
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 913–920,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Using String-Kernels for Learning Semantic Parsers

Rohit J. Kate

Department of Computer Sciences

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712-0233, USA

rjkate@cs.utexas.edu

Raymond J. Mooney

Department of Computer Sciences

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712-0233, USA

mooney@cs.utexas.edu

Abstract

We present a new approach for mapping

natural language sentences to their for-

mal meaning representations using string-

kernel-based classifiers. Our system learns

these classifiers for every production in the

formal language grammar. Meaning repre-

sentations for novel natural language sen-

tences are obtained by finding the most

probable semantic parse using these string

classifiers. Our experiments on two real-

world data sets show that this approach

compares favorably to other existing sys-

tems and is particularly robust to noise.

1 Introduction

Computational systems that learn to transform nat-

ural language sentences into formal meaning rep-

resentations have important practical applications

in enabling user-friendly natural language com-

munication with computers. However, most of the

research in natural language processing (NLP) has

been focused on lower-level tasks like syntactic

parsing, word-sense disambiguation, information

extraction etc. In this paper, we have considered

the important task of doing deep semantic parsing

to map sentences into their computer-executable

meaning representations.

Previous work on learning semantic parsers

either employ rule-based algorithms (Tang and

Mooney, 2001; Kate et al., 2005), or use sta-

tistical feature-based methods (Ge and Mooney,

2005; Zettlemoyer and Collins, 2005; Wong and

Mooney, 2006). In this paper, we present a

novel kernel-based statistical method for learn-

ing semantic parsers. Kernel methods (Cristianini

and Shawe-Taylor, 2000) are particularly suitable

for semantic parsing because it involves mapping

phrases of natural language (NL) sentences to se-

mantic concepts in a meaning representation lan-

guage (MRL). Given that natural languages are so

flexible, there are various ways in which one can

express the same semantic concept. It is difficult

for rule-based methods or even statistical feature-

based methods to capture the full range of NL con-

texts which map to a semantic concept because

they tend to enumerate these contexts. In contrast,

kernel methods allow a convenient mechanism to

implicitly work with a potentially infinite number

of features which can robustly capture these range

of contexts even when the data is noisy.

Our system, KRISP (Kernel-based Robust In-

terpretation for Semantic Parsing), takes NL sen-

tences paired with their formal meaning represen-

tations as training data. The productions of the for-

mal MRL grammar are treated like semantic con-

cepts. For each of these productions, a Support-

Vector Machine (SVM) (Cristianini and Shawe-

Taylor, 2000) classifier is trained using string sim-

ilarity as the kernel (Lodhi et al., 2002). Each

classifier then estimates the probability of the pro-

duction covering different substrings of the sen-

tence. This information is used to compositionally

build a complete meaning representation (MR) of

the sentence.

Some of the previous work on semantic pars-

ing has focused on fairly simple domains, primar-

ily, ATIS (Air Travel Information Service) (Price,

1990) whose semantic analysis is equivalent to fill-

ing a single semantic frame (Miller et al., 1996;

Popescu et al., 2004). In this paper, we have

tested KRISP on two real-world domains in which

meaning representations are more complex with

richer predicates and nested structures. Our exper-

iments demonstrate that KRISP compares favor-

913

NL: “If the ball is in our goal area then our player 1 should
intercept it.”

CLANG: ((bpos (goal-area our))

(do our {1} intercept))

Figure 1: An example of an NL advice and its

CLANG MR.

ably to other existing systems and is particularly

robust to noise.

2 Semantic Parsing

We call the process of mapping natural language

(NL) utterances into their computer-executable

meaning representations (MRs) as semantic pars-

ing. These MRs are expressed in formal languages

which we call meaning representation languages

(MRLs). We assume that all MRLs have deter-

ministic context free grammars, which is true for

almost all computer languages. This ensures that

every MR will have a unique parse tree. A learn-

ing system for semantic parsing is given a training

corpus of NL sentences paired with their respec-

tive MRs from which it has to induce a semantic

parser which can map novel NL sentences to their

correct MRs.

