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Abstract 

This paper presents a generative model based on the language modeling approach 
for sentiment analysis. By characterizing the semantic orientation of documents as 
“favorable” (positive) or “unfavorable” (negative), this method captures the subtle 
information needed in text retrieval. In order to conduct this research, a language 
model based method is proposed to keep the dependent link between a “term” and 
other ordinary words in the context of a triggered language model: first, a batch of 
terms in a domain are identified; second, two different language models 
representing classifying knowledge for every term are built up from subjective 
sentences; last, a classifying function based on the generation of a test document is 
defined for the sentiment analysis. When compared with Support Vector Machine, 
a popular discriminative model, the language modeling approach performs better 
on a Chinese digital product review corpus by a 3-fold cross-validation. This result 
motivates one to consider finding more suitable language models for sentiment 
detection in future research. 

Keywords: Sentiment Analysis, Subjective Sentence, Language Modeling, 
Supervised Learning. 

1. Introduction 

Traditional wisdom of document categorization lies in mapping a document to given topics 
that are usually sport, finance, politics, etc. Whereas, in recent years there has been a growing 
interest in non-topical analysis, in which characterizations are sought by the opinions and 
feelings depicted in documents, instead of just their themes. This method of analysis is defined 
to classify a document as favorable (positive) or unfavorable (negative), which is called 
sentiment classification. Labeling documents by their semantic orientation provides succinct 
summaries to readers and will have a great impact on the field of intelligent information 
retrieval. 
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In this study, the set of documents is rooted in the topic of digital product review, which 
will be defined in the latter part of this article. Accordingly, the documents can be classified 
into praising the core product or criticizing it. Obviously, a praising review corresponds to 
“favorable” and a criticizing one is “unfavorable” (the neutral review is not considered in this 
study). 

Most research for document categorization adopts the “bag of words” representing model 
that treats words as independent features. On the other hand, utilizing such a representing 
mechanism may be imprecise for sentiment analysis. Take a simple sentence in Chinese as an 
example: “ਲ㧃 P712㡕ຝ㢊ᕴ܂Ա֒伀Δ㢊ຒ৫䬗具ݶޓԱΖ(The processor inside 
Kodak P712 has been upgraded, so its processing speed ought to be faster.)” The term “ਲ㧃
(Kodak)” is very helpful for determining its theme of “digital product review”, but words “֒
伀(update)” and “ݶ(fast)” corresponding to “㢊ᕴ(processor)” and “㢊ຒ৫(processing 
speed)” ought to be the important clues for semantic orientation (praise the product). Inversely, 
see another sentence in Chinese: “㪤㱐䶣ۃ䮦༉ৰݶΖ(So, the battery was used up 
quickly.)” The words “䮦 (use up)” and “ݶ (fast)” become unfavorable features of the 
term “䶣ۃ (battery)”. That is to say, these words probably contribute less to the sentiment 
classification if they are dispersed into the document vector, because the direct/indirect 
relationships between ordinary words and the terms within the sentence are lost. Unfortunately, 
traditional n-gram features cannot easily deal with these long-distance dependencies. 

Sentiment classification is a complex semantic problem [Pang et al. 2002; Turney 2002] 
that needs knowledge for decision-making. The researchers, here, explore a new idea-based 
language model for the sentiment classification of sentences rather than full document, in 
which the terms such as “㢊ᕴ (processor)”, “㢊ຒ৫ (processing speed)” are target 
objects to be evaluated in the context. They are mostly the nouns or noun phrases: “ৠኟ 
(Screen)”, “։ᙃ  (Resolution)”, “咭ۥ  (Color)”, etc. If the sentiment classifying 
knowledge on how to comment on these terms can be obtained by the training data in advance, 
the goal of sentiment analysis can be achieved by matching the terms in the test documents. 
Thus, the classifying task for the full document is changed to recognizing the semantic 
orientation of all terms in accordance with their sentence-level contexts. This can also be 
considered a positive/negative word counting method for sentiment analysis. 

