that morphological cues facil-
itate syntactic disambiguation. A particular contri-
bution of this work is to demonstrate that MH sta-
tistical parsing is feasible. Yet, the results obtained
are not comparable to those of, e.g., state-of-the-
art models for English, due to remaining syntactic
ambiguity and limited morphological treatment.
We conjecture that adequate morphological and
syntactic processing of MH should be done in a
unified framework, in which both levels can inter-
act and share information in both directions.

Section 2 presents linguistic data that demon-
strate the strong interaction between morphology
and syntax in MH, thus motivating our choice to
treat both in the same framework. Section 3 sur-
veys previous work and demonstrates again the
unavoidable interaction between the two. Sec-
tion 4.1 puts forward the formal setting of an inte-
grated probabilistic language model, followed by
the evaluation metrics defined for the integrated
task in section 4.2. Sections 4.3 and 4.4 then
describe the experimental setup and preliminary
results for our baseline implementation, and sec-
tion 5 discusses more sophisticated models we in-
tend to investigate.

2 Linguistic Data

Phrases and sentences in MH, as well as Arabic
and other Semitic languages, have a relatively free
word order.2 In figure 1, for example, two distinct
syntactic structures express the same grammatical
relations. It is typically morphological informa-
tion rather than word order that provides cues for
structural dependencies (e.g., agreement on gen-
der and number in figure 1 reveals the subject-
predicate dependency).

2MH allows for both SV and VS, and in some circum-
stances also VSO, SOV and others.
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Furthermore, boundaries of constituents in the
syntactic structure of MH sentences need not co-
incide with word boundaries, as illustrated in fig-
ure 2. A MH word may coincide with a single
constituent, as in ‘ica’3 (go out), it may overlap
with an entire phrase, as in ‘h ild ’ (the boy), or it
may span across phrases as in ‘w kf m h bit ’ (and
when from the house). Therefore, we conclude
that in order to perform syntactic analysis (pars-
ing) of MH sentences, we must first identify the
morphological constituents that form MH words.

There are (at least) three distinct morphologi-
cal processes in Semitic languages that play a role
in word formation. Derivational morphology is a
non-concatenative process in which verbs, nouns,
and adjectives are derived from (tri-)consonantal
roots plugged into templates of consonant/vowel
skeletons. The word-forms in table 1, for example,
are all derived from the same root, [i][l][d] (child,
birth), plugged into different templates. In addi-
tion, MH has a rich array of agreement features,
such as gender, number and person, expressed in
the word’s inflectional morphology. Verbs, adjec-
tives, determiners and numerals must agree on the
inflectional features with the noun they comple-

3We adopt the transliteration of (Sima’an et al., 2001).

a. ‘ild’ b. ‘iild’ c. ‘mwld’
[i]e[l]e[d] [i]i[l](l)e[d] mw[][l](l)a[d]
child deliver a child innate

Table 1: Derivational Morphology in MH ([..]
mark templates’ slots for consonantal roots, (..)
mark obligatory doubling of roots’ consonants.)

a. ild gdwl b. ildh gdwlh
child.MS big.MS child.FS big.FS
a big boy a big girl

Table 2: Inflectional Morphology in MH (marking
M(asculine)/F(eminine), S(ingular)/P(lural))

ment or modify. It can be seen in table 2 that the
suffix h alters the noun ‘ild ’ (child) as well as its
modifier ‘gdwl ’ (big) to feminine gender. Finally,
particles that are prefixed to the word may serve
different syntactic functions, yet a multiplicity of
them may be concatenated together with the stem
to form a single word. The word ‘wkfmhbit ’ in
figure 2, for instance, is formed from a conjunc-
tion w (and), a relativizer kf (when), a preposition
m (from), a definite article h (the) and a noun bit
(house). Identifying such particles is crucial for
analyzing syntactic structures as they reveal struc-
tural dependencies such as subordinate clauses,
adjuncts, and prepositional phrase attachments.

At the same time, MH exhibits a large-scale am-
biguity already at the word level, which means that
there are multiple ways in which a word can be
broken down to its constituent morphemes. This
is further complicated by the fact that most vo-
calization marks (diacritics) are omitted in MH
texts. To illustrate, table 3 lists two segmenta-
tion possibilities, four readings, and five mean-
ings of different morphological analyses for the
word-form ‘fmnh’.4 Yet, the morphological anal-
ysis of a word-form, and in particular its mor-
phological segmentation, cannot be disambiguated
without reference to context, and various morpho-
logical features of syntactically related forms pro-
vide useful hints for morphological disambigua-
tion. Figure 3 shows the correct analyses of the
form ‘fmnh ’ in different syntactic contexts. Note
that the correct analyses maintain agreement on
gender and number between the noun and its mod-
ifier. In particular, the analysis ‘that counted’ (b)

4A statistical study on a MH corpus has shown that the
average number of possible analyses per word-form was 2.1,
while 55% of the word-forms were morphologically ambigu-
ous (Sima’an et al., 2001).
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‘fmnh’ ‘fmnh’ ‘fmnh’ ‘fmnh’ ‘f + mnh’
shmena shamna shimna shimna she + mana
fat.FS got-fat.FS put-oil.FS oil-of.FS that + counted
fat (adj) got fat (v) put-oil (v) her oil (n) that (rel) counted (v)

Table 3: Morphological Analyses of the Word-
form ‘fmnh’

a. NP

N

ildh.FS
child.FS

A

fmnh.FS
fat.FS

b. NP

N

ild.MS
child.MS

CP

Rel

f
that

V

mnh.MS
counted.MS

Figure 3: Ambiguity Resolution in Different Syn-
tactic Contexts

is easily disambiguated, as it is the only one main-
taining agreement with the modified noun.

In light of the above, we would want to con-
clude that syntactic processing must precede mor-
phological analysis; however, this would contra-
dict our previous conclusion. For this reason,
independent morphological and syntactic analyz-
ers for MH will not suffice. We suggest per-
forming morphological and syntactic processing
of MH utterances in a single, integrated, frame-
work, thereby allowing shared information to sup-
port disambiguation in multiple tasks.

3 Related Work

As of yet there is no statistical parser for MH.
Parsing models have been developed for different
languages and state-of-the-art results have been
reported for, e.g., English (Collins, 1997; Char-
niak, 2000). However, these models show impov-
erished morphological treatment, and they have
not yet been successfully applied for MH parsing.
(Sima’an et al., 2001) present an attempt to parse
MH sentences based on a small, annotated corpus
by applying a general-purpose Tree-gram model.
However, their work presupposes correct morpho-
logical disambiguation prior to parsing.5

In order to treat morphological phenomena
a few stand-alone morphological analyzers have
been developed for MH.6 Most analyzers consider
words in isolation, and thus propose multiple anal-
yses for each word. Analyzers which also at-
tempt disambiguation require contextual informa-
tion from surrounding word-forms or a shallow
parser (e.g., (Adler and Gabai, 2005)).

5The same holds for current work on parsing Arabic.
6Available at mila.cs.technion.ac.il.

A related research agenda is the development of
part-of-speech taggers for MH and other Semitic
languages. Such taggers need to address the seg-
mentation of words into morphemes to which dis-
tinct morphosyntactic categories can be assigned
(cf. figure 2). It was illustrated for both MH (Bar-
Haim, 2005) and Arabic (Habash and Rambow,
2005) that an integrated approach towards mak-
ing morphological (segmentation) and syntactic
(POS tagging) decisions within the same architec-
ture yields excellent results. The present work fol-
lows up on insights gathered from such studies,
suggesting that an integrated framework is an ade-
quate solution for the apparent circularity in mor-
phological and syntactic processing of MH.

4 The Integrated Model

As a first attempt to model the interaction between
the morphological and the syntactic tasks, we in-
corporate an intermediate level of part-of-speech
(POS) tagging into our model. The key idea is that
POS tags that are assigned to morphological seg-
ments at the word level coincide with the lowest
level of non-terminals in the syntactic parse trees
(cf. (Charniak et al., 1996)). Thus, POS tags can
be used to pass information between the different
tasks yet ensuring agreement between the two.

4.1 Formal Setting

Let wm
1 be a sequence of words from a fixed vo-

cabulary, sn
1 be a sequence of segments of words

from a (different) vocabulary, tn
1 a sequence of

morphosyntactic categories from a finite tag-set,
and let π be a syntactic parse tree.

We define segmentation as the task of identi-
fying the sequence of morphological constituents
that were concatenated to form a sequence of
words. Formally, we define the task as (1), where
seg(wm

1 ) is the set of segmentations resulting
from all possible morphological analyses of wn

1 .

sn
1
∗ = argmax

sn

1
∈seg(wm

1
)

P (sn
1 |w

m
1 ) (1)

Syntactic analysis, parsing, identifies the structure
of phrases and sentences. In MH, such tree struc-
tures combine segments of words that serve differ-
ent syntactic functions. We define it formally as
(2), where yield(π′) is the ordered set of leaves of
a syntactic parse tree π′.

π∗ = argmax
π∈{π′:yield(π′)=sn

1
}

P (π|sn
1 ) (2)

51



Similarly, we define POS tagging as (3), where
analysis(sn

1 ) is the set of all possible POS tag as-
signments for sn

1 .

tn1
∗ = argmax

tn
1
∈analyses(sn

1
)

P (tn1 |s
n
1 ) (3)

The task of the integrated model is to find the
most probable segmentation and syntactic parse
tree given a sentence in MH, as in (4).

〈π, sn
1 〉

∗ = argmax
〈π,sn

1
〉

P (π, sn
1 |w

m
1 ) (4)

We reinterpret (4) to distinguish the morphological
and syntactic tasks, conditioning the latter on the
former, yet maximizing for both.

〈π, sn
1 〉

∗ = argmax
〈π,sn

1
〉

P (π|sn
1 , wm

1 )
︸ ︷︷ ︸

parsing

P (sn
1 |w

m
1 )

︸ ︷︷ ︸

segmentation

(5)

Agreement between the tasks is implemented by
incorporating morphosyntactic categories (POS
tags) that are assigned to morphological segments
and constrain the possible trees, resulting in (7).

〈π, tn1 , sn
1 〉

∗ = argmax
〈π,tn

1
,sn

1
〉

P (π, tn1 , sn
1 |w

m
1 ) (6)

= argmax
〈π,tn

1
,sn

1
〉

P (π|tn1 , sn
1 , wm

1 )
︸ ︷︷ ︸

parsing

P (tn1 |s
n
1 , wm

1 )
︸ ︷︷ ︸

tagging

P (sn
1 |w

m
1 )

︸ ︷︷ ︸

segmentation

(7)
Finally, we employ the assumption that
P (wm

1 |sn
1 ) ≈ 1, since segments can only be

conjoined in a certain order.7 So, instead of (5)
and (7) we end up with (8) and (9), respectively.

≈ argmax
〈π,sn

1
〉

P (π|sn
1 )

︸ ︷︷ ︸

parsing

P (sn
1 |w

m
1 )

︸ ︷︷ ︸

segmentation

(8)

≈ argmax
〈π,tn

1
,sn

1
〉

P (π|tn1 , sn
1 )

︸ ︷︷ ︸

parsing

P (tn1 |s
n
1 )

︸ ︷︷ ︸

tagging

P (sn
1 |w

m
1 )

︸ ︷︷ ︸

segmentation

(9)

4.2 Evaluation Metrics

The intertwined nature of morphology and syn-
tax in MH poses additional challenges to standard
parsing evaluation metrics. First, note that we can-
not use morphemes as the basic units for com-
parison, as the proposed segmentation need not
coincide with the gold segmentation for a given
sentence. Since words are complex entities that

7Since concatenated particles (conjunctions et al.) appear
in front of the stem, pronominal and inflectional affixes at the
end of the stem, and derivational morphology inside the stem,
there is typically a unique way to restore word boundaries.

can span across phrases (see figure 2), we can-
not use them for comparison either. We propose
to redefine precision and recall by considering the
spans of syntactic categories based on the (space-
free) sequences of characters to which they corre-
spond. Formally, we define syntactic constituents
as 〈i, A, j〉 where i, j mark the location of char-
acters. T = {〈i, A, j〉|A spans from i to j} and
G = {〈i, A, j〉|A spans from i to j} represent the
test/gold parses, respectively, and we calculate:8

Labeled Precision = #(G ∩ T )/#T (10)

Labeled Recall = #(G ∩ T )/#G (11)

4.3 Experimental Setup

Our departure point for the syntactic analysis of
MH is that the basic units for processing are not
words, but morphological segments that are con-
catenated together to form words. Therefore, we
obtain a segment-based probabilistic grammar by
training a Probabilistic Context Free Grammar
(PCFG) on a segmented and annotated MH cor-
pus (Sima’an et al., 2001). Then, we use exist-
ing tools — i.e., a morphological analyzer (Segal,
2000), a part-of-speech tagger (Bar-Haim, 2005),
and a general-purpose parser (Schmid, 2000) — to
find compatible morphological segmentations and
syntactic analyses for unseen sentences.

The Data The data set we use is taken from the
MH treebank which consists of 5001 sentences
from the daily newspaper ‘ha’aretz’ (Sima’an et
al., 2001). We employ the syntactic categories and
POS tag sets developed therein. Our data set in-
cludes 3257 sentences of length greater than 1 and
less than 21. The number of segments per sen-
tence is 60% higher than the number of words per
sentence.9 We conducted 8 experiments in which
the data is split to training and test sets and apply
cross-fold validation to obtain robust averages.

The Models Model I uses the morphological an-
alyzer and the POS tagger to find the most prob-
able segmentation for a given sentence. This is
done by providing the POS tagger with multiple
morphological analyses per word and maximizing
the sum

∑

tn
1

P (tn1 , sn
1 |w

m
1 ) (Bar-Haim, 2005, sec-

tion 8.2). Then, the parser is used to find the most
8Covert definite article errors are counted only at the POS

tags level and discounted at the phrase-level.
9The average number of words per sentence in the com-

plete corpus is 17 while the average number of morphological
segments per sentence is 26.
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probable parse tree for the selected sequence of
morphological segments. Formally, this model is
a first approximation of equation (8) using a step-
wise maximization instead of a joint one.10

In Model II we percolate the morphological am-
biguity further, to the lowest level of non-terminals
in the syntactic trees. Here we use the morpholog-
ical analyzer and the POS tagger to find the most
probable segmentation and POS tag assignment
by maximizing the joint probability P (tn

1 , sn
1 |w

m
1 )

(Bar-Haim, 2005, section 5.2). Then, the parser
is used to parse the tagged segments. Formally,
this model attempts to approximate equation (9).
(Note that here we couple a morphological and
a syntactic decision, as we are looking to max-
imize P (tn1 , sn

1 |w
m
1 ) ≈ P (tn1 |s

n
1 )P (sn

1 |w
m
1 ) and

constrain the space of trees to those that agree with
the resulting analysis.)11

In both models, smoothing the estimated prob-
abilities is delegated to the relevant subcompo-
nents. Out of vocabulary (OOV) words are treated
by the morphological analyzer, which proposes
all possible segmentations assuming that the stem
is a proper noun. The Tri-gram model used for
POS tagging is smoothed using Good-Turing dis-
counting (see (Bar-Haim, 2005, section 6.1)), and
the parser uses absolute discounting with various
backoff strategies (Schmid, 2000, section 4.4).

The Tag-Sets To examine the usefulness of var-
ious morphological features shared with the pars-
ing task, we alter the set of morphosyntactic cate-
gories to include more fine-grained morphological
distinctions. We use three sets: Set A contains bare
POS categories, Set B identifies also definite nouns
marked for possession, and Set C adds the distinc-
tion between finite and non-finite verb forms.

Evaluation We use seven measures to evaluate
our models’ performance on the integrated task.

10At the cost of incurring indepence assumptions, a step-
wise architecture is computationally cheaper than a joint one
and this is perhaps the simplest end-to-end architecture for
MH parsing imaginable. In the absence of previous MH pars-
ing results, this model is suitable to serve as a baseline against
which we compare more sophisticated models.

11We further developed a third model, Model III, which
is a more faithful approximation, yet computationally afford-
able, of equation (9). There we percolate the ambiguity all the
way through the integrated architecture by means of provid-
ing the parser with the n-best sequences of tagged morpho-
logical segments and selecting the analysis 〈π, tn

1 , sn

1 〉 which
maximizes the production P (π|tn

1 , sn

1 )P (sn

1 , tn

1 |wm

1 ). How-
ever, we have not yet obtained robust results for this model
prior to the submission of this paper, and therefore we leave
it for future discussion.

String Labeled POS tags Segment.
Cover. Prec. / Rec. Prec. / Rec. Prec. / Rec.