Figure 1 shows an example of an NL sentence

and its MR from the CLANG domain. CLANG

(Chen et al., 2003) is the standard formal coach

language in which coaching advice is given to soc-

cer agents which compete on a simulated soccer

field in the RoboCup 1 Coach Competition. In the

MR of the example, bpos stands for “ball posi-

tion”.

The second domain we have considered is the

GEOQUERY domain (Zelle and Mooney, 1996)

which is a query language for a small database of

about 800 U.S. geographical facts. Figure 2 shows

an NL query and its MR form in a functional query

language. The parse of the functional query lan-

guage is also shown along with the involved pro-

ductions. This example is also used later to illus-

trate how our system does semantic parsing. The

MR in the functional query language can be read

as if processing a list which gets modified by vari-

ous functions. From the innermost expression go-

ing outwards it means: the state of Texas, the list

containing all the states next to the state of Texas

and the list of all the rivers which flow through

these states. This list is finally returned as the an-

swer.

1http://www.robocup.org/

NL: “Which rivers run through the states bordering Texas?”

Functional query language:

answer(traverse(next to(stateid(‘texas’))))

Parse tree of the MR in functional query language:
ANSWER

answer RIVER

TRAVERSE

traverse

STATE

NEXT TO

next to

STATE

STATEID

stateid ‘texas’

Productions:
ANSWER → answer(RIVER) RIVER → TRAVERSE(STATE)

STATE → NEXT TO(STATE) STATE → STATEID

TRAVERSE → traverse NEXT TO → next to

STATEID → stateid(‘texas’)

Figure 2: An example of an NL query and its MR

in a functional query language with its parse tree.

KRISP does semantic parsing using the notion

of a semantic derivation of an NL sentence. In

the following subsections, we define the seman-

tic derivation of an NL sentence and its probabil-

ity. The task of semantic parsing then is to find

the most probable semantic derivation of an NL

sentence. In section 3, we describe how KRISP

learns the string classifiers that are used to obtain

the probabilities needed in finding the most prob-

able semantic derivation.

2.1 Semantic Derivation

We define a semantic derivation, D, of an NL sen-

tence, s, as a parse tree of an MR (not necessarily

the correct MR) such that each node of the parse

tree also contains a substring of the sentence in

addition to a production. We denote nodes of the

derivation tree by tuples (π, [i..j]), where π is its

production and [i..j] stands for the substring s[i..j]
of s (i.e. the substring from the ith word to the jth

word), and we say that the node or its production

covers the substring s[i..j]. The substrings cov-

ered by the children of a node are not allowed to

overlap, and the substring covered by the parent

must be the concatenation of the substrings cov-

ered by its children. Figure 3 shows a semantic

derivation of the NL sentence and the MR parse

which were shown in figure 2. The words are num-

bered according to their position in the sentence.

Instead of non-terminals, productions are shown

in the nodes to emphasize the role of productions

in semantic derivations.

Sometimes, the children of an MR parse tree

914

(ANSWER→ answer(RIVER), [1..9])

(RIVER→ TRAVERSE(STATE), [1..9])

(TRAVERSE→traverse, [1..4])

which1 rivers2 run3 through4

(STATE→ NEXT TO(STATE), [5..9])

(NEXT TO→ next to, [5..7])

the5 states6 bordering7

(STATE→ STATEID, [8..9])

(STATEID→ stateid ‘texas’, [8..9])

Texas8 ?9

Figure 3: Semantic derivation of the NL sentence “Which rivers run through the states bordering Texas?”

which gives MR as answer(traverse(next to(stateid(texas)))).

node may not be in the same order as are the sub-

strings of the sentence they should cover in a se-

mantic derivation. For example, if the sentence

was “Through the states that border Texas which

rivers run?”, which has the same MR as the sen-

tence in figure 3, then the order of the children of

the node “RIVER → TRAVERSE(STATE)” would

need to be reversed. To accommodate this, a se-

mantic derivation tree is allowed to contain MR

parse tree nodes in which the children have been

permuted.