In this study, the authors construct two language models for each term to capture the 
difference of sentiment context for that term. In these language models, sentences are divided 
into terms and their contexts. Sentences without the defined terms are ignored since they make 
no contribution to the document level sentiment classification; hence, they are omitted from 
training and test documents. This idea of grouping a document under subjective and objective 
portions is similar to Pang’s work [Pang and Lee 2004]. 
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This work can be divided into three main parts: first, some terms are extracted from a 
Chinese digital product review corpus [Chen et al. 2005]; second, two language models 
representing positive and negative classifying knowledge for each term are determined from 
training a subjective sentence set; third, the two models are applied to the test set and then 
compared with a popular discriminative classifier, SVM. The experiments demonstrate the 
better performance of the language modeling approach. 

The rest of this paper is structured as follows. Section 2 briefly reviews the related works. 
Section 3 provides short introductions to SVM and language model. Section 4 describes the 
model in detail. Section 5 presents the method of estimating model parameters, in which a 
smoothing technique is utilized. Section 6 shows some experiments to exemplify the 
availability of the language modeling approach. In section 7, conclusions are given. 

2. Related Works 

A considerable amount of research has been done about document categorization other than 
topic-based classification in recent years. For example, Biber [Biber 1988] concentrated on 
sorting documents in terms of their source or source style with stylistic variation such as 
author, publisher, and native-language background. Sentiment classification for documents, 
though, has attracted tremendous attention for its broad applications in various domains such 
as movie reviews and customer feedback reviews [Gamon 2004; Pang et al. 2002; Pang and 
Lee 2004; Turney and Littman 2003]. Many research projects have used positive or negative 
term counting methods, which automatically determine the positive or negative orientation of 
a term [Turney and Littman 2002]. Other projects have focused on machine learning 
algorithms, such as Bayesian Classifier and SVMs, to classify entire reviews in a manner 
similar to a pattern recognition task.�

Some related works focus on categorizing the semantic orientation of individual words or 
phrases by employing linguistic heuristics [Hatzivassiloglou and McKeown 1997; 
Hatzivassiloglou and Wiebe 2000; Turney and Littman 2002]. The word’s semantic 
orientation refers to a real number measure of the positive or negative sentiment expressed by 
a word or a phrase [Hatzivassiloglou and McKeown 1997]. In previous works, the approach 
taken by Turney [Turney and Littman 2002] is used to derive such values for selected phrases 
in the document. The semantic orientation of a phrase is determined based on the phrase’s 
Pointwise Mutual Information (PMI) with the words “excellent” and “poor”. PMI is defined 
by Church and Hanks [Church and Hanks 1989] as follows: 
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where p(w1&w2) is the probability that w1 and w2 co-occur. The orientation for a phrase is the 
difference between its PMI with the word “excellent” and the PMI with the word “poor”. The 
final orientation is: 

( ) ( ," ") ( ," ")SO phrase PMI phrase excellent PMI phrase poor .                  (2) 

This yields values above zero for phrases having greater PMI with the word “excellent” 
and below zero for greater PMI with “poor”. An SO value of zero denotes a neutral semantic 
orientation. This approach is simple but effective. Moreover, it is neither restricted to words of 
a particular part of speech (e.g. adjectives), nor restricted to a single word, but can be applied 
to multiple-word phrases. The semantic orientation of phrases can be used to determine the 
sentiment of complete sentences and reviews. In Turney’s work, 410 reviews were taken and 
the accuracy of classifying the documents was found when computing the polarity of phrases 
for different kinds of reviews. Results ranged from 84% for automobile reviews to as low as 
66% for movie reviews. 