Model I-A 99.2% 60.3% / 58.4% 82.4% / 82.6% 94.4% / 94.7 %
Model II-A 95.9% 60.7% / 60.5% 84.5% / 84.8% 91.3% / 91.6%

Model I-B 99.2 % 60.3% / 58.4% 81.6% / 82.3% 94.2% / 95.0%
Model II-B 95.7% 60.7% / 60.5% 82.8% / 83.5% 90.9% / 91.7%

Model I-C 99.2% 60.9% / 59.2% 80.4% / 81.1% 94.2% / 95.1%
Model II-C 95.9% 61.7% / 61.9% 81.6% / 82.3% 91.0% / 91.9%

Table 4: Evaluation Metrics, Models I and II

First, we present the percentage of sentences for
which the model could propose a pair of corre-
sponding morphological and syntactic analyses.
This measure is referred to as string coverage. To
indicate morphological disambiguation capabili-
ties we report segmentation precision and recall.
To capture tagging and parsing accuracy, we refer
to our redefined Parseval measures and separate
the evaluation of morphosyntactic categories, i.e.,
POS tags precision and recall, and phrase-level
syntactic categories, i.e., labeled precision and re-
call (where root nodes are discarded and empty
trees are counted as zero).12 The labeled cate-
gories are evaluated against the original tag set.

4.4 Results

Table 4 shows the evaluation scores for models I-A
to II-C. To the best of our knowledge, these are the
first parsing results for MH assuming no manual
interference for morphological disambiguation.

For all sets, parsing of tagged-segments (Model
II) shows improvement of up to 2% over pars-
ing bare segments’ sequences (Model I). This indi-
cates that morphosyntactic information selected in
tandem with morphological segmentation is more
informative for syntactic analysis than segmenta-
tion alone. We also observe decreasing string cov-
erage for Model II, possibly since disambiguation
based on short context may result in a probable,
yet incorrect, POS tag assignment for which the
parser cannot recover a syntactic analysis. Cor-
rect disambiguation may depend on long-distance
cues, e.g., agreement, so we advocate percolating
the ambiguity further up to the parser.

Comparing the performance for the different tag
sets, parsing accuracy increases for models I-B/C
and II-B/C while POS tagging results decrease.
These results seem to contradict the common wis-
dom that performance on a ‘complex’ task de-

12Since we evaluate the models’ performance on an inte-
grated task, sentences in which one of the subcomponents
failed to propose an analysis counts as zero for all subtasks.
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pends on a ‘simpler’, preceding one; yet, they sup-
port our thesis that morphological information or-
thogonal to syntactic categories facilitates syntac-
tic analysis and improves disambiguation capacity.

5 Discussion

Devising a baseline model for morphological and
syntactic processing is of great importance for the
development of a broad-coverage statistical parser
for MH. Here we provide a set of standardized
baseline results for later comparison while con-
solidating the formal and architectural underpin-
ning of an integrated model. However, our results
were obtained using a relatively small set of train-
ing data and a weak (unlexicalized) parser, due to
the size of the corpus and its annotated scheme.13

Training a PCFG on our treebank resulted in a
severely ambiguous grammar, mainly due to high
phrase structure variability.

To compensate for the flat, ambiguous phrase-
structures, in the future we intend to employ prob-
abilistic grammars in which all levels of non-
terminals are augmented with morphological in-
formation percolated up the tree. Furthermore,
the MH treebank annotation scheme features a set
of so-called functional features14 which express
grammatical relations. We propose to learn the
correlation between various morphological mark-
ings and functional features, thereby constraining
the space of syntactic structures to those which ex-
press meaningful predicate-argument structures.

Since our data set is relatively small,15 introduc-
ing orthogonal morphological information to syn-
tactic categories may result in severe data sparse-
ness. In the current architecture, smoothing is
handled separately by each of the subcomponents.
Enriched grammars would allow us to exploit mul-
tiple levels of information in smoothing the esti-
mated probabilities and to redistribute probability
mass to unattested events based on their similarity
to attested events in their integrated representation.

6 Conclusion

Traditional approaches for devising parsing mod-
els, smoothing techniques and evaluation metrics
are not well suited for MH, as they presuppose

13The lack of head marking, for instance, precludes the use
of lexicalized models à la (Collins, 1997).

14SBJ for subject, OBJ for object, COM for complement,
etc. (Sima’an et al., 2001).

15The size of our treebank is less than 30% of the Arabic
Treebank, and less than 10% of the WSJ Penn Treebank.

separate levels of processing. Different languages
mark regularities in their surface structures in dif-
ferent ways – English encodes regularities in word
order, while MH provides useful hints about gram-
matical relations in its derivational and inflectional
morphology. In the future we intend to develop
more sophisticated models implementing closer
interaction between morphology and syntax, by
means of which we hope to boost parsing accu-
racy and improve morphological disambiguation.
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Abstract 

We present a novel hybrid approach for 
Word Sense Disambiguation (WSD) 
which makes use of a relational formalism 
to represent instances and background 
knowledge. It is built using Inductive 
Logic Programming techniques to com-
bine evidence coming from both sources 
during the learning process, producing a 
rule-based WSD model. We experimented 
with this approach to disambiguate 7 
highly ambiguous verbs in English-
Portuguese translation. Results showed 
that the approach is promising, achieving 
an average accuracy of 75%, which out-
performs the other machine learning tech-
niques investigated (66%). 

1 Introduction 

Word Sense Disambiguation (WSD) is concerned 
with the identification of the correct sense of an 
ambiguous word given its context. Although it can 
be thought of as an independent task, its importance 
is more easily realized when it is applied to particu-
lar tasks, such as Information Retrieval or Machine 
Translation (MT). In MT, the application we are 
focusing on, a WSD (or translation disambigua-
tion) module should identify the correct translation 
for a source word when options with different 
meanings are available.  

As shown by Vickrey et al. (2005), we believe 
that a WSD module can significantly improve the 
performance of MT systems, provided that such 
module is developed following specific require-
ments of MT, e.g., employing multilingual sense 
repositories. Differences between monolingual and 
multilingual WSD are very significant for MT, 
since it is concerned only with the ambiguities that 

appear in the translation (Hutchins and Sommers, 
1992). 

In this paper we present a novel approach for 
WSD, designed focusing on MT. It follows a hy-
brid strategy, i.e., knowledge and corpus-based, 
and employs a highly expressive relational for-
malism to represent both the examples and back-
ground knowledge. This approach allows the 
exploitation of several knowledge sources, to-
gether with evidences provided by examples of 
disambiguation, both automatically extracted 
from lexical resources and sense tagged corpora. 
This is achieved using Inductive Logic Pro-
gramming (Muggleton, 1991), which has not 
been exploited for WSD so far. In this paper we 
investigate the disambiguation of 7 highly am-
biguous verbs in English-Portuguese MT, using 
knowledge from 7 syntactic, semantic and prag-
matic sources.  

In what follows, we first present some related 
approaches on WSD for MT, focusing oh their 
limitations (Section 2). We then give some basic 
concepts on Inductive Logic Programming and de-
scribe our approach (Section 3). Finally, we present 
our initial experiments and the results achieved 
(Section 4).  

2 Related work 

Many approaches have been proposed for WSD, 
but only a few are designed for specific applica-
tions, such as MT. Existing multilingual approaches 
can be classified as (a) knowledge-based ap-
proaches, which make use of linguistic knowledge 
manually codified or extracted from lexical re-
sources (Pedersen, 1997; Dorr and Katsova, 1998); 
(b) corpus-based approaches, which make use of 
knowledge automatically acquired from text using 
machine learning algorithms (Lee, 2002; Vickrey et 
al., 2005); and (c) hybrid approaches, which em-
ploy techniques from the two other approaches (Zi-
novjeva, 2000).  
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Hybrid approaches potentially explore the ad-
vantages of both other strategies, yielding accurate 
and comprehensive systems. However, they are 
quite rare, even in monolingual contexts (Stevenson 
and Wilks, 2001, e.g.), and they are not able to in-
tegrate and use knowledge coming from corpus and 
other resources during the learning process.  

In fact, current hybrid approaches usually em-
ploy knowledge sources in pre-processing steps, 
and then use machine learning algorithms to com-
bine disambiguation evidence from those sources. 
This strategy is necessary due to the limitations of 
the formalism used to represent examples in the 
machine learning process: the propositional formal-
ism, which structures data in attribute-value vectors.  

Even though it is known that great part of the 
knowledge regarding to languages is relational 
(e.g., syntactic or semantic relations among words 
in a sentence) (Mooney, 1997), the propositional 
formalism traditionally employed makes unfeasible 
the representation of substantial relational knowl-
edge and the use of this knowledge during the 
learning process.  

According to the attribute-value representation, 
one attribute has to be created for every feature, and 
the same structure has to be used to characterize all 
the examples. In order to represent the syntactic 
relations between every pair of words in a sentence, 
e.g., it will be necessary to create at least one attrib-
ute for each possible relation (Figure 1). This would 
result in an enormous number of attributes, since 
the possibilities can be many in distinct sentences. 
Also, there could be more than one pair with the 
same relation. 
 

Sentence: John gave to Mary a big cake. 
verb1-subj1 verb1-obj1 mod1-obj1 … 
give-john give-cake big-cake … 

Figure 1. Attribute-value vector for syntactic relations  
 
Given that some types of information are not avail-
able for certain instances, many attributes will have 
null values. Consequently, the representation of the 
sample data set tends to become highly sparse. It is 
well-known that sparseness on data ensue serious 
problems to the machine learning process in general 
(Brown and Kros, 2003). Certainly, data will be-
come sparser as more knowledge about the exam-
ples is considered, and the problem will be even 
more critical if relational knowledge is used.  

Therefore, at least three relevant problems arise 
from the use of a propositional representation in 
corpus-based and hybrid approaches: (a) the limita-
tion on its expressiveness power, making it difficult 
to represent relational and other more complex 

knowledge; (b) the sparseness in data; and (c) the 
lack of integration of the evidences provided by 
examples and linguistic knowledge. 

3 A hybrid relational approach for WSD 

We propose a novel hybrid approach for WSD 
based on a relational representation of both exam-
ples and linguistic knowledge. This representation 
is considerably more expressive, avoids sparseness 
in data, and allows the use of these two types of 
evidence during the learning process.  

3.1 Sample data 

We address the disambiguation of 7 verbs selected 
according to the results of a corpus study (Specia, 
2005). To build our sample corpus, we collected 
200 English sentences containing each of the verbs 
from a corpus comprising fiction books. In a previ-
ous step, each sentence was automatically tagged 
with the translation of the verb, part-of-speech and 
lemmas of all words, and subject-object syntactic 
relations with respect to the verb (Specia et al., 
2005). The set of verbs, their possible translations, 
and the accuracy of the most frequent translation 
are shown in Table 1.  

 
Verb # Translations Most frequent 

translation - % 
come 11 50.3 
get 17 21 
give 5 88.8 
go 11 68.5 
look 7 50.3 
make 11 70 
take 13 28.5 

Table 1. Verbs and their possible senses in our corpus 

3.2 Inductive Logic Programming  

We utilize Inductive Logic Programming (ILP) 
(Muggleton, 1991) to explore relational machine 
learning. ILP employs techniques of both Machine 
Learning and Logic Programming to build first-
order logic theories from examples and background 
knowledge, which are also represented by means of 
first-order logic clauses. It allows the efficient rep-
resentation of substantial knowledge about the 
problem, and allows this knowledge to be used dur-
ing the learning process. The general idea underly-
ing ILP is: 

Given: 
-  a set of positive and negative examples E = 

E+ ∪∪∪∪ E- 
- a predicate p specifying the target relation to 

be learned 
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- knowledge ΚΚΚΚ of a certain domain, described 
according to a language Lk, which specifies which 
other predicates qi can be part of the definition of p. 

The goal is: to induce a hypothesis (or theory) h 
for p, with relation to E and ΚΚΚΚ, which covers most 
of the E+, without covering the E-, that is, K ∧∧∧∧ h  
E+ and K ∧∧∧∧ h  E-.  

To implement our approach we chose Aleph 
(Srinivasan, 2000), an ILP system which provides a 
complete relational learning inference engine and 
various customization options. We used the follow-
ing options, which correspond to the Progol mode 
(Muggleton, 1995): bottom-up search, non-
incremental and non-interactive learning, and learn-
ing based only on positive examples. Fundamen-
tally, the default inference engine induces a theory 
iteratively by means of the following steps: 

1. One instance is randomly selected to be gen-
eralized.  

2. A more specific clause (bottom clause) ex-
plaining the selected example is built. It consists of 
the representation of all knowledge about that ex-
ample.  

3. A clause that is more generic than the bottom 
clause is searched, by means of search and gener-
alization strategies (best first search, e.g.).  

4. The best clause found is added to the theory 
and the examples covered by such clause are re-
moved from the sample set. If there are more in-
stances in the sample set, return to step 1. 

3.3 Knowledge sources 

The choice, acquisition, and representation of syn-
tactic, semantic, and pragmatic knowledge sources 
(KSs) were our main concerns at this stage. The 
general architecture of the system, showing our 7 
groups of KSs, is illustrated in Figure 2.  

Several of our KSs have been traditionally em-
ployed in monolingual WSD (e.g., Agirre and Ste-
venson, 2006), while other are specific for MT. 
Some of them were extracted from our sample cor-
pus (Section 3.1), while others were automatically 
extracted from lexical resources1. In what follows, 
we briefly describe, give the generic definition and 
examples of each KS, taking sentence (1), for the 
“to come”, as example. 

(1) “If there is such a thing as reincarnation, I 
would not mind coming back as a squirrel”. 

 
KS1: Bag-of-words – a list of ±5 words (lem-

mas) surrounding the verb for every sentence 
(sent_id). 

                                                           
1 Michaelis® and Password® English-Portuguese Dictionar-
ies, LDOCE (Procter, 1978), and WordNet (Miller, 1990). 

 
 

 
 

 
KS2: Part-of-speech (POS) tags of content 

words in a ±5 word window surrounding the verb. 
 
 
 
 
 

KS3: Subject and object syntactic relations with 
respect to the verb under consideration. 

 
 
 
 

KS4: Context words represented by 11 colloca-
tions with respect to the verb: 1st preposition to the 
right, 1st and 2nd words to the left and right, 1st 
noun, 1st adjective, and 1st verb to the left and 
right. 

 
 
 
 
KS5: Selectional restrictions of verbs and se-

mantic features of their arguments, given by 
LDOCE. Verb restrictions are expressed by lists of 
semantic features required for their subject and ob-
ject, while these arguments are represented with 
their features. 

 
 

 
 
 

 
 

 

The hierarchy for LDOCE feature types defined 
by Bruce and Guthrie (1992) is used to account for 
restrictions established by the verb for features that 
are more generic than the features describing the 
words in the subject / object roles in the sentence. 

Ontological relations extracted from WordNet 
(Miller, 1990) are also used: if the restrictions im-
posed by the verb are not part of the description of 
its arguments, synonyms or hypernyms of those 
arguments that meet the restrictions are considered. 

 

 
 
 
 

 

KS6: Idioms and phrasal verbs, indicating that 
the verb occurring in a given context could have a 
specific translation.  

bag(sent_id, list_of_words). 
bag(sent1,[mind, not, will, i, reincarnation, back, as, a, 

squirrel]) 

has_pos(sent_id, word_position, pos). 
has_pos(sent1, first_content_word_left, nn).    
has_pos(sent1, second_content_word_left, vbp). 
 ...  

has_rel(sent_id, subject_word, object_word). 
has_rel(sent1, i, nil). 

 

rest(verb, subj_restrition, obj_ restriction ,translation) 
rest(come, [], nil, voltar). 
rest(come, [animal,human], nil, vir).  ... 

feature(noun, sense_id, features). 
feature(reincarnation, 0_1, [abstract]). 
feature(squirrel, 0_0, [animal]). 
 

has_collocation(sent_id, collocation_type, collocation) 
has_collocation(sent1, word_right_1, back). 
has_collocation(sent1, word_left_1, mind). … 
 

relation(word1, sense_id1, word2 ,sense_id2). 
hyper(reincarnation, 1, avatar, 1). 
synon(rebirth, 2, reincarnation, -1). 
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Figure 2. System architecture 
 
 

 
 
 
 
KS7: A count of the overlapping words in dic-

tionary definitions for the possible translations of 
the verb and the words surrounding it in the sen-
tence, relative to the total number of words.  

 
 
 
 

 

The representation of all KSs for each example 
is independent of the other examples. Therefore, the 
number of features can be different for different 
sentences, without resulting in sparseness in data.  