Note that given a semantic derivation of an NL

sentence, it is trivial to obtain the corresponding

MR simply as the string generated by the parse.

Since children nodes may be permuted, this step

also needs to permute them back to the way they

should be according to the MRL productions. If a

semantic derivation gives the correct MR of the

NL sentence, then we call it a correct semantic

derivation otherwise it is an incorrect semantic

derivation.

2.2 Most Probable Semantic Derivation

Let Pπ(u) denote the probability that a production

π of the MRL grammar covers the NL substring

u. In other words, the NL substring u expresses

the semantic concept of a production π with prob-

ability Pπ(u). In the next subsection we will de-

scribe how KRISP obtains these probabilities using

string-kernel based SVM classifiers. Assuming

these probabilities are independent of each other,

the probability of a semantic derivation D of a sen-

tence s is then:

P (D) =
∏

(π,[i..j])∈D

Pπ(s[i..j])

The task of the semantic parser is to find the

most probable derivation of a sentence s. This

task can be recursively performed using the no-

tion of a partial derivation En,s[i..j], which stands

for a subtree of a semantic derivation tree with n

as the left-hand-side (LHS) non-terminal of the

root production and which covers s from index

i to j. For example, the subtree rooted at the

node “(STATE → NEXT TO(STATE),[5..9])” in

the derivation shown in figure 3 is a partial deriva-

tion which would be denoted as ESTATE,s[5..9].

Note that the derivation D of sentence s is then

simply Estart,s[1..|s|], where start is the start sym-

bol of the MRL’s context free grammar, G.

Our procedure to find the most probable par-

tial derivation E∗
n,s[i..j] considers all possible sub-

trees whose root production has n as its LHS non-

terminal and which cover s from index i to j.

Mathematically, the most probable partial deriva-

tion E∗
n,s[i..j] is recursively defined as:

E∗
n,s[i..j] =

makeTree(arg max

π = n → n1..nt ∈ G,
(p1, .., pt) ∈

partition(s[i..j], t)

(Pπ(s[i..j])

∏

k=1..t

P (E
∗

nk,pk
)))

where partition(s[i..j], t) is a function which re-

turns the set of all partitions of s[i..j] with t el-

ements including their permutations. A parti-

tion of a substring s[i..j] with t elements is a

t−tuple containing t non-overlapping substrings

of s[i..j] which give s[i..j] when concatenated.

For example, (“the states bordering”, “Texas ?”)

is a partition of the substring “the states bor-

dering Texas ?” with 2 elements. The proce-

dure makeTree(π, (p1, .., pt)) constructs a partial

derivation tree by making π as its root production

and making the most probable partial derivation

trees found through the recursion as children sub-

trees which cover the substrings according to the

partition (p1, .., pt).
The most probable partial derivation E∗

n,s[i..j]
is found using the above equation by trying all

productions π = n → n1..nt in G which have

915

n as the LHS, and all partitions with t elements

of the substring s[i..j] (n1 to nt are right-hand-

side (RHS) non-terminals of π, terminals do not

play any role in this process and are not shown

for simplicity). The most probable partial deriva-

tion E∗
STATE,s[5..9] for the sentence shown in fig-

ure 3 will be found by trying all the productions

in the grammar with STATE as the LHS, for ex-

ample, one of them being “STATE → NEXT TO

STATE”. Then for this sample production, all parti-

tions, (p1, p2), of the substring s[5..9] with two el-

ements will be considered, and the most probable

derivations E∗
NEXT TO,p1

and E∗
STATE,p2

will be

found recursively. The recursion reaches base

cases when the productions which have n on the

LHS do not have any non-terminal on the RHS or

when the substring s[i..j] becomes smaller than

the length t.

According to the equation, a production π ∈ G

and a partition (p1, .., pt) ∈ partition(s[i..j], t)
will be selected in constructing the most probable

partial derivation. These will be the ones which

maximize the product of the probability of π cov-

ering the substring s[i..j] with the product of prob-

abilities of all the recursively found most proba-

ble partial derivations consistent with the partition

(p1, .., pt).
A naive implementation of the above recursion

is computationally expensive, but by suitably ex-

tending the well known Earley’s context-free pars-

ing algorithm (Earley, 1970), it can be imple-

mented efficiently. The above task has some re-

semblance to probabilistic context-free grammar

(PCFG) parsing for which efficient algorithms are

available (Stolcke, 1995), but we note that our task

of finding the most probable semantic derivation

differs from PCFG parsing in two important ways.

First, the probability of a production is not inde-

pendent of the sentence but depends on which sub-

string of the sentence it covers, and second, the

leaves of the tree are not individual terminals of

the grammar but are substrings of words of the NL

sentence. The extensions needed for Earley’s al-

gorithm are straightforward and are described in

detail in (Kate, 2005) but due to space limitation

we do not describe them here. Our extended Ear-

ley’s algorithm does a beam search and attempts

to find the ω (a parameter) most probable semantic

derivations of an NL sentence s using the probabil-

ities Pπ(s[i..j]). To make this search faster, it uses

a threshold, θ, to prune low probability derivation

trees.

3 KRISP’s Training Algorithm

In this section, we describe how KRISP learns

the classifiers which give the probabilities Pπ(u)
needed for semantic parsing as described in the

previous section. Given the training corpus of

NL sentences paired with their MRs {(si, mi)|i =
1..N}, KRISP first parses the MRs using the MRL

grammar, G. We represent the parse of MR, mi,

by parse(mi).

Figure 4 shows pseudo-code for KRISP’s train-

ing algorithm. KRISP learns a semantic parser it-

eratively, each iteration improving upon the parser

learned in the previous iteration. In each itera-

tion, for every production π of G, KRISP collects

positive and negative example sets. In the first

iteration, the set P(π) of positive examples for

production π contains all sentences, si, such that

parse(mi) uses the production π. The set of nega-

tive examples, N (π), for production π includes all

of the remaining training sentences. Using these

positive and negative examples, an SVM classi-

fier 2, Cπ, is trained for each production π using

a normalized string subsequence kernel. Follow-

ing the framework of Lodhi et al. (2002), we de-

fine a kernel between two strings as the number of

common subsequences they share. One difference,

however, is that their strings are over characters

while our strings are over words. The more the

two strings share, the greater the similarity score

will be.

Normally, SVM classifiers only predict the class

of the test example but one can obtain class proba-

bility estimates by mapping the distance of the ex-

ample from the SVM’s separating hyperplane to

the range [0,1] using a learned sigmoid function

(Platt, 1999). The classifier Cπ then gives us the

probabilities Pπ(u). We represent the set of these

classifiers by C = {Cπ|π ∈ G}.

Next, using these classifiers, the extended

Earley’s algorithm, which we call EX-

TENDED EARLEY in the pseudo-code, is invoked

to obtain the ω best semantic derivations for each

of the training sentences. The procedure getMR

returns the MR for a semantic derivation. At this

point, for many training sentences, the resulting

most-probable semantic derivation may not give

the correct MR. Hence, next, the system collects

more refined positive and negative examples

to improve the result in the next iteration. It

2We use the LIBSVM package available at: http://

www.csie.ntu.edu.tw/˜cjlin/libsvm/

916

function TRAIN KRISP(training corpus {(si, mi)|i = 1..N}, MRL grammar G)

for each π ∈G // collect positive and negative examples for the first iteration

for i = 1 to N do

if π is used in parse(mi) then

include si in P(π)
else include si in N (π)

for iteration = 1 to MAX ITR do

for each π ∈G do

Cπ = trainSV M(P(π),N (π)) // SVM training

for each π ∈G P(π) = Φ // empty the positive examples, accumulate negatives though

for i = 1 to N do

D =EXTENDED EARLEY(si, G, P) // obtain best derivations

if 6 ∃ d ∈ D such that parse(mi) = getMR(d) then

D = D ∪ EXTENDED EARLEY CORRECT(si, G, P, mi) // if no correct derivation then force to find one

d∗ = arg maxd∈D&getMR(d)=parse(mi)
P (d)