In order to use the KSs, we created a set of rules 

for each KS. These rules are not dependent on par-
ticular words or instances. They can be very simple, 
as in the example shown below for bag-of-words, 
or more complex, e.g., for selectional restrictions. 
Therefore, KSs are represented by means of rules 
and facts (rules without conditions), which can be 
intensional, i.e., it can contain variables, making the 
representation more expressive.  

 
 
 
 

Besides the KSs, the other main input to the sys-
tem is the set of examples. Since all knowledge 
about them is expressed by the KSs, the representa-
tion of examples is very simple, containing only the 
example identifier (of the sentence, in our case, 
such as, “sent1”), and the class of that example (in 
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KS7 

 
 
 
 

 
 
 
 
 
 
 
 

KS6 
 

 
 
 
 
 
 
 

KS1 

ILP Inference  
Engine 

Rules to use Bag-
of-words (10) 

Rules to use Collo-
cations 

 
 
 
 

KS2

 

POS of the Narrow 
Context (10) 

Rules to use POS 

 
 
 
 

KS3 

Subject-object syn-
tactic relations 

Rules to use syntac-
tic relations 

Rules to use context 
with phrasal verbs 

and idioms 

 
 
 
 

 
 
 
 
 
 
 
 

KS5 
 

Verbs selectional 
restrictions 

Rules to use selec-
tional restrictions 

Subject-object syn-
tactic relations 

Nouns semantic 
features 

Rules to use defini-
tions overlapping 

Overlapping count-
ing 

Rule-based 
model 

Instances 

Bag-of-words (10) 
 

POS 
tagger 

LDOCE Wordnet 

Hierarchical rela-
tions 

Feature types 
hierarchy 

Bilingual MRDs 

Definitions over-
lapping 

 

Bag-of-words (200) 
 

Bag-of-words (10) 

Mode + type + 
general definitions 

 

Phrasal verbs and 
idioms 

Bag-of-words (10) 
 

11 Collocations 

Parser 

Verb definitions 
and examples 

LDOCE + Pass-
word 

exp(verbal_expression, translation) 
exp('come about', acontecer). 
exp('come about', chegar).   … 

highest_overlap(sent_id, translation, overlapping). 
highest_overlap(sent1, voltar, 0.222222). 
highest_overlap(sent2, chegar, 0.0857143). 
 

has_bag(Sent,Word) :-   
bag(Sent,List), member(Word,List).  

 

58



our case, the translation of the verb in that sen-
tence). 

 
 
 
 

 

In Aleph’s default induction mode, the order of 
the training examples plays an important role. One 
example is taken at a time, according to its order in 
the training set, and a rule can be produced based 
on that example. Since examples covered by a cer-
tain rule are removed from the training set, certain 
examples will not be used to produce rules. Induc-
tion methods employing different strategies in 
which the order is irrelevant will be exploited in 
future work. 

In order to produce a theory, Aleph also requires 
“mode definitions”, i.e., the specification of the 
predicates p and q (Section 3.2). For example, the 
first mode definition below states that the predicate 
p to be learned will consist of a clause 
sense(sent_id, translation), which can be instanti-
ated only once (1). The other two definitions state 
the predicates q, has_colloc(sent_id, colloc_id, col-
loc), with at most 11 instantiations, and 
has_bag(sent_id, word), with at most 10 instantia-
tions. That is, the predicates in the conditional piece 
of the rules in the theory can consist of up to 11 
collocations and a bag of up to 10 words. One mode 
definition must be created for each KS. 

 
 
 
 
 

Based on the examples and background knowl-
edge, the inference engine will produce a set of 
symbolic rules. Some of the rules induced for the 
verb “to come”, e.g., are illustrated in the box be-
low.  
 
 
 
 
 
 
 
 
 

The first rule checks if the first preposition to 
the right of the verb is “out”, assigning the transla-
tion “sair” if so. The second rule verifies if the sub-
ject-object arguments satisfy the verb restrictions, 
i.e, if the subject has the features “animal” or “hu-
man”, and the object has the feature “concrete”. 
Alternatively, it verifies if the sentence contains the 

phrasal verb “come at”.  Rule 3 also tests the verb 
selectional restrictions and the first word to the right 
of the verb.  

4 Experiments and results 

In order to assess the accuracy of our approach, we 
ran a set of initial experiments with our sample cor-
pus. For each verb, we ran Aleph in the default 
mode, except for the following parameters: 

 
 

 
 
 
 
 
The accuracy was calculated by applying the 

rules to classify the new examples in the test set 
according to the order these rules appeared in the 
theory, eliminating the examples (correctly or 
incorrectly) covered by a certain rule from the 
test set. In order to cover 100% of the examples, 
we relied on the existence of a rule without con-
ditions, which generally is induced by Aleph and 
points out to the most frequent translation in the 
training data. When this rule was not generated by 
Aleph, we add it to the end of theory. For all the 
verbs, however, this rule only classified a few ex-
amples (form 1 to 6). 

In Table 2 we show the accuracy of the theory 
learned for each verb, as well as accuracy 
achieved by two propositional machine learning 
algorithms on the same data: Decision Trees 
(C4.5) and Support Vector Machine (SVM), all 
according to a 10-fold cross-validation strategy. 
Since it is rather impractical to represent certain 
KSs using attribute-value vectors, in the experi-
ments with SVM and C4.5 only low level fea-
tures were considered, corresponding to KS1, KS2, 
KS3, and KS4. On average, Our approach outper-
forms the two other algorithms. Moreover, its accu-
racy is by far better than the accuracy of the most 
frequent sense baseline (Table 1).  

For all verbs, theories with a small number of 
rules were produced (from 19 to 33 rules). By 
looking at these rules, it becomes clear that all KSs 
are being explored by the ILP system and thus are 
potentially useful for the disambiguation of verbs. 

5 Conclusion and future work 

We presented a hybrid relational approach for 
WSD designed for MT. One important character-
istic of our approach is that all the KSs were 

sense(sent_id,translation). 
sense(sent1,voltar). 
sense(sent2,ir). 
 

:- modeh(1,sense(sent,translation)). 
:- modeb(11,has_colloc(sent,colloc_id,colloc)). 
:- modeb(10,has_bag(sent,word)).  … 

1. sense(A, sair) :- 
    has_collocation(A, preposition_right, out). 
2. sense(A, chegar) :- 
    satisfy_restrictions(A, [animal,human],[concrete]); 
    has_expression(A, 'come at'). 
3. sense(A, vir) :- 
    satisfy_restriction(A, [human],[abstract]),  
    has_collocation(A, word_right_1, from). 

set(evalfn, posonly): learns from positive examples. 
set(search, heuristic): turns the search strategy heuristic. 
set(minpos, 2): establishes as 2 the minimum number of 
positive examples covered by each rule in the theory.  
set(gsamplesize, 1000): defines the number of randomly 
generated negative examples to prune the search space. 

59



 
Verb Aleph 

Accuracy 
C4.5 

Accuracy 
SVM 

Accuracy 
come 0.82 0.55 0.6 
Get 0.51 0.36 0.45 
Give 0.96 0.88 0.88 
Go 0.73 0.73 0.72 
look 0.83 0.66 0.84 
make 0.74 0.76 0.76 
Take 0.66 0.35 0.41 
Average 0.75 0.61 0.67 

Table 2. Results of the experiments with Aleph 
 
automatically extracted, either from the corpus or 
machine-readable lexical resources. Therefore, the 
work could be easily extended to other words and 
languages. 

In future work we intend to carry out experi-
ments with different settings: (a) combinations of 
certain KSs; (b) other sample corpora, of different 
sizes, genres / domains; and (c) different parameters 
in Aleph regarding search strategies, evaluation 
functions, etc. We also intend to compare our ap-
proach with other machine learning algorithms us-
ing all the KSs employed in Aleph, by pre-
processing the KSs in order to extract binary fea-
tures that can be represented by means of attribute-
value vectors. After that, we intend to adapt our 
approach to evaluate it with standard WSD data 
sets, such as the ones used in Senseval2. 
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Abstract

An open-domain spoken dialog system has
to deal with the challenge of lacking lexi-
cal as well as conceptual knowledge. As
the real world is constantly changing, it is
not possible to store all necessary knowl-
edge beforehand. Therefore, this knowl-
edge has to be acquired during the run
time of the system, with the help of the
out-of-vocabulary information of a speech
recognizer. As every word can have var-
ious meanings depending on the context
in which it is uttered, additional context
information is taken into account, when
searching for the meaning of such a word.

In this paper, I will present the incremental
ontology learning framework On2L. The
defined tasks for the framework are: the
hypernym extraction from Internet texts
for unknown terms delivered by the speech
recognizer; the mapping of those and their
hypernyms into ontological concepts and
instances; and the following integration of
them into the system’s ontology.

1 Introduction

A computer system, which has to understand and
generate natural language, needs knowledge about
the real world. As the manual modeling and main-
tenance of those knowledge structures, i.e. ontolo-
gies, are both time and cost consuming, there ex-
ists a demand to build and populate them automat-
ically or at least semi automatically. This is possi-
ble by analyzing unstructured, semi-structured or
fully structured data by various linguistic as well
as statistical means and by converting the results
into an ontological form.

In an open-domain spoken dialog system the au-
tomatic learning of ontological concepts and cor-
responding relations between them is essential,
as a complete manual modeling of them is nei-
ther practicable nor feasible as the real world and
its objects, models and processes are constantly
changing and so are their denotations.

This work assumes that a viable approach to
this challenging problem is to learn ontological
concepts and relations relevant for a certain user
- and only those - incrementally, i.e. at the time
of the user’s inquiry. Hypernyms1 of terms that
are not part of the speech recognizer lexicon, i.e.
out-of-vocabulary (OOV) terms, and hence lack-
ing any mapping to the employed knowledge rep-
resentation of the language understanding compo-
nent, should be found in texts from the Internet.
That is the starting point of the proposed ontol-
ogy learning frameworkOn2L (On-line Ontology
Learning). With the found hypernym On2L can
assign the place in the system’s ontology to add
the unknown term.

So far the work described herein refers to the
German language only. In a later step, the goal is
to optimize it for English as well.

2 Natural Language and Ontology
Learning

Before describing the actual ontology learning
process it is important to make a clear distinction
between the two fields involved: this is on the one
hand natural language and on the other hand onto-
logical knowledge.

As the Internet is a vast resource of up-to-date

1According to Lyons (1977) hyponymy is the relation
which holds between a more specific lexeme (i.e. a hyponym)
and a more general one (i.e. a hypernym). E.g. animal is a
hypernym of cat.
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information, On2L employs it to search for OOV
terms and their corresponding hypernyms. The
natural language texts are rich in terms, which can
be used as labels of concepts in the ontology and
rich in semantic relations, which can be used as
ontological relations.

The two areas which are working on similar
topics but are using different terminology need
to be distinguished, so that the extraction of se-
mantic information from natural language is sep-
arated from the process of integrating this knowl-
edge into an ontology.

Figure 1: Natural Language and Ontology Learn-
ing

Figure 1 shows the process of ontology learning
from natural language text. On the left side natural
language lexemes are extracted. During a transfor-
mation process nouns, verbs and proper nouns are
converted into concepts, relations and instances of
an ontology2.

3 Related Work

The idea of acquiring knowledge exactly at the
time it is needed is new and became extremely
useful with the emergence of open-domain dia-
log systems. Before that, more or less complete
ontologies could be modeled for the few domains
covered by a dialog system. Nonetheless, many
ontology learning frameworks exist, which alle-
viate the work of an ontology engineer to con-
struct knowledge manually, e.g. ASIUM (Faure
and Nedellec, 1999), which helps an expert in ac-
quiring knowledge from technical text using syn-
tactic analysis for the extraction, a semantic simi-
larity measure and a clustering algorithm for the

2In our definition of the termontology not only concepts
and relations are included but also instances of the real world.

conceptualization. OntoLearn (Missikoff et al.,
2002) uses specialized web site texts as a corpus
to extract terminology, which is filtered by statis-
tical techniques and then used to create a domain
concept forest with the help of a semantic interpre-
tation and the detection of taxonomic and similar-
ity relations. KAON Text-To-Onto (Maedche and
Staab, 2004) applies text mining algorithms for
English and German texts to semi-automatically
create an ontology, which includes algorithms for
term extraction, for concept association extraction
and for ontology pruning.

Pattern-based approaches to extract hy-
ponym/hypernym relationships range from
hand-crafted lexico-syntactic patterns (Hearst,
1992) to the automatic discovery of such patterns
by e.g. a minimal edit distance algorithm (Pantel
et al., 2004).

The SmartWeb Project into which On2L will be
integrated as well, aims at constructing an open-
domain spoken dialog system (Wahlster, 2004)
and includes different techniques to learn ontolog-
ical knowledge for the system’s ontology. Those
methods work offline and not at the time of the
user’s inquiry in contrast to On2L:

C-PANKOW (Cimiano et al., 2005) puts a
named entity into several linguistic patterns that
convey competing semantic meanings. The pat-
terns, which can be matched most often on the web
indicate the meaning of the named entity.

RelExt (Schutz and Buitelaar, 2005) automat-
ically identifies highly relevant pairs of concepts
connected by a relation over concepts from an
existing ontology. It works by extracting verbs
and their grammatical arguments from a domain-
specific text collection and computing correspond-
ing relations through a combination of linguistic
and statistical processing.

4 The ontology learning framework

The task of the ontology learning framework
On2L is to acquire knowledge at run time. As
On2L will be integrated into the open-domain di-
alog system Smartweb (Wahlster, 2004), it will be
not only useful for extending the ontology of the
system, but to make the dialog more natural and
therefore user-friendly.

Natural language utterances processed by an
open-domain spoken dialog system may contain
words or parts of words which are not recognized
by the speech recognizer, as they are not contained
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in the recognizer lexicon. The words not contained
are most likely not represented in the word-to-
concept lexicon as well3. In the presented ontol-
ogy learning framework On2L the corresponding
concepts of those terms are subject to a search on
the Internet. For instance, the unknown termAuer-
stein would be searched on the Internet (with the
help of a search engine like Google). By applying
natural language patterns and statistical methods
possible hypernyms of the term can be extracted
and the corresponding concept in the ontology of
the complete dialog system can be found. This
process is described in Section 4.5.

As a term often has more than one meaning
depending on the context in which it is uttered,
some information about this context is added for
the search4 as shown in Section 4.4.

Figure 2 shows the life cycle of the On2L frame-
work. In the middle of the diagram the question
example by a supposed user is:How do I get to
the Auerstein? The lighter fields in the figure mark
components of the dialog system, which are only
utilized by On2L, whereas the darker fields are es-
pecially built to complete the ontology learning
task.

Figure 2: The On2L Life Cycle

The sequential steps shown in Figure 2 are de-
scribed in more detail in the following paragraphs
starting with the processing of the user’s utterance
by the speech recognizer.

4.1 Speech Recognition

The speech recognizer classifies all words of the
user’s utterance not found in the lexicon as out-

3In case the speech recognizer of the system and the word-
to-concept lexicon are consistent.

4Of course, even in the same context a term can have more
than one meaning as discussed in Section 4.6.

of-vocabulary (OOV). That means an automatic
speech recognition (ASR) system has to process
words, which are not in the lexicon of the speech
recognizer (Klakow et al., 2004). A solution
for a phoneme-based recognition is the establish-
ment of corresponding best rated grapheme-chain
hypotheses (Gallwitz, 2002). These grapheme-
chains are constructed with the help of statistical
methods to predict the most likely grapheme order
of a word, not found in the lexicon. Those chains
are then used for a search on the Internet in the
final version of On2L. To evaluate the framework
itself adequately so far only a set of correctly writ-
ten terms is subject to search.

4.2 Language Understanding

In this step of the dialog system, all correctly
recognized terms of the user utterance are mapped
to concepts with the help of a word-to-concept lex-
icon. Such a lexicon assigns corresponding nat-
ural language terms to all concepts of an ontol-
ogy. This is not only a necessary step for the di-
alog system, but can assist the ontology learning
framework in a possibly needed semantic disam-
biguation of the OOV term.

Furthermore the information of the concepts of
the other terms of the utterance can help to evalu-
ate results: when there are more than one concept
proposal for an instance (i.e. on the linguistic side
a proper noun likeAuerstein) found in the system’s
ontology, the semantic distance between each pro-
posed concept and the other concepts of the user’s
question can be calculated5.

4.3 Preprocessing

A statistical part-of-speech tagging method de-
cides on the most probable part-of-speech of the
whole utterance with the help of the sentence con-
text of the question. In the On2L framework
we used the language independent tagger qtag6,
which we trained with the hand-tagged German
corpus NEGRA 27.

5E.g. with the single-source shortest path algorithm of
Dijkstra (Cormen et al., 2001).

6qtag exists as a downloadable JAR file and
can therefore be integrated into a platform inde-
pendent JAVA program. For more information, see
http://www.english.bham.ac.uk/staff/omason/software/qtag.html
(last access: 21st February 2006).

7The NEGRA corpus version 2 consists of 355,096 to-
kens (20,602 sentences) of German newspaper text, taken
from the Frankfurter Rundschau. For more information
visit: http://www.coli.uni-saarland.de/projects/sfb378/negra-
corpus/negra-corpus.html (last access: 21st February 2006).
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With the help of this information, the part-of-
speech of the hypernym of the OVV term can be
predicted. Furthermore, the verb(s) of the utter-
ance can anticipate possible semantic relations for
the concept or instance to be integrated into the
ontology.

4.4 Context Module

To understand the user in an open-domain dialog
system it is important to know the extra-linguistic
context of the utterances. Therefore a context
module is applied in the system, which can give
information on the discourse domain, day and
time, current weather conditions and location of
the user. This information is important for On2L
as well. Here we make use of the location of the
user and the discourse domain so far, as this infor-
mation is most fruitful for a more specific search
on the Internet. The location is delivered by a GPS
component and the discourse domain is detected
with the help of the pragmatic ontology PrOnto
((Porzel et al., 2006)). Of course, the discourse
domain can only be detected for domains modeled
already in the knowledge base (Rueggenmann and
Gurevych, 2004).

The next section will show the application of the
context terms in more detail.

4.5 Hypernym extraction from the Internet

We apply the OOV term from the speech recog-
nizer as well as a context term for the search of
the most likely hypernym on the Internet.

For testing reasons a list of possible queries was
generated. Here are some examples to give an
idea:

(1) Auerstein – Heidelberg

(2) Michael Ballack – SportsDiscourse

(3) Lord of the Rings – CinemaDiscourse

On the left side of the examples 1 to 3 is the
OOV term and on the right side the corresponding
context term as generated by the context module.
For searching, the part “Discourse” is pruned.

The reason to lay the main focus of the evalu-
ation searches on proper nouns is, that those are
most likely not in the recognizer lexicon and not
as instances in the system’s ontology.

4.5.1 Global versus Local OOVs

To optimize results we make a distinction be-
tween global OOVs and local OOVs.

In the case of generally familiar proper nouns
like stars, hotel chains or movies (so to say global
OOVs), a search on Wikipedia can be quite suc-
cessful.

In the case of proper nouns, only common in
a certain country region, like Auerstein (Restau-
rant), Bierbrezel (Pub) and Lux (Cinema), which
are local OOVs, a search with Wikipedia is gener-
ally not fruitful. Therefore it is searched with the
help of the Google API.

As one can not know the kind of OOV before-
hand, the Wikipedia search is started before the
Google search. If no results are produced, the
Google search will deliver them hopefully. If re-
sults are found, Google search will be used to test
those.

4.5.2 Wikipedia Search

The structure of Wikipedia8 entries is preas-
signed. That means, the program can know, where
to find the most suitable information beforehand.
In the case of finding hypernyms the first sentence
in the encyclopedia description is most useful. To
give an example, here is the first sentence for the
search entryMichael Ballack:

(4) Michael Ballack (born September 26,
1976 in Grlitz, then East Germany)IS A

Germanfootball player.

With the help of lexico-syntactic patterns, the
hypernym can be extracted. Those so-called
Hearst patterns (Hearst, 1992) occur frequently in
lexicons for describing a term. In example 4 the
patternX is a Y would be matched and the hyper-
nym football player9 of the termMichael Ballack
could be extracted.

4.5.3 Google Search

The search parameters in the Google API can
be adjusted for the corresponding search task. The
tasks we used for our framework are a search in
the titles of the web pages and a search in the text
of the web pages.

Adjusting the Google parameters The as-
sumption was, that depending on the task the
Google parameters should be adjusted. Four pa-
rameters were tested with the two tasks (Title and

8Wikipedia is a free encyclopedia, which is editable on
the Internet: www.wikipedia.org (last access: 22nd February
2006)

9In German compounds generally consist of only one
word, therefore it is easier to extract them than in the case
of English ones.
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Page Search, as described in the next paragraphs)
and a combination thereof. The parameterdefault
is used, when no other parameters are assigned;in-
title is set, in case the search term should be found
in the title of the returned pages;allintext, when
the search term should be found in the text of the
pages; andinurl, when the search term should be
found in the URL.

In Figure 3 the outcome of the evaluation is
shown. The evaluation was done by students, who
scored the titles and pages with 1, when a possible
hypernym could be found and 0 if not. Surpris-
ingly, the default value delivered the best results
for all tasks, followed by the allintext parameter.

Figure 3: Evaluation of the Google parameters

Title Search To search only in the titles of the
web pages has the advantage, that results can be
generated relatively fast. This is important as time
is a relevant factor in spoken dialog systems. As
the titles often contain the hypernym but do not
consist of a full sentence, Hearst patterns cannot
be found. Therefore, an algorithm was imple-
mented, which searches for nouns in the title, ex-
tracts them and counts the occurrences. The noun
most frequently found in all the titles delivered
by Google is regarded as the hypernym. For the
counting we applied stemming and clustering al-
gorithms to group similar terms.

Page Search For Page Search Hearst patterns as
in Wikipedia Search were applied. In contrast to
encyclopedia entries the recall of those patterns
was not so high in the texts from the web pages.

Thus, we searched in the text surrounding of the
searched term for nouns. Equally to Title Search
we counted the occurrence of nouns. Different
evaluation steps showed, that the window size of
four words in front and after the term is most suc-
cessful.

With the help of machine learning algorithms
from the WEKA10 library we did a text mining to

10http://www.cs.waikato.ac.nz/ml/weka (last access: 21st

ameliorate the results as shown in Faulhaber et al.
(2006).

4.5.4 Results

Of all 100 evaluated pages for Google parame-
ters only about 60 texts and about 40 titles con-
tained possible hypernyms (as shown in Figure 3).
This result is important for the evaluation of the
task algorithms as well. The outcome of the eval-
uation setup was nearly the same: 38 % precicion
for Title Search and about 58 % for Page Search
(see Faulhaber (2006)). These scores where eval-
uated with the help of forms asking students:Is X
a hypernym of Y?.

4.6 Disambiguation by the user

In some cases two or more hypernyms are scored
with the same – or quite similar – weights. An ob-
vious reason is, that the term in question has more
than one meaning in the same context. Here, only
a further inquiry to the user can help to disam-
biguate the OOV term. In the example from the
beginning a question like “Did you mean the hotel
or the restaurant?” could be posed. Even though
the system would show the user that it did not per-
fectly understand him/her, the user might be more
contributory than in a question like “What did you
mean?”. The former question could be posed by
a person familiar with the place, to disambiguate
the question of someone in search forAuerstein as
well and would therefore mirror a human-human
dialog leading to more natural dialogs with the
machine.

4.7 Integration into the ontology

The foundational ontology (Cimiano et al., 2004)
integrated into the dialog system Smartweb is
based on the highly axiomatized Descriptive On-
tology for Linguistic and Cognitive Engineering
(DOLCE) 11. It features various extensions called
modules, e.g.Descriptions & Situations (Gangemi
and Mika, 2003). Additional to the foundational
ontology a domain-independent layer is included
which consists of a range of branches from the less
axiomatic SUMO (Suggested Upper Merged On-
tology (Niles and Pease, 2001)), which is known
for its intuitive and comprehensible structure. Cur-
rently, the dialog system features several domain

February 2006).
11More information on this descriptive and reductionistic

approach is found on the WonderWeb Project Homepage:
wonderweb.semanticweb.org.
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ontologies, i.e. a SportEvent-, a Navigation-, a
WebCam-, a Media-, and a Discourse-Ontology.

According to this, it is possible that in some
cases there exists the corresponding concept to a
hypernym. This can be found out with the help
of a so-called term widening. The concept labels
in the SmartWeb Ontology are generally English
terms. Therefore the found German hypernym has
to be translated into English. An English thesaurus
is used to increase the chance of finding the right
label in the ontology.

5 Future Work

The work described here is still in process and not
evaluated in detail so far. Therefore, our goal is
to establish a task-oriented evaluation setup and to
ameliorate the results with various techniques.

As natural language texts are not only rich in hi-
erarchical relations but in other semantic relations
as well, it is advantageous to extend the ontology
by those relations.

As user contexts are an important part of a dia-
log system, we are planning to learn new user con-
texts, which can be represented in the ontology by
the DOLCE module Descriptions and Situations.

Furthermore our goal is, to integrate the on-
tology learning framework into the open-domain
spoken dialog system Smartweb.
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Abstract

We analyze the concept of focus in speech
and the relationship between focus and
speech acts for prosodic generation. We
determine how the speaker’s utterances are
influenced by speaker’s intention. The re-
lationship between speech acts and focus
information is used to define which parts
of the sentence serve as the focus parts.
We propose the Focus to Emphasize Tones
(FET) structure to analyze the focus com-
ponents. We also design the FET grammar
to analyze the intonation patterns and pro-
duce tone marks as a result of our anal-
ysis. We present a proof-of-the-concept
working example to validate our proposal.
More comprehensive evaluations are part
of our current work.

1 Introduction

A speaker’s utterance may convey different mean-
ing to a hearer. Such ambiguities can be resolved
by emphasizing accents in different positions. Fo-
cus information is needed to select correct posi-
tions for accent information. To determine fo-
cus information, a speaker’s intentions must be
revealed. We apply speech act theory to written
sentences, our input, to determine a speaker’s in-
tention. Subsequently our system will produce a
speaker utterance, the result of analysis.

Several research publications, such as (Steed-
man and Prevost, 1994) and (Klein, 2000), ex-
plore prosodic analysis for spoken language gen-
eration (SLG). Klein (2000) designs constraints
for prosodic structures in the HPSG framework.
His approach is based on an isomorphism of
syntactic and prosodic trees. This approach

is heavily syntax-driven and involves making
prosodic trees by manipulation of the syntactic
trees. This approach results in increased complex-
ity since the type hierarchy of phrases must cross-
classify prosodic phrases under syntactic phrases.
Haji-Abdolhosseini (2003) extended Klein’s ap-
proach. Rather than referring to syntax, Haji-
Abdolhosseini sets the information domain to in-
teract between the syntactic-semantic domain and
the prosodic domain. His work reduces the com-
plexity of type hierarchies and constraints which
are not related to the syntactic structure. He de-
signs the information structure and defines con-
straints for the HPSG framework. However his
work limits the number of tone selections because
he only defines two tone marks: rise-fall-rise and
fall to annotate a sentence.

Our work is inspired by Haji-Abdolhosseini’s
work. We design the focus structure for spo-
ken language generation. Based on the focus the-
ory (Von Heusinger, 1999), the focus part identi-
fies what part of the sentence can be marked with
the strong accent or emphasized by a high tone.
By analyzing speech acts, we can understand how
speech with prosody can convey distinct speaker
intentions to a hearer. In the next section, we
present an overview of our FET (Focus to Empha-
size Tone) system and its processes. We will ex-
plain how to analyze focus information, design the
FET structure, and find the relationships of focus
with speech acts to prosodic marks in section 3.
We implement our FET grammar for the Linguis-
tic Knowledge Base (LKB) system (Copestake,
2002), generate a set of focus words, explain the
FET environment, and show an example in sec-
tion 4. In the last section, we conclude the current
state of our work and the future work.
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2 Overview of FET System for Prosodic
Analysis in SLG

Our system generates the prosodic structure de-
pending on the focus analysis. We use this
prosodic structure to modify synthetic speech for
SLG. Our FET structure is constrained by the
speaker’s intention. To define prosody, we ex-
plore the relationships of focus and speech acts
from various sentence types. The diagram of our
FET system is shown in figure 1 and we present
an overview of the FET system based on the LKB
system below.

Input: “Kim bought a flower”

LKB system with ERG

MRS representation of 
“Kim bought a flower”  

Transforming MRS to Focus words

Focus Words

LKB with FET Analysis

FET structure with prosodic marks

Extracting the 
tone marks

Speech 
Synthesis &

Prosodic 
Modification Modified Synthetic 

Speech of
 “Kim bought a flower”

- Scan the MRS representation 
- Keep any relations of each components
- Transform Structure  
- Create a set focus words for a sentence

Words + 
Tone Marks

Step 1

Step 2

Focus Words

Step 3

Step 4

I. Prepocessing

II. FET System

III. Postprocessing

FET structure 
  with prosodic 

marks

 FET Envoronment
- FET typed hierarchy - FET structure
- FET constraints - FET rules

 The relationship of focus with speech acts 
to prosody

Figure 1: A diagram of the FET system

Our input is a sentence and its focus criterion
obtained from a user. In figure 1, the example sen-
tence is “Kim bought a flower” and the focus cri-
terion is G (see table 2). Our system is composed
of four main steps.

The first step is preprocessing. The LKB
system with the English Resource Grammar
(ERG) (Copestake, 2002) parses a sentence. The
LKB system analyzes the syntactic and semantic
structures and generates the Minimal Recursive
Semantic (MRS) (Copestake et al., 1995) repre-
sentation. This step occurs before invoking the
FET system.

In the second step, we scan the MRS struc-
ture and collect any components and their relations
among them obtained from the preprocessing step.
We select only required information, such as sen-
tence mood, from the MRS representation, assign
a speech act code referring to a main verb of a sen-
tence, and obtain from the MRS structure a set of
focus words. These focus words are an input for
the focus information analysis in the FET system.

The third step is the FET analysis. This step
generates the prosodic components inside the FET
structure. Using our FET grammar, we input the
focus words into the LKB system with the FET en-
vironment. This environment consists of the FET
type hierarchy, constraints, rules, and structures
including the focus and prosodic features. Since
the LKB system with FET environment can an-
alyze the focus relations corresponding to speech
acts and sentence moods, the system completes the
FET structure by generating a set of appropriate
prosodic structures containing prosodic marks as
a result.

The last step is the postprocessing process. We
extract words and their prosodic marks as Tone
and Break Index (ToBI) representations (Silver-
man et al., 1992) from the FET structure. The ex-
tracting system processes the FET structure, ex-
tracts only our required prosodic fields. These
fields are a set of words and their tone marks for a
sentence. We use the set of words with tone marks
to modify synthetic speech, which is generated by
speech synthesis. We use the PRAAT (Boersma
and Weenink, 2005) to modify the prosody of the
synthetic speech for a sentence. Our output is an
audio file of the sentence with modified prosody.
Modifying prosody follows the tone marks which
are analyzed by the FET system.

3 FET Analysis

We describe our concept of the FET analysis (see
step 3, figure 1). We determine how the speaker’s
utterances are influenced by a speaker’s intention.
Focus information can be used to indicate how to
appropriately mark a part of a sentence to con-
vey the speaker’s intention. Focus can scope the
content in a sentence to which a speaker wants
the listener to pay attention. We also consider
speech acts which involve a speaker’s intention
and speaker’s utterance. We analyze the relation-
ships of focus parts with speech acts to tone marks.
We define the intonation patterns depending on
particular focus parts and speech acts. Our FET
analysis obtains syntactic and semantic contents
from the preprocessing process. We employ the
LKB system to parse a sentence. The LKB system
is an HPSG parser. A particular grammar, used
for LKB system, is called ERG containing more
than 10,000 lexemes. The LKB system generates
the semantic information which is represented by
MRS representation.
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3.1 FET Constraints
Our FET analysis uses a constraint-based ap-
proach. We find what part (actor, act, actee or
their combinations) must be in the focus from the
the MRS structure. If the focus is marked at a
position in a sentence then the speaker wants the
hearer to recognize the content at that position in
the sentence. For example, the speaker utters the
sentence “Kim bought a flower” by emphasizing
at the different positions in the sentence as shown
table 1. Then we transform the MRS structures to
our FET content structure which is represented by
a set of focus words. This structure contains “ac-
tor” (a person or a thing that acts something in a
sentence), “act” (an activity in that sentence), and
“actee” (the response of the activity) parts.

Table 1: The different focuses in the sentence
Focus Speaker wants to focus at . . .

[a] [KIM ]F bought a flower. (Who bought a flower?)
[b] Kim bought [a FLOWER]F . (What did Kim buy?)
[c] Kim [BOUGHT a flower]F . (What did Kim do?)

Considering a focus part, our focus model will
acknowledge two focus types: w-focus, and s-
focus. The w-focus represents wide focus, which
covers a phrase or a word. The s-focus represents
single focus, which is placed on a word in the sen-
tence. We assign the actor and actee parts as single
or wide focus while the act part is only an s-focus.
Normally, the focus does not cover only the act
part. If the focus covers the act part, then the focus
must cover at least one of the related parts (actor
or actee). Therefore, we set the focus types fol-
lowing all situations that occur and call the focus
criteria. Eight focus criteria are shown in table 2.