COLLECT POSITIVES(d∗) // collect positives from maximum probability correct derivation

for each d ∈ D do

if P (d) > P (d∗) and getMR(d) 6= parse(mi) then

// collect negatives from incorrect derivation with larger probability than the correct one

COLLECT NEGATIVES(d, d∗)

return classifiers C = {Cπ|π ∈ G}

Figure 4: KRISP’s training algorithm

is also possible that for some sentences, none

of the obtained ω derivations give the correct

MR. But as will be described shortly, the most

probable derivation which gives the correct MR is

needed to collect positive and negative examples

for the next iteration. Hence in these cases, a

version of the extended Earley’s algorithm, EX-

TENDED EARLEY CORRECT, is invoked which

also takes the correct MR as an argument and

returns the best ω derivations it finds, all of

which give the correct MR. This is easily done by

making sure all subtrees derived in the process are

present in the parse of the correct MR.

From these derivations, positive and negative

examples are collected for the next iteration. Pos-

itive examples are collected from the most prob-

able derivation which gives the correct MR, fig-

ure 3 showed an example of a derivation which

gives the correct MR. At each node in such a

derivation, the substring covered is taken as a pos-

itive example for its production. Negative exam-

ples are collected from those derivations whose

probability is higher than the most probable cor-

rect derivation but which do not give the cor-

rect MR. Figure 5 shows an example of an in-

correct derivation. Here the function “next to”

is missing from the MR it produces. The fol-

lowing procedure is used to collect negative ex-

amples from incorrect derivations. The incorrect

derivation and the most probable correct deriva-

tion are traversed simultaneously starting from the

root using breadth-first traversal. The first nodes

where their productions differ is detected, and all

of the words covered by the these nodes (in both

derivations) are marked. In the correct and incor-

rect derivations shown in figures 3 and 5 respec-

tively, the first nodes where the productions differ

are “(STATE → NEXT TO(STATE), [5..9])” and

“(STATE → STATEID, [8..9])”. Hence, the union

of words covered by them: 5 to 9 (“the states

bordering Texas?”), will be marked. For each

of these marked words, the procedure considers

all of the productions which cover it in the two

derivations. The nodes of the productions which

cover a marked word in the incorrect derivation

but not in the correct derivation are used to col-

lect negative examples. In the example, the node

“(TRAVERSE→traverse,[1..7])” will be used

to collect a negative example (i.e. the words 1

to 7 ‘‘which rivers run through the states border-

ing” will be a negative example for the produc-

tion TRAVERSE→traverse) because the pro-

duction covers the marked words “the”, “states”

and “bordering” in the incorrect derivation but

not in the correct derivation. With this as a neg-

ative example, hopefully in the next iteration, the

probability of this derivation will decrease signif-

icantly and drop below the probability of the cor-

rect derivation.

In each iteration, the positive examples from

the previous iteration are first removed so that

new positive examples which lead to better cor-

rect derivations can take their place. However,

negative examples are accumulated across iter-

ations for better accuracy because negative ex-

amples from each iteration only lead to incor-

rect derivations and it is always good to include

them. To further increase the number of nega-

tive examples, every positive example for a pro-

duction is also included as a negative example for

all the other productions having the same LHS.

After a specified number of MAX ITR iterations,

917

(ANSWER→ answer(RIVER), [1..9])

(RIVER→ TRAVERSE(STATE), [1..9])

(TRAVERSE→traverse, [1..7])

Which1 rivers2 run3 through4 the5 states6 bordering7

(STATE→ STATEID, [8..9])

(STATEID→ stateid texas, [8..9])

Texas8 ?9

Figure 5: An incorrect semantic derivation of the NL sentence ”Which rivers run through the states

bordering Texas?” which gives the incorrect MR answer(traverse(stateid(texas))).

the trained classifiers from the last iteration are

returned. Testing involves using these classifiers

to generate the most probable derivation of a test

sentence as described in the subsection 2.2, and

returning its MR.