Table 2: The focus parts and the focus types
No. Focus Parts Focus Types
A actor+act+actee {w-focus(actor),s-focus(act),w-

focus(actee)} or undefined
B actor+act {w-focus(actor),s-focus(act)}
C actor+actee {w-focus(actor),s-focus(actee)}

or {w-focus(actee),s-focus(actor)}
D actor w-focus(actor) or s-focus(actor)
E act+actee {s-focus(act),w-focus(actee)}
F act s-focus(act)
G actee w-focus(actee) or s-focus(actee)
H � undefined

We define constraints to select the focus types
following the different situations. We categorize
the conditions for focus types to five cases. These
conditions cover all possible situations. These sit-
uations define the focus based on the focus parts
for most simple sentences. We illustrate the at-
tribute value matrix (AVM) structure to represent
these situations in figure 2.
(a) An s-focus of the actor or actee parts. The

last node in the list of objects is defined as

the focus position to emphasize tone (FET-
obj), see figure 2(a).

(b) A w-focus at the actor or actee parts. The list
of objects is the FET-obj in the sentence as
shown in figure 2(b).

(c) A w-focus at actor or actee parts contain-
ing the multiple lists of objects. The lists are
merged together to be the FET-obj as shown
in figure 2(c).

(d) An s-focus at actor or actee parts containing
the multiple lists of objects. If the focus type
is an s-focus and there are m sets of lists of
objects (multiple lists of objects), then these
lists of objects can be split into the s-focus of
each list of objects, see figure 2(d).

(e) A focus on the act part. Two cases of defining
the focus types are shown in figure 2(e). The
first case, the s-focus marks the act part while
the w-focus marks the actee part. The second
case, the s-focus marks the act part and the
w-focus marks at the actor part.
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Figure 2: The AVM structure of focus marking:
For actor or actee part, (a) s-focus (b) w-focus (c)
w-focus of the multiple lists (d) s-focus of the mul-
tiple lists and, (e) s-focus for act part

3.2 The Relationships of Focus with Speech
Acts to Prosody

At step 3 of figure 1, we define the speech act
codes following Brennenstuhl (1981). To mark
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these codes, we consider the main verb (known
as the act part inside the FET content structure).
These codes define what the speech act cate-
gories can be in each sentence. A sentence can
be marked by more than one code according to
speech act classification (Ballmer and Brennen-
stuhl, 1981). We mark the speech act codes for 62
sentences from a part of the CMU communicator
dataset (2002). Considering the relationships be-
tween speech acts and focus parts, we found some
common patterns for marking tones in a sentence.
For example, the tone mark L-L%, analyzed as
low phrase tone (L-) to low boundary tone (L%), is
marked at the last word of a sentence for any affir-
mative sentence. The tone marks H- (high phrase
tone) and L- are marked at the last word before
conjunction (such as “and”, “or”, “but”, and so
on) or are marked at the last word of the current
phrase (following the next phrase). We know that
the tone mark H* (high accent tone) is used to em-
phasize a word or a group of words in a sentence.
If we want strong emphasis at a word or a group
of words then we use the tone mark L+H* (rising
accent tone) instead of H*. The groups of speech
acts, that we consider in this paper, include intend-
ing (EN0ab), want (DE8b), and victory (KA4a),
to explore tone patterns. We analyze the relation-
ships of speech acts and tone marks grouping by
focus parts as shown in figure 3. Since our ex-
ample sentence has focus at actee part, speech act
code is en0ab, and the sentence mood is affirma-
tive sentence (aff), we define the tone marks for a
set of words in the actee part as L+H* L-L%, fol-
lowing figure 3. The outcome of this process is the
FET structure including the prosodic structure.

Code Act
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Sent

Type
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Aff L-L%H*LL*L-H*LL*Actee_tone
n
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Figure 3: Tone constraints

4 An Example of FET Implementation
with LKB System

In this section, we implement our system using the
LKB system with the FET environment. We ana-
lyze an example sentence “Kim bought a flower”
using the FET system. The system contains the
FET environment (see section 4.2) and constrains

focus and prosodic features based on FET analysis
in section 3. We introduce the FET type hierarchy
and describe the components of FET structure.

4.1 Interpreting the MRS representation for
Focus Words

In the preprocessing process, the LKB system with
ERG parses a sentence and generates the MRS
representation (see step 1, figure 1). By scan-
ning each object inside the MRS representation,
we keep all reference numbers, mapped with their
objects and record every connection that is related
to this object and this reference number. We ex-
tract only necessary information to generate a set
of focus words (see step 2, figure 1). These focus
words are generated to correspond to the LKB sys-
tem. For a sentence, we define a speech act code
referring to a main verb and obtain a focus crite-
rion from a user.

Each focus word, as shown in figure 4, is
marked by a focus part (focus-part). A focus
word structure (focus-word) contains the focus cri-
terion (fcgroup), speech act code (spcode), sen-
tence mood (stmood) and focus position (focus-
pos) in a focus part. In figure 4, the focus crite-
rion is defined as group G (see table 2) while the
speech acts code is en0ab (intending). The sen-
tence mood referring from MRS is affirmative sen-
tence and focus position is the last node (ls). We
will describe the focus-word and its components
in the next section. In figure 4, “Kim” is a actor
part while “bought” is an act part. The words “a”
and “flower” are the actee parts.

bought := focus-word &
[ ORTH "bought",
  HEAD act-part &  [ AGR1 ls-act_G-aff-en0ab ],
  SPR < [HEAD actor-part & 
        [ AGR1 ls-actor_G-aff-en0ab ] ] >,
  COMPS < focus-phrase & [HEAD actee-part & 
        [AGR1 ls-actee_G-aff-en0ab  ]]  > ].

a := focus-word &
[ ORTH "a",
  HEAD actee-part & 
       [AGR1 pv-actee_G-aff-en0ab ],
  SPR < >,
  COMPS < > ].

flower := focus-word &
[ ORTH "flower",
  HEAD actee-part & 
        [AGR1 ls-actee_G-aff-en0ab  ],
  SPR < [ HEAD actee-part & 
        [AGR1 pv-actee_G-aff-en0ab ]] >,
  COMPS < focus-phrase & [HEAD actee-part & 
        [AGR1 ls-actee_G-aff-en0ab  ]]> ].

Kim := focus-word &
[ ORTH "Kim",
  HEAD actor-part & 
       [ AGR1 ls-actor_G-aff-en0ab],
  SPR <  >,
  COMPS < > ].

Figure 4: A set of focus words

4.2 FET Tone Environment
In FTE system, we provide a set of focus words
to the LKB system with the FET environment (see
step 3, figure 1). This environment contains the
constraints, rules, type hierarchy, a set of features,
and their structures for the FET analysis. We
design the FET type hierarchy as shown in fig-
ure 5. We define three main groups of feature
structures: *focus-value*, *prosodic-value* and
feat-struc to control the focus constraints. *focus-
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value* represents the focus structures. It is com-
posed of five subfeature structures: focus crite-
rion, focus type (fctype), focus name (focus), fo-
cus position (focus-pos), and checking whether a
tone mark can be marked at a word (tone-mark).
*prosody-value* represents the prosodic structure.
Four prosodic subfeature structures are sentence
mood, speech act code, accent tone (accent-tone),
and boundary tone (bound-tone). feat-struc con-
tains the core FET structure that constrains the re-
lationships between focus and prosodic features.
The feat-struc structure is composed of six main
subfeature structures: (i) focus category structure
(focus-cat) is a set of constraints which are the
combinations of a focus part and a focus criterion
such as act g, actor g, actee g, and so on, (ii) fo-
cus part structure (focus-part) classifies act part
and non-act part as actor part or actee part, (iii)
focus structure (focus-struc) is a subfeature struc-
ture of focus-word and focus-phrase, (iv) checking
whether prosodic marks can be marked (prosody),
(v) prosodic mark (prosody-mark) structure maps
between types of prosodic mark and accent and
boundary tones: no-mark, hEm Sh-break, etc, (vi)
a set of prosodic marks (prosody-set) is a set of
combinations between accent and boundary tones.

Figure 5: FET type hierarchy

4.2.1 Focus Structure
In figure 6(a), the focus-phrase inherits the

focus-struc with a feature ARGS. The ARGS rep-
resents a list of words in the sentence. The focus
rules parse the focus-phrase with their constraints
and define whether tone can be marked at a word
in each focus part. The focus-word inherits the
focus-struc with orthography of a word (ORTH)
as string. The focus-word, as shown in 6(b), repre-
sents the focus content structure and corresponds
to the LKB system. The focus-struc, as show in
figure 6(c), consists of HEAD, specifier (SPR) and
complement (COMPS) (Ivan et al., 2003). In-
side the focus-struc, HEAD refers to focus-part
which is shown in figure 6(d). SPR and COMP
are used to specify the components of previous

nodes and following nodes in a sentence. Each
focus-part contains focus and prosodic structures.
We classify focus following the possible focus-
cat for the FET structure. The focus-cat controls
the constraints for the actor, act and actee parts.
The focus-cat contains both the focus and prosodic
features as a set of subfeatures of the FET struc-
ture. This structure contains focus position, fo-
cus group, focus type, a set of prosody marks
and prosodic structure (prosody). The focus-cat
is shown in figure 6(e).
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Figure 6: Type feature structure of: (a) focus-
phrase (b) focus-word (c) focus-struc (d) focus-
part (e) focus-cat

4.2.2 Prosodic Structure
The prosodic structure consists of these subfea-

tures: sentence mood, speech act code, and a set of
prosodic mark structures. This structure controls
the prosodic marks following the FET constraints.
These constraints depend on the relationships of
focus with speech acts to intonation patterns. The
prosody structure is shown in figure 7(a). The
accent and boundary tones are mapped with the
prosody-mark which is illustrated in figure 7(b).

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−
=

markprosodyMARKPROSODY
markprosodyMARKPROSODY

spcodeSPCODE
stmoodSTMOOD

strucfeat
prosody

2
1

&
:

(a)

⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

−
=−

toneboundTONEBOUND
toneaccentTONEACCENT

strucfeat
markprosody

&
:

(b)

Figure 7: Type feature structure of: (a) Prosodic
structure (b) Prosodic mark structure

For focus rules, we have two types of focus
rules that are head-complement and head-specifier
rules. These rules process the same as a simple
grammar rule which is explained in (Ivan et al.,
2003). Using these rules, the example sentence
“Kim bought a flower” is parsed and the result
is the complete FET structure including the focus
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and prosodic information. The FET structure of
the word “Kim” is shown in figure 8.

Figure 8: FET structure of the word “Kim”

4.3 Modifying Prosody for Synthetic Speech
In the postprocessing process (see step 4, figure 1),
we extract a set of words with tone marks from the
FET structure. An example of these words with
tone marks is shown in figure 9. Finally we trans-
fer this data to generate the synthesized speech by
the speech synthesis and modify prosody.

ORTH: Kim
Focus: actor-part
ACCENT_TONE1: NOACCENT
BOUND_TONE1: NOBOUND

ORTH: bought
Focus: act-part
ACCENT_TONE1: NOACCENT
BOUND_TONE1: NOBOUND

ORTH: a
Focus: actee-part
ACCENT_TONE1: NOACCENT
BOUND_TONE1: NOBOUND

ORTH: flower
Focus: actee-part
ACCENT_TONE1: L+H*
BOUND_TONE1: L-L%

Figure 9: A set of words and their tone marks

5 Concluding Remarks

We design the FET system based on the small
number of sentences from a part of the CMU com-
municator dataset (2002). These simple sentences
relate to traveling information. In this paper, we
use the MRS representation from the LKB system
to determine actor, act and actee parts. Since the
LKB has a limited grammar and produces multi-
ple parses, then we assume that our input sentence
can be parsed by the HPSG parser and only a cor-
rect output is provided to the LKB system with
the FET environment. We analyze the relation-
ships of focus with speech acts to tone marks. To
mark tone, we group the tone patterns by speech
acts and focus parts. We implement the FET sys-
tem using LKB and an example is illustrated in
section 4 in this paper. Using the LKB with the
FET grammar, the system can parse most simple
sentences from the CMU communicator dataset
and generate the complete FET structure including
prosodic marks for each sentence. We are evaluat-
ing the FET system with respect to three aspects:
appreciation of listeners to tone based on the tone

marks from the FET system, conveying the focus
content in a sentence to listeners and the correct-
ness of prosodic annotation. In the future, we will
finish the evaluations and analyze more relation-
ships of focus with speech acts to tones to support
the various sentences.
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Abstract 

We present the implementation of a system 
which extracts not only lexicalized gram-
mars but also feature-based lexicalized 
grammars from Korean Sejong Treebank. 
We report on some practical experiments 
where we extract TAG grammars and tree 
schemata. Above all, full-scale syntactic 
tags and well-formed morphological analy-
sis in Sejong Treebank allow us to extract 
syntactic features. In addition, we modify 
Treebank for extracting lexicalized gram-
mars and convert lexicalized grammars into 
tree schemata to resolve limited lexical 
coverage problem of extracted lexicalized 
grammars. 

1 Introduction  

An electronic grammar is an interface between the 
complexity and the diversity of natural language 
and the regularity and the effectiveness of a lan-
guage processing, and it is one of the most impor-
tant elements in the natural language processing. 
Since traditional manual grammar development is 
a time-consuming and labor-intensive task, many 
efforts for automatic and semi-automatic grammar 
development have been taken during last decades.  

Automatic grammar development means that a 
system extracts a grammar from a Treebank which 
has an implicit Treebank grammar. The grammar 
extraction system takes syntactically analyzed sen-
tences as an input and produces a target grammar. 
The extracted grammar would be same as the 
Treebank grammar or be different depending on 

the user’s specific purpose. The automatically ex-
tracted grammar has the advantage of the coher-
ence of extracted grammars and the rapidity of its 
development. However, as it always depends on 
the Treebank which the extraction system uses, its 
coverage could be limited to the scale of a Tree-
bank. Moreover, the reliable Treebank would be 
hardly found, especially in public domain.  

Semi-automatic grammar development means 
that a system generates the grammar using the de-
scription of the language-specific syntactic (or lin-
guistic) variations and its constraints. A meta-
grammar in Candito (1999) and a tree description 
in Xia (2001) are good examples of a semi-
automatic grammar development. Even using 
semi-automatic grammar development, we need 
the good description of linguistic phenomena for 
specific language which requires very high level 
knowledge of linguistics and the semi-
automatically generated grammars would easily 
have an overflow problem. 

Since we might extract the grammar automati-
cally without many efforts if a reliable Treebank is 
provided, in this paper we implement a system 
which extracts a Lexicalized Tree Adjoining 
Grammar and a Feature-based Lexicalized Tree 
Adjoining Grammar from Korean Sejong Treebank 
(SJTree). SJTree contains 32,054 eojeols (the unity 
of segmentation in the Korean sentence), that is, 
2,526 sentences. SJTree uses 43 part-of-speech 
tags and 55 syntactic tags.  

Even though there are many previous works for 
extracting grammars from a Treebank, extracting 
syntactic features is tried for the first time. 55 full-
scale syntactic tags and well-formed morphologi-
cal analysis in SJTree allow us to extract syntactic 
features automatically and to develop FB-LTAG. 
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First, we briefly present features structures 
which are focused on FB-LTAG and other previ-
ous works for extracting a grammar from a Tree-
bank. Then, we explain our grammar extraction 
scheme and report experimental results. Finally, 
we discuss the conclusion. 

2 Feature structures and previous works 
on extracting grammars from a Tree-
bank  

A feature structure is a way of representing gram-
matical information. Formally feature structure 
consists of a specification of a set of features, each 
of which is paired with a particular value (Sag et 
al., 2003). In a unification frame, a feature struc-
ture is associated with each node in an elementary 
tree (Vijay-Shanker and Joshi, 1991). This feature 
structure contains information about how the node 
interacts with other nodes in the tree. It consists of 
a top part, which generally contains information 
relating to the super-node, and a bottom part, 
which generally contains information relating to 
the sub-node (Han et al., 2000).  

In FB-LTAG, the feature structure of a new 
node created by substitution inherits the union of 
the features of the original nodes. The top feature 
of new node is the union of the top features (f1 ∪ f) 
of the two original nodes, while the bottom feature 
of the new node is simply the bottom feature (g1) 
of the top node of the substituting tree since the 
substitution node has no bottom feature as shown 
in Figure 1.  

 
Y X

Y↓

X

Y

t:f1

b:g1

t:f
t:f1 ∪ f
b:g1

→

 
Figure 1. Substitution in FB-LTAG 

 
The node being adjoined into splits and its top fea-
ture (f) unifies with the top feature (f1) of the root 
adjoining node, while its bottom feature (g) unifies 
with the bottom feature (g2) of the foot adjoining 
node as shown in Figure 2.  
 

X Y

Y*

→
t:f1

b:g1

t:f2

b:g2

Y
t:f
b:g

X

Y

Y

t:f1 ∪ f
b:g1

t:f2

b:g2 ∪ g

 
Figure 2. Adjunction in FB-LTAG 

Several works for extracting grammars, especially 
for TAG formalism are proposed. Chen (2001) 
extracted lexicalized grammars from English Penn 
Treebank and there are other works based on 
Chen’s procedure such as Johansen (2004) and 
Nasr (2004) for French and Habash and Rambow 
(2004) for Arabic. Chiang (2000) used Tree Inser-
tion Grammars, one variation of TAG formalism 
for his extraction system from English Penn Tree-
bank. Xia et al. (2000) developed the uniform 
method of a grammar extraction for English, Chi-
nese and Korean. Neumann (2003) extracted Lexi-
calized Tree Grammars from English Penn 
Treebank for English and from NEGRA Treebank 
for German. As mentioned above, none of these 
works tried to extract syntactic features for FB-
LTAG. 

3 Grammar extraction scheme  

Before extracting a grammar automatically, we 
transform the bracket structure sentence in SJTree 
into a tree data structure. Afterward, using depth-
first algorithm for a tree traverse, we determine a 
head and the type of operations (substitution or 
adjunction) for children nodes of the given node if 
the given node is a non-terminal node.  

3.1 Determination of a head  

For the determination of a head, we assume the 
right-most child node as a head among its sibling 
nodes in end-focus languages like Korean. For in-
stance, the second NP is marked as a head in [NP 
NP] composition while the first NP is marked for 
adjunction operation for the extracted grammar G1 
which uses eojeols directly without modification of 
SJTree (see the section 4 for the detail of extrac-
tion experiments). Likewise, in [VP@VV 
VP@VX] composition where the first VP has a 
VV (verb) anchor and the last VP has a VX (auxil-
iary verb) anchor, a principal verb in the first VP 
could be marked for adjunction operation and an 
auxiliary verb in the second VP would be a head, 
that is, the extracted auxiliary verb tree has every 
argument of whole sentence. This phenomenon 
could be explained by argument composition. 
Head nodes of the extracted grammar for a verb 
balpyoha.eoss.da (‘announced’) in (1) are in bold 
face in Figure 3 which represents bracketed sen-
tence structure in SJTree  

 

74



(1) 일본 외무성은 즉각 해명 성명을 발표했다. 
 ilbon oimuseong.eun  
 Japan ministy_of_foreign_affairs.Nom 
 jeukgak  haemyeng  
 immediately elucidation 
 seongmyeng.eul balpyo.ha.eoss.da 
 declaration.Acc announce.Pass.Ter 
 ‘The ministry of foreign affairs in Japan im-

mediately announced their elucidation.’ 
  
(S (NP_SBJ (NP ilbon/NNP) 
  (NP_SBJ oimuseong/NNG+eun/JX)) 
 (VP (AP jeukgak/MAG) 
  (VP (NP_OBJ (NP haemyeng/NNG) 
                        (NP_OBJ seonmyeng/NNG+eul/JKO)) 
   (VP balpyo/NNG+ha/XSV+eoss/EP+da/EF+./SF)))) 

Figure 3. Bracketed sentence in SJTree for (1) 

3.2 Distinction between substitution and ad-
junction operations  

Unlike other Treebank corpora such as English 
Penn Treebank and French Paris 7 Treebank, full-
scale syntactic tags in SJTree allow us to easily 
determine which node would be marked for substi-
tution or adjunction operations. Among 55 syntac-
tic tag in SJTree, nodes labeled with NP (noun 
phrase), S (sentence), VNP (copular phrase) and 
VP (verb phrase) which end with _CMP (attribute), 
_OBJ (object), and _SJB (subject) would be 
marked for substitution operation, and nodes la-
beled with the other syntactic tags except a head 
node would be marked for adjunction operation. In 
this distinction, some VNP and VP phrases might 
be marked for substitution operation, which means 
that VNP and VP phrases are arguments of a head, 
because SJTree labels VNP and VP instead of NP 
for the nominalization forms of VNP and VP. In 
Figure 4, for example, NP_SBJ and NP_OBJ 
nodes are marked for substitution operation and 
AP node is marked for adjunction operation.  

Children nodes marked for substitution opera-
tion are replace by substitution terminal nodes (e.g. 
NP_SBJ↓) and calls recursively the extraction pro-
cedure with its subtree where a root node is the 
child node itself. Children nodes marked for ad-
junction operation are removed from the main tree 
and also calls recursively the extraction procedure 
with its subtree where we add its parent node of a 
given child node as a root node and a sibling node 
as a foot node (e.g. VP*). As defined in the TAG 
formalism, the foot node has the same label as the 
root node of the subtree for an adjunction operation.  

 
 

3.3 Reducing trunk  

Extracted grammars as explained above are not 
always “correct” TAG grammar. Since nodes 
marked for adjunction operation are removed, 
there remain intermediate nodes in the main tree. 
In this case, we remove these redundant nodes. 
Figure 4 shows how to remove the redundant in-
termediate nodes from the extracted tree for a verb 
balpyoha.eoss.da (‘announced’) in (1).  
 

VP

NP_SBJ ↓ VP

S

NP_OBJ ↓ VP

balpyoha.eoss.da

VPNP_SBJ ↓

S

NP_OBJ ↓ VP

balpyoha.eoss.da

→

 
Figure 4. Removing redundant intermediate nodes 

from extracted trees 

3.4 Extracting features  

55 full-scale syntactic tags and morphological 
analysis in SJTree allow us to extract syntactic fea-
tures automatically and to develop FB-LTAG. 
Automatically extracted FB-LTAG grammars 
eventually use reduced tagset because FB-LTAG 
grammars contain their syntactic information in 
features structures. For example, NP_SBJ syntactic 
tag in LTAG is changed into NP and a syntactic 
feature <case=subject> is added. Therefore, we use 
actually 13 reduced tagset for FB-LTAG gram-
mars. From full-scale syntactic tags which end 
with _SBJ (subject), _OBJ (object) and _CMP (at-
tribute), we extract <case> features which describe 
argument structures in the sentence.  

Alongside <case> features, we also extract 
<mode> and <tense> from morphological analyses 
in SJTree. Since however morphological analyses 
for verbal and adjectival endings in SJTree are 
simply divided into EP, EF and EC which mean 
non-final endings, final endings and conjunctive 
endings, respectively, <mode> and <tense> fea-
tures are not extracted directly from SJTree. In this 
paper, we analyze 7 non-final endings (EP) and 77 
final endings (EF) used in SJTree to extract auto-
matically <mode> and <tense> features. In gen-
eral, EF carries <mode> inflections, and EP carries 
<tense> inflections. Conjunctive endings (EC) are 
not concerned with <mode> and <tense> features 
and we only extract <ec> features with its string 
value. <ef> and <ep> features are also extracted 
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with their string values. Some of non-final endings 
like si are extracted as <hor> features which have 
honorary meaning. In extracted FB-LTAG gram-
mars, we present their lexical heads in a bare in-
finitive with morphological features such as <ep>, 
<ef> and <ec> which make correspond with its 
inflected forms.  

<det> is another automatically extractable fea-
ture in SJTree and it is extracted from both syntac-
tic tag and morphological analysis unlike other 
extracted features. For example, while <det=-> is 
extracted from dependant nouns which always 
need modifiers (extracted by morphological analy-
ses), <det=+> is extracted from _MOD phrases 
(extracted by syntactic tags). From syntactic tag 
DP which contains MMs (determinative or demon-
strative), <det=+> is also extracted1.  

The actual procedure of feature extraction is im-
plemented by 2 phases. In the first phase, we con-
vert syntactic tags and morphological analysis into 
feature structure as explained above. In the second 
phase, we complete feature structure onto nodes of 
dorsal spine. For example, we put the same feature 
of VV bottom onto VV top, VP top/bottom and S 
bottom because nodes in dorsal spine share certain 
number of feature of VV bottom. The initial tree 
for a verb balpyoha.eoss.da is completed like Fig-
ure 5 for a FB-LTAG (see Park (2006) for details).  
                                                           
1 Korean does not need features <person> as in English and 
<gender > or <number> as in French. Han et al. (2000) pro-
posed several features for Korean FBLTAG which we do not 
use in this paper, such as <adv-pp>, <top> and < aux-pp> for 
nouns and <clause-type> for predicates. While postpositions 
are separated from eojeol during our grammar extraction pro-
cedure, Han el al. considered them as “one” inflectional mor-
phology of noun phrase eojeol. As we will explain the reason 
why we separate postpositions from eojeol in the section 4, the 
separation of postpositions would be much efficient for the 
lexical coverage of extracted grammars. In Han et al. <adv-
pp> simply contains string value of adverbial postpositions. 
<aux-pp> adds semantic meaning of auxiliary postpositions 
such as only, also etc. which we can not extract automatically 
from SJTree or other Korean Treebank corpora because syn-
tactically annotated Treebank corpora generally do not contain 
such semantic information. <top> marks the presence or ab-
sence of a topic marker in Korean like neun, however topic 
markers are annotated like a subject in SJTree which means 
that only <case=subject> is extracted for topic markers. 
<clause-type> indicates the type of the clause which has its 
values such as main, coord(inative), subordi(native), ad-
nom(inal), nominal, aux-connect. Since the distinction of the 
type of the clause is very vague except main clause in Korea, 
we do not adopt this feature. Instead <ef> is extracted if a 
clause type is a main clause and <ec> is extracted for other 
type.  

S

NP↓ VP

VPNP↓

VV

balpyoha

b: <ep> = eoss
b: <ef> = da
b: <mode> = decl
b: <tense> = past

t:  <ep> = x, <ef> = y, <mode> = i, <tense> = j

t:  <ep> = x, <ef> = y, <mode> = i, <tense> = j
b: <ep> = x, <ef> = y, <mode> = i, <tense> = j

t:  <ep> = x, <ef> = y, <mode> = i, <tense> = j
b: <ep> = x, <ef> = y, <mode> = i, <tense> = j

t:  -
b: <ep> = x, <ef> = y, <mode> = i, <tense> = j

<cas> = nom
<det> = +

<cas> = acc
<det> = +

 
Figure 5. Extracted FB-LTAG grammar for 

balpyoha.eoss.da (‘announced’) 

4 Extraction experiments and results   

4.1 Extraction of lexicalized trees  

In this paper, we extract not only lexicalized trees 
without modification of a Treebank, but also ex-
tract grammars with modifications of a Treebank 
using some constraints to improve the lexical cov-
erage in extracted grammars. 
 

• G1: Using eojeols directly without modifi-
cation of SJTree. 

• G2: Separating symbols and postpositions 
from eojeols. Separated symbols are ex-
tracted and divided into α and β trees 
based on their types. Every separated post-
position is α tree. Complex postpositions 
consisted of two or more postpositions are 
extracted like one α tree2. Finally, convert-
ing NP β trees into α trees and removing 
syntactic tag in NP α trees. 

 
Figure 6 and 7 show extracted lexicalized gram-
mars G1 and G2 from (1) respectively. Theoreti-
cally extracting order is followed by word order in 
the sentence. 
  

VP

AP VP*

jeukgak/MAG

β3:

S

NP_SBJ↓ VP

VPNP_OBJ↓

α3:

NP_SBJ

β1:

oimuseong/NNG
+eun/JX

α1:

seongmyeng/NNG
+eul/JKO

balpyo/NNG+ 
ha/XSV+eoss/EP
+da/EF+./SF

NP_SBJ*

NP_SBJ

NP_OBJ

β2: α2:

NP_OBJ*

NP_OBJ

haemyeng/NNG

NP

ilbon/NNP 

NP

 
Figure 6. Extracted lexicalized grammars G1 

                                                           
2  For extracting trees of symbols and of postposition, we 
newly add SYM and POSTP syntactic tags which SJTree does 
not use. See Figure 11 for extracted symbol and postposition 
trees. 
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VP

AP VP*

jeukgak/MAG

β1:

S

NP_SBJ↓ VP

VPNP_OBJ↓

α5:

POSTPNP_SBJ↓

NP_SBJ

eun/JX

α6:

POSTPNP_OBJ↓

NP_OBJ

eul/JKO

α7:

ilbon/NNP

NP
α1:

oimuseong/NNG

NP
α2:

haemyeng/NNG

NP

α3:

seongmyeng/NNG

NP

α4:

SYMS*

S

.

SF

β2:

SYMS*

S

.

SF

β2:

balpyo/NNG+ 
ha/XSV+eoss/EP
+da/EF  

Figure 7. Extracted lexicalized grammars G2  

4.2 Extraction of feature-based lexicalized 
trees 

We extract feature-based lexicalized trees using 
reduced tagset because FB-LTAG grammars con-
tain their syntactic information in features struc-
tures. Extracted grammars G3 remove syntactic 
tags, eventually use reduced tagset, add extracted 
feature structures and use infinitive forms as lexi-
cal anchor.  
 

• G3: Using reduced tagset and a lexical an-
chor is an infinitive and adding extracted 
feature structures.   

 
G3 row in Table 1 below shows the results of ex-
traction procedures above. Figure 8 shows ex-
tracted feature-based lexicalized grammars G3 
from (1) 

VP

ADVP VP*

jeukgak

ADV

β1:
VP

ADVP VP*

jeukgak

ADV

β1:

POSTPNP↓

NP

eun

JX

α6:

POSTPNP↓

NP

eul

JKO

α7:

ilbon

NP

α1:

NNP

ilbon

NP

α1:

NNP

haemyeng

NP

α3:

NNG

seongmyeng

NP

α4:

NNG

SYMS*

S

.

SF

β2:

S

NP↓ VP

VPNP↓

VV

balpyoha

<cas> = nom
<det> = +

<cas> = acc
<det> = +

b: <ep> = eoss
b: <ef> = da
b: <mode> = decl
b: <tense> = past

<cas> = x

oimuseong

NP

α2:

NNG

<cas> = x <cas> = x <cas> = x

<cas> = nom <cas> = acc

<cas> = x <cas> = x

α5:

 
Figure 8. Extracted feature-based lexicalized 

grammars G3 
3.  

 
 # of ltrees 

(lexicalized tree) 
Average frequen-
cies per ltrees

G1 18,080 1.38
G2 15,551 2.57
G3 12,429 3.21
Table 1. Results of experiments in extracting lexi-

calized and feature-based lexicalized grammars 
                                                           
3 To simplify the figure, we note only feature structure which 
is necessary to understand.  

4.3 Extraction of tree schemata 

As mentioned in the Introduction, one of the most 
serious problems in automatic grammar extraction 
is its limited lexical coverage. To resolve this prob-
lem, we enlarge our extracted lexicalized gram-
mars using templates which we call tree schemata. 
The lexical anchor is removed from extracted 
grammars and anchor mark is replaced to form tree 
schemata (for example, @NNG where the lexical-
ized anchor in extracted lexicalized grammars is a 
common noun). The number of tree schemata is 
much reduced against that of lexicalized grammars. 
Table 2 shows the number of template trees and 
the average frequency for each template grammars. 
T1 means G1’s tree schemata. 
 
 # of tree schemata Average frequencies 

per tree schemata
T1 1,158 21.55
T2 1,077 37.05
T3 385 103.65

Table 2. Results of experiments in converting 
template grammars 

5 Evaluations 

First of all, the lexical coverage for G1 and G2 is 
tested on the part of Sejong corpus which contains 
about 770,000 “morphologically analyzed” eojeols. 
After modification of SJTree, the extracted gram-
mar G2 is increased to 17.8 % compared with G1 
for its lexical coverage. G2 and G3 have same lexi-
cal coverage since they have same lexical entries.  

Extracted grammars in this paper are evaluated 
by its size and its coverage. The size of grammars 
means tree schemata according to the number of 
sentences as shown in Figure 9. The coverage of 
grammar is the number of occurrences of unknown 
tree schemata in the corpus by the total occur-
rences of tree schemata as shown in Table 3.  

 

 
(a) Threshold =1  (b) Threshold =2 

Figure 9. The size of grammars 
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 Threshold = 1 Threshold = 2
G1 0.9326 0.9591
G2 0.9326 0.9525
G3 0.9579 0.9638
Table 3. Coverage of grammars: 90% of training 

set (2,273 sentences) and 10% of test set (253 sen-
tences) 

 
We manually overlap our 163 tree schemata for 
predicates from T3, which contain 14 subcategori-
zation frames with 11 subcategorization frames of 
a FB-LTAG grammar proposed in Han et al. 
(2000) to evaluate the coverage of hand-crafted 
grammars 4 . Our extracted template grammars 
cover 72.7 % of their hand-crafted subcategoriza-
tion frames5.  