The MRL grammar may contain productions

corresponding to constants of the domain, for e.g.,

state names like “STATEID → ‘texas’”, or river

names like “RIVERID → ‘colorado’” etc. Our

system allows the user to specify such produc-

tions as constant productions giving the NL sub-

strings, called constant substrings, which directly

relate to them. For example, the user may give

“Texas” as the constant substring for the produc-

tion “STATEID → ‘texas’. Then KRISP does

not learn classifiers for these constant productions

and instead decides if they cover a substring of the

sentence or not by matching it with the provided

constant substrings.

4 Experiments

4.1 Methodology

KRISP was evaluated on CLANG and GEOQUERY

domains as described in section 2. The CLANG

corpus was built by randomly selecting 300 pieces

of coaching advice from the log files of the 2003

RoboCup Coach Competition. These formal ad-

vice instructions were manually translated into

English (Kate et al., 2005). The GEOQUERY cor-

pus contains 880 English queries collected from

undergraduates and from real users of a web-based

interface (Tang and Mooney, 2001). These were

manually translated into their MRs. The average

length of an NL sentence in the CLANG corpus

is 22.52 words while in the GEOQUERY corpus it

is 7.48 words, which indicates that CLANG is the

harder corpus. The average length of the MRs is

13.42 tokens in the CLANG corpus while it is 6.46
tokens in the GEOQUERY corpus.

KRISP was evaluated using standard 10-fold

cross validation. For every test sentence, only the

best MR corresponding to the most probable se-

mantic derivation is considered for evaluation, and

its probability is taken as the system’s confidence

in that MR. Since KRISP uses a threshold, θ, to

prune low probability derivation trees, it some-

times may fail to return any MR for a test sen-

tence. We computed the number of test sentences

for which KRISP produced MRs, and the number

of these MRs that were correct. For CLANG, an

output MR is considered correct if and only if it

exactly matches the correct MR. For GEOQUERY,

an output MR is considered correct if and only if

the resulting query retrieves the same answer as

the correct MR when submitted to the database.

Performance was measured in terms of precision

(the percentage of generated MRs that were cor-

rect) and recall (the percentage of all sentences for

which correct MRs were obtained).

In our experiments, the threshold θ was fixed

to 0.05 and the beam size ω was 20. These pa-

rameters were found through pilot experiments.

The maximum number of iterations (MAX ITR) re-

quired was only 3, beyond this we found that the

system only overfits the training corpus.

We compared our system’s performance with

the following existing systems: the string and tree

versions of SILT (Kate et al., 2005), a system that

learns transformation rules relating NL phrases

to MRL expressions; WASP (Wong and Mooney,

2006), a system that learns transformation rules

using statistical machine translation techniques;

SCISSOR (Ge and Mooney, 2005), a system that

learns an integrated syntactic-semantic parser; and

CHILL (Tang and Mooney, 2001) an ILP-based

semantic parser. We also compared with the

CCG-based semantic parser by Zettlemoyer et al.

(2005), but their results are available only for the

GEO880 corpus and their experimental set-up is

also different from ours. Like KRISP, WASP and

SCISSOR also give confidences to the MRs they

generate which are used to plot precision-recall

curves by measuring precisions and recalls at vari-

918

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

Recall

KRISP
WASP

SCISSOR
SILT-tree

SILT-string

Figure 6: Results on the CLANG corpus.

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

Recall

KRISP
WASP

SCISSOR
SILT-tree

SILT-string
CHILL

Zettlemoyer et al. (2005)

Figure 7: Results on the GEOQUERY corpus.

ous confidence levels. The results of the other sys-

tems are shown as points on the precision-recall

graph.

4.2 Results

Figure 6 shows the results on the CLANG cor-

pus. KRISP performs better than either version

of SILT and performs comparable to WASP. Al-

though SCISSOR gives less precision at lower re-

call values, it gives much higher maximum recall.

However, we note that SCISSOR requires more su-

pervision for the training corpus in the form of se-

mantically annotated syntactic parse trees for the

training sentences. CHILL could not be run be-

yond 160 training examples because its Prolog im-

plementation runs out of memory. For 160 training

examples it gave 49.2% precision with 12.67% re-

call.