6 Conclusion 

In this paper, we have presented a system for 
automatic grammar extraction that produces lexi-
calized and feature-based lexicalized grammars 
from a Treebank. Also, to resolve the problem of 
limited lexical coverage of extracted grammars, we 
separated symbols and postposition, and then con-
verted these grammars into template grammars. 
Extracted grammars and lexical-anchor-less tem-
plate grammars might be used for parsers to ana-
lyze the Korean sentences and frequency 
information might be used to remove ambiguities 
among possible syntactic analyses of parsers. 
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Abstract

In this paper, we compare the per-
formance of a state-of-the-art statistical
parser (Bikel, 2004) in parsing written and
spoken language and in generating sub-
categorization cues from written and spo-
ken language. Although Bikel’s parser
achieves a higher accuracy for parsing
written language, it achieves a higher ac-
curacy when extracting subcategorization
cues from spoken language. Additionally,
we explore the utility of punctuation in
helping parsing and extraction of subcat-
egorization cues. Our experiments show
that punctuation is of little help in pars-
ing spoken language and extracting sub-
categorization cues from spoken language.
This indicates that there is no need to add
punctuation in transcribing spoken cor-
pora simply in order to help parsers.

1 Introduction

Robust statistical syntactic parsers, made possi-
ble by new statistical techniques (Collins, 1999;
Charniak, 2000; Bikel, 2004) and by the avail-
ability of large, hand-annotated training corpora
such as WSJ (Marcus et al., 1993) and Switch-
board (Godefrey et al., 1992), have had a major
impact on the field of natural language process-
ing. There are many ways to make use of parsers’
output. One particular form of data that can be ex-
tracted from parses is information about subcate-
gorization. Subcategorization data comes in two
forms: subcategorization frame (SCF) and sub-
categorization cue (SCC). SCFs differ from SCCs
in that SCFs contain only arguments while SCCs
contain both arguments and adjuncts. Both SCFs

and SCCs have been crucial to NLP tasks. For ex-
ample, SCFs have been used for verb disambigua-
tion and classification (Schulte im Walde, 2000;
Merlo and Stevenson, 2001; Lapata and Brew,
2004; Merlo et al., 2005) and SCCs for semantic
role labeling (Xue and Palmer, 2004; Punyakanok
et al., 2005).

Current technology for automatically acquiring
subcategorization data from corpora usually relies
on statistical parsers to generate SCCs. While
great efforts have been made in parsing written
texts and extracting subcategorization data from
written texts, spoken corpora have received little
attention. This is understandable given that spoken
language poses several challenges that are absent
in written texts, including disfluency, uncertainty
about utterance segmentation and lack of punctu-
ation. Roland and Jurafsky (1998) have suggested
that there are substantial subcategorization differ-
ences between written corpora and spoken cor-
pora. For example, while written corpora show a
much higher percentage of passive structures, spo-
ken corpora usually have a higher percentage of
zero-anaphora constructions. We believe that sub-
categorization data derived from spoken language,
if of acceptable quality, would be of more value to
NLP tasks involving a syntactic analysis of spoken
language, but we do not pursue it here.

The goals of this study are as follows:

1. Test the performance of Bikel’s parser in
parsing written and spoken language.

2. Compare the accuracy level of SCCs gen-
erated from parsed written and spoken lan-
guage. We hope that such a comparison will
shed some light on the feasibility of acquiring
SCFs from spoken language using the cur-
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rent SCF acquisition technology initially de-
signed for written language.

3. Explore the utility of punctuation1 in pars-
ing and extraction of SCCs. It is gen-
erally recognized that punctuation helps in
parsing written texts. For example, Roark
(2001) finds that removing punctuation from
both training and test data (WSJ) decreases
his parser’s accuracy from 86.4%/86.8%
(LR/LP) to 83.4%/84.1%. However, spo-
ken language does not come with punctua-
tion. Even when punctuation is added in the
process of transcription, its utility in help-
ing parsing is slight. Both Roark (2001)
and Engel et al. (2002) report that removing
punctuation from both training and test data
(Switchboard) results in only 1% decrease in
their parser’s accuracy.

2 Experiment Design

Three models will be investigated for parsing and
extracting SCCs from the parser’s output:

1. punc: leaving punctuation in both training
and test data.

2. no-punc: removing punctuation from both
training and test data.

3. punc-no-punc: removing punctuation from
only test data.

Following the convention in the parsing com-
munity, for written language, we selected sections
02-21 of WSJ as training data and section 23 as
test data (Collins, 1999). For spoken language, we
designated section 2 and 3 of Switchboard as train-
ing data and files of sw4004 to sw4135 of section 4
as test data (Roark, 2001). Since we are also inter-
ested in extracting SCCs from the parser’s output,
we eliminated from the two test corpora all sen-
tences that do not contain verbs. Our experiments
proceed in the following three steps:

1. Tag test data using the POS-tagger described
in Ratnaparkhi (1996).

2. Parse the POS-tagged data using Bikel’s
parser.

1We use punctuation to refer to sentence-internal punctu-
ation unless otherwise specified.

label clause type desired SCCs
gerundive (NP)-GERUND

S small clause NP-NP, (NP)-ADJP
control (NP)-INF-to
control (NP)-INF-wh-to

SBAR with a complementizer (NP)-S-wh, (NP)-S-that
without a complementizer (NP)-S-that

Table 1: SCCs for different clauses

3. Extract SCCs from the parser’s output. The
extractor we built first locates each verb in the
parser’s output and then identifies the syntac-
tic categories of all its sisters and combines
them into an SCC. However, there are cases
where the extractor has more work to do.

• Finite and Infinite Clauses: In the Penn
Treebank,S andSBAR are used to label
different types of clauses, obscuring too
much detail about the internal structure
of each clause. Our extractor is designed
to identify the internal structure of dif-
ferent types of clause, as shown in Table
1.

• Passive Structures: As noted above,
Roland and Jurafsky (Roland and Juraf-
sky, 1998) have noticed that written lan-
guage tends to have a much higher per-
centage of passive structures than spo-
ken language. Our extractor is also
designed to identify passive structures
from the parser’s output.

3 Experiment Results

3.1 Parsing and SCCs

We used EVALB measures Labeled Recall (LR)
and Labeled Precision (LP) to compare the pars-
ing performance of different models. To compare
the accuracy of SCCs proposed from the parser’s
output, we calculated SCC Recall (SR) and SCC
Precision (SP). SR and SP are defined as follows:

SR =
number of correct cues from the parser’s output

number of cues from treebank parse
(1)

SP =
number of correct cues from the parser’s output

number of cues from the parser’s output
(2)

SCC Balanced F-measure=
2 ∗ SR ∗ SP

SR + SP
(3)

The results for parsing WSJ and Switchboard
and extracting SCCs are summarized in Table 2.

The LR/LP figures show the following trends:
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WSJ
model LR/LP SR/SP
punc 87.92%/88.29% 76.93%/77.70%

no-punc 86.25%/86.91% 76.96%/76.47%
punc-no-punc 82.31%/83.70% 74.62%/74.88%

Switchboard
model LR/LP SR/SP
punc 83.14%/83.80% 79.04%/78.62%

no-punc 82.42%/83.74% 78.81%/78.37%
punc-no-punc 78.62%/80.68% 75.51%/75.02%

Table 2: Results of parsing and extraction of SCCs

1. Roark (2001) showed LR/LP of
86.4%/86.8% for punctuated written
language, 83.4%/84.1% for unpunctuated
written language. We achieve a higher
accuracy in both punctuated and unpunctu-
ated written language, and the decrease if
punctuation is removed is less

2. For spoken language, Roark (2001) showed
LR/LP of 85.2%/85.6% for punctuated spo-
ken language, 84.0%/84.6% for unpunctu-
ated spoken language. We achieve a lower
accuracy in both punctuated and unpunctu-
ated spoken language, and the decrease if
punctuation is removed is less. The trends in
(1) and (2) may be due to parser differences,
or to the removal of sentences lacking verbs.

3. Unsurprisingly, if the test data is unpunctu-
ated, but the models have been trained on
punctuated language, performance decreases
sharply.

In terms of the accuracy of extraction of SCCs,
the results follow a similar pattern. However, the
utility of punctuation turns out to be even smaller.
Removing punctuation from both training and test
data results in a less than 0.3% drop in the accu-
racy of SCC extraction.

Figure 1 exhibits the relation between the ac-
curacy of parsing and that of extracting SCCs.
If we consider WSJ and Switchboard individu-
ally, there seems to exist a positive correlation
between the accuracy of parsing and that of ex-
tracting SCCs. In other words, higher LR/LP
indicates higher SR/SP. However, Figure 1 also
shows that although the parser achieves a higher
F-measure value for paring WSJ, it achieves a
higher F-measure value when generating SCCs
from Switchboard.

The fact that the parser achieves a higher accu-
racy for extracting SCCs from Switchboard than
WSJ merits further discussion. Intuitively, it
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Figure 1: F-measure for parsing and extraction of
SCCs

seems to be true that the shorter an SCC is, the
more likely that the parser is to get it right. This
intuition is confirmed by the data shown in Fig-
ure 2. Figure 2 plots the accuracy level of extract-
ing SCCs by SCC’s length. It is clear from Fig-
ure 2 that as SCCs get longer, the F-measure value
drops progressively for both WSJ and Switch-
board. Again, Roland and Jurafsky (1998) have
suggested that one major subcategorization differ-
ence between written and spoken corpora is that
spoken corpora have a much higher percentage of
the zero-anaphora construction. We then exam-
ined the distribution of SCCs of different length in
WSJ and Switchboard. Figure 3 shows that SCCs
of length 02 account for a much higher percentage
in Switchboard than WSJ, but it is always the other
way around for SCCs of non-zero length. This
observation led us to believe that the better per-
formance that Bikel’s parser achieves in extracting
SCCs from Switchboard may be attributed to the
following two factors:

1. Switchboard has a much higher percentage of
SCCs of length 0.

2. The parser is very accurate in extracting
shorter SCCs.

3.2 Extraction of Dependents

In order to estimate the effects of SCCs of length
0, we examined the parser’s performance in re-
trieving dependents of verbs. Every constituent
(whether an argument or adjunct) in an SCC gen-
erated by the parser is considered a dependent of

2Verbs have a length-0 SCC if they are intransitive and
have no modifiers.
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Figure 3: Distribution of SCCs by length

that verb. SCCs of length 0 will be discounted be-
cause verbs that do not take any arguments or ad-
juncts have no dependents3. In addition, this way
of evaluating the extraction of SCCs also matches
the practice in some NLP tasks such as semantic
role labeling (Xue and Palmer, 2004). For the task
of semantic role labeling, the total number of de-
pendents correctly retrieved from the parser’s out-
put affects the accuracy level of the task.

To do this, we calculated the number of depen-
dents shared by between each SCC proposed from
the parser’s output and its corresponding SCC pro-
posed from Penn Treebank. We based our cal-
culation on a modified version of Minimum Edit
Distance Algorithm. Our algorithm works by cre-
ating a shared-dependents matrix with one col-
umn for each constituent in the target sequence
(SCCs proposed from Penn Treebank) and one

3We are aware that subjects are typically also consid-
ered dependents, but we did not include subjects in our
experiments

shared-dependents[i.j] = MAX(
shared-dependents[i-1,j],
shared-dependents[i-1,j-1]+1 if target[i] = source[j],
shared-dependents[i-1,j-1] if target[i] != source[j],
shared-dependents[i,j-1])

Table 3: The algorithm for computing shared de-
pendents

INF #5 1 1 2 3
ADVP #4 1 1 2 2
PP-in #3 1 1 2 2
NP #2 1 1 1 1
NP #1 1 1 1 1

#0 #1 #2 #3 #4
NP S-that PP-in INF

Table 4: An example of computing the number of
shared dependents

row for each constituent in the source sequence
(SCCs proposed from the parser’s output). Each
cell shared-dependent[i,j] contains the number of
constituents shared between the firsti constituents
of the target sequence and the firstj constituents of
the source sequence. Each cell can then be com-
puted as a simple function of the three possible
paths through the matrix that arrive there. The al-
gorithm is illustrated in Table 3.

Table 4 shows an example of how the algo-
rithm works with NP-S-that-PP-in-INF as the tar-
get sequence and NP-NP-PP-in-ADVP-INF as the
source sequence. The algorithm returns 3 as the
number of dependents shared by two SCCs.

We compared the performance of Bikel’s parser
in retrieving dependents from written and spo-
ken language over all three models using De-
pendency Recall (DR) and Dependency Precision
(DP). These metrics are defined as follows:

DR =
number of correct dependents from parser’s output

number of dependents from treebank parse
(4)

DP =
number of correct dependents from parser’s output

number of dependents from parser’s output
(5)

Dependency F-measure=
2 ∗ DR ∗ DP

DR + DP
(6)

The results of Bikel’s parser in retrieving depen-
dents are summarized in Figure 4. Overall, the
parser achieves a better performance for WSJ over
all three models, just the opposite of what have
been observed for SCC extraction. Interestingly,
removing punctuation from both the training and
test data actually slightly improves the F-measure.
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This holds true for both WSJ and Switchboard.
This Dependency F-measure differs in detail from
similar measures in (Xue and Palmer, 2004). For
present purposes all that matters is the relative
value for WSJ and Switchboard.
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Figure 4: F-measure for extracting dependents

4 Conclusions and Future Work

4.1 Use of Parser’s Output

In this paper, we have shown that it is not nec-
essarily true that statistical parsers always per-
form worse when dealing with spoken language.
The conventional accuracy metrics for parsing
(LR/LP) should not be taken as the only metrics
in determining the feasibility of applying statisti-
cal parsers to spoken language. It is necessary to
consider what information we want to extract out
of parsers’ output and make use of.

1. Extraction of SCFs from Corpora: This task
usually proceeds in two stages: (i) Use sta-
tistical parsers to generate SCCs. (ii) Ap-
ply some statistical tests such as the Bino-
mial Hypothesis Test (Brent, 1993) and log-
likelihood ratio score (Dunning, 1993) to
SCCs to filter out false SCCs on the basis of
their reliability and likelihood. Our experi-
ments show that the SCCs generated for spo-
ken language are as accurate as those gen-
erated for written language, which suggests
that it is feasible to apply the current technol-
ogy for automatically extracting SCFs from
corpora to spoken language.

2. Semantic Role Labeling: This task usually
operates on parsers’ output and the number
of dependents of each verb that are correctly
retrieved by the parser clearly affects the ac-
curacy of the task. Our experiments show

that the parser achieves a much lower accu-
racy in retrieving dependents from the spoken
language than written language. This seems
to suggest that a lower accuracy is likely to
be achieved for a semantic role labeling task
performed on spoken language. We are not
aware that this has yet been tried.

4.2 Punctuation and Speech Transcription
Practice

Both our experiments and Roark’s experiments
show that parsing accuracy measured by LR/LP
experiences a sharper decrease for WSJ than
Switchboard after we removed punctuation from
training and test data. In spoken language, com-
mas are largely used to delimit disfluency ele-
ments. As noted in Engel et al. (2002), statis-
tical parsers usually condition the probability of
a constituent on the types of its neighboring con-
stituents. The way that commas are used in speech
transcription seems to have the effect of increasing
the range of neighboring constituents, thus frag-
menting the data and making it less reliable. On
the other hand, in written texts, commas serve as
more reliable cues for parsers to identify phrasal
and clausal boundaries.

In addition, our experiment demonstrates that
punctuation does not help much with extraction of
SCCs from spoken language. Removing punctua-
tion from both the training and test data results in a
less than 0.3% decrease in SR/SP. Furthermore, re-
moving punctuation from both the training and test
data actually slightly improves the performance
of Bikel’s parser in retrieving dependents from
spoken language. All these results seem to sug-
gest that adding punctuation in speech transcrip-
tion is of little help to statistical parsers includ-
ing at least three state-of-the-art statistical parsers
(Collins, 1999; Charniak, 2000; Bikel, 2004). As a
result, there may be other good reasons why some-
one who wants to build a Switchboard-like corpus
should choose to provide punctuation, but there is
no need to do so simply in order to help parsers.

However, segmenting utterances into individual
units is necessary because statistical parsers re-
quire sentence boundaries to be clearly delimited.
Current statistical parsers are unable to handle an
input string consisting of two sentences. For ex-
ample, when presented with an input string as in
(1) and (2), if the two sentences are separated by a
period (1), Bikel’s parser wrongly treats the sec-
ond sentence as a sentential complement of the
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main verblike in the first sentence. As a result, the
extractor generates an SCC NP-S forlike, which is
incorrect. The parser returns the same parse after
we removed the period (2) and let the parser parse
it again.

(1) I like the long hair. It was back in high
school.

(2) I like the long hair It was back in high school.

Hence, while adding punctuation in transcribing
a Switchboard-like corpus is not of much help to
statistical parsers, segmenting utterances into in-
dividual units is crucial for statistical parsers. In
future work, we plan to develop a system capa-
ble of automatically segmenting speech utterances
into individual units.
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Abstract

We introduce a new multi-threaded
parsing algorithm on unification grammars
designed specifically for multimodal
interaction and noisy environments.
By lifting some traditional constraints,
namely those related to the ordering
of constituents, we overcome several
difficulties of other systems in this
domain. We also present several criteria
used in this model to constrain the search
process using dynamically loadable
scoring functions. Some early analyses of
our implementation are discussed.

1 Introduction

Since the seminal work of Bolt (Bolt, 1980), the
methods applied to multimodal interaction (MMI)
have diverged towards unreconcilable approaches
retrofitted to models not specifically amenable to
the problem. For example, the representational
differences between neural networks, decision
trees, and finite-state machines (Johnston and
Bangalore, 2000) have limited the adoption of
the results using these models, and the typical
reliance on the use of whole unimodal sentences
defeats one of the main advantages of MMI - the
ability to constrain the search using cross-modal
information as early as possible.

CLAVIUS is the result of an effort to combine
sensing technologies for several modality types,
speech and video-tracked gestures chief among
them, within the immersive virtual environment
(Boussemart, 2004) shown in Figure 1. Its purpose
is to comprehend multimodal phrases such as
“put this ↘ here ↘ .”, for pointing gestures ↘,
in either command-based or dialogue interaction.

CLAVIUS provides a flexible, and trainable
new bi-directional parsing algorithm on multi-
dimensional input spaces, and produces modality-
independent semantic interpretation with a low
computational cost.

Figure 1: The target immersive environment.

1.1 Graphical Models and Unification

Unification grammars on typed directed acyclic
graphs have been explored previously in MMI,
but typically extend existing mechanisms not
designed for multi-dimensional input. For
example, both (Holzapfel et al., 2004) and
(Johnston, 1998) essentially adapt Earley’s chart
parser by representing edges as sets of references
to terminal input elements - unifying these as new
edges are added to the agenda. In practice this
has led to systems that analyze every possible
subset of the input resulting in a combinatorial
explosion that balloons further when considering
the complexities of cross-sentential phenomena
such as anaphora, and the effects of noise and
uncertainty on speech and gesture tracking. We
will later show the extent to which CLAVIUS

reduces the size of the search space.
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Directed graphs conveniently represent
both syntactic and semantic structure, and all
partial parses in CLAVIUS , including terminal-
level input, are represented graphically. Few
restrictions apply, except that arcs labelled
CAT and TIME must exist to represent the
grammar category and time spanned by the
parse, respectively1. Similarly, all grammar rules,
Γi : LHS −→ RHS1 RHS2 ... RHSr, are
graphical structures, as exemplified in Figure 2.

Figure 2: Γ1 : OBJECT REFERENCE −→
NP click {where(NP :: f1) = (click :: f1)}, with
NP expanded by Γ2 : NP −→ DT NN.

1.2 Multimodal Bi-Directional Parsing

Our parsing strategy combines bottom-up and
top-down approaches, but differs from other
approaches to bi-directional chart parsing (Rocio,
1998) in several key respects, discussed below.

1.2.1 Asynchronous Collaborating Threads
A defining characteristic of our approach is

that edges are selected asynchronously by two
concurrent processing threads, rather than serially
in a two-stage process. In this way, we can
distribute processing across multiple machines,
or dynamically alter the priorities given to each
thread. Generally, this allows for a more dynamic
process where no thread can dominate the other. In
typical bi-directional chart parsing the top-down
component is only activated when the bottom-up
component has no more legal expansions (Ageno,
2000).

1.2.2 Unordered Constituents
Alhough evidence suggests that deictic

gestures overlap or follow corresponding spoken
pronomials 85-93% of the time (Kettebekov et al,

1Usually this timespan corresponds to the real-time
occurrence of a speech or gestural event, but the actual
semantics are left to the application designer

2002), we must allow for all possible permutations
of multi-dimensional input - as in “put ↘ this ↘
here.” vs. “put this ↘ here ↘ .”, for example.

We therefore take the unconvential approach
of placing no mandatory ordering constraints on
constituents, hence the rule Γabc : A −→ B C
parses the input “ C B”. We show how we can
easily maintain regular temporal ordering in §3.5.

1.2.3 Partial Qualification
Whereas existing bi-directional chart parsers

maintain fully-qualified edges by incrementally
adding adjacent input words to the agenda,
CLAVIUS has the ability to construct parses that
instantiate only a subset of their constituents,
so Γabc also parses the input “B”, for example.
Repercussions are discussed in §3.4 and §4.

2 The Algorithm

CLAVIUS expands parses according to a best-first
process where newly expanded edges are ordered
according to trainable criteria of multimodal
language, as discussed in §3. Figure 3 shows a
component breakdown of CLAVIUS ’s software
architecture. The sections that follow explain
the flow of information through this system from
sensory input to semantic interpretation.

Figure 3: Simplified information flow between
fundamental software components.

2.1 Lexica and Preprocessing

Each unique input modality is asynchronously
monitored by one of T TRACKERS, each sending
an n-best list of lexical hypotheses to CLAVIUS for
any activity as soon as it is detected. For example,
a gesture tracker (see Figure 4a) parametrizes the
gestures preparation, stroke/point, and retraction
(McNeill, 1992), with values reflecting spatial
positions and velocities of arm motion, whereas
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our speech tracker parametrises words with part-
of-speech tags, and prior probabilities (see Figure
4b). Although preprocessing is reduced to the
identification of lexical tokens, this is more
involved than simple lexicon lookup due to the
modelling of complex signals.

Figure 4: Gestural (a) and spoken (b) ‘words’.

2.2 Data Structures

All TRACKERS write their hypotheses directly
to the first of three SUBSPACES that partition
all partial parses in the search space. The first
is the GENERALISER’s subspace, Ξ[G], which
is monitored by the GENERALISER thread -
the first part of the parser. All new parses
are first written to Ξ[G] before being moved to
the SPECIFIER’s active and inactive subspaces,
Ξ[SAct], and Ξ[SInact], respectively. Subspaces are
optimised for common operations by organising
parses by their scores and grammatical categories
into depth-balanced search trees having the heap
property. The best partial parse in each subspace
can therefore be found in O(1) amortised time.

2.3 Generalisation

The GENERALISER monitors the best partial
parse, Ψg, in Ξ[G], and creates new parses Ψi

for all grammar rules Γi having CATEGORY(Ψg)
on the right-hand side. Effectively, these new
parses are instantiations of the relevant Γi, with
one constituent unified to Ψg. This provides
the impetus towards sentence-level parses, as
simplified in Algorithm 1 and exemplified in
Figure 5. Naturally, if rule Γi has more than one
constituent (c > 1) of type CATEGORY(Ψg), then
c new parses are created, each with one of these
being instantiated.

Since the GENERALISER is activated as soon as
input is added to Ξ[G], the process is interactive
(Tomita, 1985), and therefore incorporates the
associated benefits of efficiency. This is contrasted

with the all-paths bottom-up strategy in GEMINI
(Dowding et al, 1993) that finds all admissable
edges of the grammar.

Algorithm 1: Simplified Generalisation

Data: Subspace Ξ[G], grammar Γ
while data remains in Ξ[G] do

Ψg := highest scoring graph in Ξ[G]

foreach rule Γi s.t. Cat (Ψg) ∈ RHS(Γi)
do

Ψi := Unify (Γi, [• →RHS • ⇒ Ψg])
if ∃Ψi then

Apply Score (Ψi) to Ψi

Insert Ψi into Ξ[G]

Move Ψg into Ξ[SAct]

Figure 5: Example of GENERALISATION.

2.4 Specification
The SPECIFIER thread provides the impetus
towards complete coverage of the input, as
simplified in Algorithm 2 (see Figure 6). It
combines parses in its subspaces that have the
same top-level grammar expansion but different
instantiated constituents. The resulting parse
merges the semantics of the two original graphs
only if unification succeeds, providing a hard
constraint against the combination of incongruous
information. The result, Ψ, of specification must
be written to Ξ[G], otherwise Ψ could never appear
on the RHS of another partial parse. We show how
associated vulnerabilities are overcome in §3.2
and §3.4.

Specification is commutative and will always
provide more information than its constituent
graphs if it does not fail, unlike the ‘overlay’
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method of SMARTKOM (Alexandersson and
Becker, 2001), which basically provides a
subsumption mechanism over background
knowledge.

Algorithm 2: Simplified Specification

Data: Subspaces Ξ[SAct] and Ξ[SInact]

while data remains in Ξ[SAct] do
Ψs := highest scoring graph in Ξ[SAct]

Ψj := highest scoring graph in Ξ[SInact]

s.t. Cat (Ψj) = Cat (Ψs)
while ∃Ψj do

Ψi := Unify (Ψs,Ψj)
if ∃Ψi then

Apply Score (Ψi) to Ψi

Insert Ψi into Ξ[G]

Ψj := next highest scoring graph from
Ξ[SInact] s.t. Cat (Ψj) = Cat (Ψs)
; // Optionally stop after I

iterations, for some I

Move Ψs into Ξ[SInact]

Figure 6: Example of SPECIFICATION.

2.5 Cognition
The COGNITION thread monitors the best
sentence-level hypothesis, ΨB , in Ξ[SInact],
and terminates the search process once ΨB has
remained unchallenged by new competing parses
for some period of time.

Once found, COGNITION communicates ΨB to
the APPLICATION. Both COGNITION and the
APPLICATION read state information from the
MySQL WORLD database, as discussed in §3.5,

though only the latter can modify it.

3 Applying Domain-Centric Knowledge

Upon being created, all partial parses are assigned
a score approximating its likelihood of being part
of an accepted multimodal sentence. The score

of partial parse Ψ, SCORE(Ψ) =
|S|∑
i=0

ωiκi(Ψ),

is a weighted linear combination of independent
scoring modules (KNOWLEDGE SOURCES). Each
module presents a score function κi : Ψ → <[0..1]

according to a unique criterion of multimodal
language, weighted by ωi, also on <[0..1]. Some
modules provide ‘hard constraints‘ that can
outright forbid unification, returning κi = −∞
in those cases. A subset of the criteria we have
explored are outlined below.

3.1 Temporal Alignment (κ1)
By modelling the timespans of parses as
Gaussians, where µ and σ are determined by the
midpoint and 1

2 the distance between the two
endpoints, respectively - we can promote parses
whose constituents are closely related in time
with the symmetric Kullback-Leibler divergence,
DKL(Ψ1,Ψ2) = (σ2

1−σ2
2)2+((µ1−µ2)(σ2

1+σ2
2))2

4σ2
1σ2

2
.

Therefore, κ1 promotes more locally-structured
parses, and co-occuring multimodal utterances.

3.2 Ancestry Constraint (κ2)
A consequence of accepting n-best lexical
hypotheses for each word is that we risk unifying
parses that include two competing hypotheses.
For example, if our speech TRACKER produces
hypotheses “horse” and “house” for ambiguous
input, then κ2 explicitly prohibits the parse “the
horse and the house” with flags on lexical content.

3.3 Probabilistic Grammars (κ3)
We emphasise more common grammatical
constructions by augmenting each grammar
rule with an associated probability, P (Γi),
and assigning κ3(Ψ) = P (RULE(Ψ)) ·∏
Ψc=constituent of Ψ

κ3(Ψc) where RULE is the

top-level expansion of Ψ.
Probabilities are trainable by maximum

likelihood estimation on annotated data. Within
the context of CLAVIUS , κ3 promotes the
processing of new input words and shallower
parse trees.
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3.4 Information Content (κ4), Coverage (κ5)
The κ4 module partially orders parses by
preferring those that maximise the joint entropy
between the semantic variables of its constituent
parses. Furthermore, we use a shifted sigmoid
κ5(Ψ) = 2

1+e−
2
5 NUMWORDSIN(Ψ)

−1, to promote parses

that maximise the number of ‘words’ in a parse.
These two modules together are vital in choosing
fully specified sentences.

3.5 Functional Constraints (κ6)
Each grammar rule Γi can include constraint
functions f : Ψ → <[0,1] parametrised by values
in instantiated graphs. For example, the function
T FOLLOWS(Ψ1,Ψ2) returns 1 if constituent Ψ2

follows Ψ1 in time, and −∞ otherwise, thus
maintaining ordering constraints. Functions are
dynamically loaded and executed during scoring.

Since functions are embedded directly within
parse graphs, their return values can be directly
incorporated into those parses, allowing us to
utilise data in the WORLD. For example, the
function OBJECTAT(x, y, &o) determines if an
object exists at point (x, y), as determined by a
pointing gesture, and writes the type of this object,
o, to the graph, which can later further constrain
the search.

4 Early Results

We have constructed a simple blocks-world
experiment where a user can move, colour,
create, and delete geometric objects using speech
and pointing gestures with 74 grammar rules,
25 grammatical categories, and a 43-word
vocabulary. Ten users were recorded interacting
with this system, for a combined total of 2.5
hours of speech and gesture data, and 2304
multimodal utterances. Our randomised data
collection mechanism was designed to equitably
explore the four command types. Test subjects
were given no indication as to the types of phrases
we expected - but were rather shown a collection
of objects and were asked to replicate it, given the
four basic types of actions.

Several aspects of the parser have been tested at
this stage and are summarised below.

4.1 Accuracy
Table 1 shows three hand-tuned configurations of
the module weights ωi, with ω2 = 0.0, since κ2

provides a ‘hard constraint’ (§3.2).

Figure 7 shows sentence-level precision
achieved for each Ωi on each of the four tasks,
where precision is defined as the proportion of
correctly executed sentences. These are compared
against the CMU Sphinx-4 speech recogniser
using the unimodal projection of the multimodal
grammar. Here, conjunctive phrases such as “Put
a sphere here and colour it yellow” are classified
according to their first clause.

Presently, correlating the coverage and
probabilistic grammar constraints with higher
weights ( > 30%) appears to provide the best
results. Creation and colouring tasks appeared
to suffer most due to missing or misunderstood
head-noun modifiers (ie., object colour). In these
examples, CLAVIUS ranged from a −51.7% to a
62.5% relative error reduction rate over all tasks.

Config ω1 ω
(∗)
2 ω3 ω4 ω5 ω6

Ω1 0.4 0.0 0.3 0.1 0.1 0.1
Ω2 0.2 0.0 0.1 0.3 0.2 0.2
Ω3 0.1 0.0 0.3 0.3 0.15 0.15

Table 1: Three weight configurations.

Figure 7: Precision across the test tasks.

4.2 Work Expenditure

To test whether the best-first approach
compensates for CLAVIUS ’ looser constraints
(§1.2), a simple bottom-up multichart parser
(§1.1) was constructed and the average number
of edges it produces on sentences of varying
length was measured. Figure 8 compares this
against the average number of edges produced
by CLAVIUS on the same data. In particular,
although CLAVIUS generally finds the parse it will
accept relatively quickly (‘CLAVIUS - found’),
the COGNITION module will delay its acceptance
(‘CLAVIUS - accepted’) for a time. Further tuning
will hopefully reduce this ‘waiting period’.
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Figure 8: Number of edges expanded, given
sentence length.

5 Remarks

CLAVIUS consistently ignores over 92% of
dysfluencies (eg. “uh”) and significant noise
events in tracking, apparently as a result of the
partial qualifications discussed in §1.2.3, which is
especially relevant in noisy environments. Early
unquantified observation also suggests that a
result of unordered constituents is that parses
incorporating lead words - head nouns, command
verbs and pointing gestures in particular - are
emphasised and form sentence-level parses early,
and are later ‘filled in’ with function words.

5.1 Ongoing Work
There are at least four avenues open to exploration
in the near future. First, applying the parser to
directed two-party dialogue will explore context-
sensitivity and a more complex grammar. Second,
the architecture lends itself to further parallelism
- specifically by permitting P > 1 concurrent
processing units to dynamically decide whether to
employ the GENERALISER or SPECIFIER, based
on the sizes of shared active subspaces.

We are also currently working on scoring
modules that incorporate language modelling
(with discriminative training), and prosody-based
co-analysis. Finally, we have already begun work
on automatic methods to train scoring parameters,
including the distribution of ωi, and module-
specific training.

6 Acknowledgements

Funding has been provided by la bourse de
maitrisse of the fonds québécois de la recherche
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