Figure 7 shows the results on the GEOQUERY

corpus. KRISP achieves higher precisions than

WASP on this corpus. Overall, the results show

that KRISP performs better than deterministic

rule-based semantic parsers like CHILL and SILT

and performs comparable to other statistical se-

mantic parsers like WASP and SCISSOR.

4.3 Experiments with Other Natural

Languages

We have translations of a subset of the GEOQUERY

corpus with 250 examples (GEO250 corpus) in

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80 90 100

P
re

c
is

io
n

Recall

English
Japanese

Spanish
Turkish

Figure 8: Results of KRISP on the GEO250 corpus

for different natural languages.

three other natural languages: Spanish, Turkish

and Japanese. Since KRISP’s learning algorithm

does not use any natural language specific knowl-

edge, it is directly applicable to other natural lan-

guages. Figure 8 shows that KRISP performs com-

petently on other languages as well.

4.4 Experiments with Noisy NL Sentences

Any real world application in which semantic

parsers would be used to interpret natural language

of a user is likely to face noise in the input. If the

user is interacting through spontaneous speech and

the input to the semantic parser is coming form

the output of a speech recognition system then

there are many ways in which noise could creep

in the NL sentences: interjections (like um’s and

ah’s), environment noise (like door slams, phone

rings etc.), out-of-domain words, grammatically

ill-formed utterances etc. (Zue and Glass, 2000).

As opposed to the other systems, KRISP’s string-

kernel-based semantic parsing does not use hard-

matching rules and should be thus more flexible

and robust to noise. We tested this hypothesis by

running experiments on data which was artificially

corrupted with simulated speech recognition er-

rors.

The interjections, environment noise etc. are

likely to be recognized as real words by a speech

recognizer. To simulate this, after every word in

a sentence, with some probability Padd, an ex-

tra word is added which is chosen with proba-

bility proportional to its word frequency found in

the British National Corpus (BNC), a good rep-

resentative sample of English. A speech recog-

nizer may sometimes completely fail to detect

words, so with a probability of Pdrop a word is

sometimes dropped. A speech recognizer could

also introduce noise by confusing a word with a

high frequency phonetically close word. We sim-

919

 0

 20

 40

 60

 80

 100

 0 1 2 3 4 5

F
-m

e
a

s
u

re

Noise level

KRISP
WASP

SCISSOR

Figure 9: Results on the CLANG corpus with in-

creasing amounts of noise in the test sentences.

ulate this type of noise by substituting a word in

the corpus by another word, w, with probability

ped(w)∗P (w), where p is a parameter, ed(w) is w’s

edit distance (Levenshtein, 1966) from the original

word and P (w) is w’s probability proportional to

its word frequency. The edit distance which calcu-

lates closeness between words is character-based

rather than based on phonetics, but this should not

make a significant difference in the experimental

results.

Figure 9 shows the results on the CLANG cor-

pus with increasing amounts of noise, from level

0 to level 4. The noise level 0 corresponds to no

noise. The noise parameters, Padd and Pdrop, were

varied uniformly from being 0 at level 0 and 0.1 at

level 4, and the parameter p was varied uniformly

from being 0 at level 0 and 0.01 at level 4. We

are showing the best F-measure (harmonic mean

of precision and recall) for each system at differ-

ent noise levels. As can be seen, KRISP’s perfor-

mance degrades gracefully in the presence of noise

while other systems’ performance degrade much

faster, thus verifying our hypothesis. In this exper-

iment, only the test sentences were corrupted, we

get qualitatively similar results when both training

and test sentences are corrupted. The results are

also similar on the GEOQUERY corpus.

5 Conclusions

We presented a new kernel-based approach to

learn semantic parsers. SVM classifiers based on

string subsequence kernels are trained for each of

the productions in the meaning representation lan-

guage. These classifiers are then used to com-

positionally build complete meaning representa-

tions of natural language sentences. We evaluated

our system on two real-world corpora. The re-

sults showed that our system compares favorably

to other existing systems and is particularly robust

to noise.

Acknowledgments

This research was supported by Defense Ad-

vanced Research Projects Agency under grant

HR0011-04-1-0007.

References
Mao Chen et al. 2003. Users manual: RoboCup soccer server manual for soc-

cer server version 7.07 and later. Available at http://sourceforge.

net/projects/sserver/.

Nello Cristianini and John Shawe-Taylor. 2000. An Introduction to Support

Vector Machines and Other Kernel-based Learning Methods. Cambridge

University Press.

Jay Earley. 1970. An efficient context-free parsing algorithm. Communica-

tions of the Association for Computing Machinery, 6(8):451–455.

R. Ge and R. J. Mooney. 2005. A statistical semantic parser that integrates

syntax and semantics. In Proc. of 9th Conf. on Computational Natural

Language Learning (CoNLL-2005), pages 9–16, Ann Arbor, MI, July.

R. J. Kate, Y. W. Wong, and R. J. Mooney. 2005. Learning to transform natural

to formal languages. In Proc. of 20th Natl. Conf. on Artificial Intelligence

(AAAI-2005), pages 1062–1068, Pittsburgh, PA, July.

Rohit J. Kate. 2005. A kernel-based approach to learning semantic parsers.

Technical Report UT-AI-05-326, Artificial Intelligence Lab, University of

Texas at Austin, Austin, TX, November.

V. I. Levenshtein. 1966. Binary codes capable of correcting insertions and

reversals. Soviet Physics Doklady, 10(8):707–710, February.

Huma Lodhi, Craig Saunders, John Shawe-Taylor, Nello Cristianini, and Chris

Watkins. 2002. Text classification using string kernels. Journal of Ma-

chine Learning Research, 2:419–444.

Scott Miller, David Stallard, Robert Bobrow, and Richard Schwartz. 1996. A

fully statistical approach to natural language interfaces. In Proc. of the 34th

Annual Meeting of the Association for Computational Linguistics (ACL-

96), pages 55–61, Santa Cruz, CA.

John C. Platt. 1999. Probabilistic outputs for support vector machines and

comparisons to regularized likelihood methods. In Alexander J. Smola, Pe-

ter Bartlett, Bernhard Schölkopf, and Dale Schuurmans, editors, Advances

in Large Margin Classifiers, pages 185–208. MIT Press.

Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander

Yates. 2004. Modern natural language interfaces to databases: Composing

statistical parsing with semantic tractability. In Proc. of 20th Intl. Conf. on

Computational Linguistics (COLING-04), Geneva, Switzerland, August.

Patti J. Price. 1990. Evaluation of spoken language systems: The ATIS do-

main. In Proc. of 3rd DARPA Speech and Natural Language Workshop,

pages 91–95, June.

Andreas Stolcke. 1995. An efficient probabilistic context-free parsing al-

gorithm that computes prefix probabilities. Computational Linguistics,

21(2):165–201.

L. R. Tang and R. J. Mooney. 2001. Using multiple clause constructors in

inductive logic programming for semantic parsing. In Proc. of the 12th

European Conf. on Machine Learning, pages 466–477, Freiburg, Germany.

Yuk Wah Wong and Raymond J. Mooney. 2006. Learning for semantic pars-

ing with statistical machine translation. In Proc. of Human Language Tech-

nology Conf. / North American Association for Computational Linguistics

Annual Meeting (HLT/NAACL-2006), New York City, NY. To appear.

John M. Zelle and Raymond J. Mooney. 1996. Learning to parse database

queries using inductive logic programming. In Proc. of 13th Natl. Conf. on

Artificial Intelligence (AAAI-96), pages 1050–1055, Portland, OR, August.

Luke S. Zettlemoyer and Michael Collins. 2005. Learning to map sentences to

logical form: Structured classification with probabilistic categorial gram-

mars. In Proc. of 21th Conf. on Uncertainty in Artificial Intelligence (UAI-

2005), Edinburgh, Scotland, July.

Victor W. Zue and James R. Glass. 2000. Conversational interfaces: Advances

and challenges. In Proc. of the IEEE, volume 88(8), pages 1166–1180.

920