Another method of classifying documents into positive and negative is to use a learning 
algorithm to classify the documents. Several algorithms were compared in [Pang et al. 2002], 
where it was found that SVMs generally give better results. Unigrams, bigrams, part of speech 
information, and the position of the terms in the text are used as features, where using only 
unigrams is found to produce the best results. Pang et al. further analyzed the problem to 
discover how difficult sentiment analysis is. Their findings indicate that, generally, these 
algorithms are not able to generate accuracy in the sentiment classification problem in 
comparison with the standard topic-based categorization. As a method to determine the 
sentiment of a document, Bayesian belief networks are used to represent a Markov Blanket 
[Bai 2004], which is a directed acyclic graph where each vertex represents a word and the 
edges are dependencies between the words. 

Methods for extracting subjective expressions from collections are presented in [Pang 
and Lee 2004]. Subjectivity clues include low-frequency words, collocations, and adjectives 
and verbs identified using distribution similarity. In [Riloff and Wiebe 2003], a bootstrapping 
process learns linguistically rich extraction patterns for subjective expressions. Classifiers 
define unlabeled data to automatically create a large training set, which is then given to an 
extraction pattern learning algorithm. The learned patterns are then used to identify more 
subjective sentences. A method to distinguish objective statements from subjective statements 
is also presented in [Pang and Lee 2004]. This method is based on the assumption that 
objective and subjective sentences are more possibly to appear in groups. First, each sentence 
is given a score indicating if the sentence is more likely to be subjective or objective using a 
Naive Bayes classifier trained on a subjectivity data set. The system then adjusts the 
subjectivity of a sentence based on how close it is to other subjective or objective sentences. 
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This method obtains amazing results with up to 86% accuracy on the movie review set. A 
similar experiment is presented in [Yu and Hatzivassiloglou 2003].�

Past works on sentiment-based categorization of entire texts also involve using cognitive 
linguistics [Hearst 1992; Sack 1994] or manually constructing discriminated lexicons [Das and 
Chen 2001; Tong 2001]. These works enlighten researchers on the research on learning 
sentiment models for terms in the given domain. 

It is worth referring to an interesting study conducted by Koji Eguchi and Victor 
Lavrenko [Eguchi and Lavrenko 2006]. In their contribution, they do not pay more attention to 
sentiment classification itself, but propose several sentiment retrieval models in the framework 
of generative modeling approach for ranking. Their research assumes that the polarity of 
sentiment interest is specified in the users’ need in some manner, where the topic dependence 
of the sentiment is considered. 

3. SVMs and Language Model 

3.1 SVMs 
Support Vector Machine (SVM) is highly effective on traditional document categorization 
[Joachims 1998], and its basic idea is to find the hyper-plane that separates two classes of 
training examples with the largest margin [Burges 1998]. It is expected that the larger the 
margin, the better the generalization of the classifier. 

The hyper-plane is in a higher dimensional space called feature space and is mapped 
from the original space. The mapping is done through kernel functions that allow one to 
compute inner products in the feature space. The key idea in mapping to a higher space is that, 
in a sufficiently high dimension, data from two categories can always be separated by a 
hyper-plane. In order to implement the sentiment classification task, these two categories are 
designated positive and negative. Accordingly, if d is the vector of a document, then the 
discriminant function is given by: 

( ) ( )f d w d b .                                                      (3) 

Here, w is the weight vector in feature space that is obtained by the SVM from the training 
examples. The “·” denotes the inner product and b is a constant. The function  is the mapping 
function. The equation w· (d) + b = 0 represents the hyper-plane in the higher space. Its value 
f(d) for a document d is proportional to the perpendicular distance of the document’s 
augmented feature vector (d) from the separating hyper-plane. The SVM is trained such that 
f(d)  1 for positive (favorable) examples and f(x)  -1 for negative (unfavorable) examples. 

Joachim’s SVMlight package [Joachims 1999] was used for training and testing. For more 
details on SVM, the reader is referred to Cristiani and Shawe-Tailor’s tutorial [Cristianini and 
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Shawe-Taylor 2000] and Roberto Basili’s paper [Basili 2003]. 

3.2 Language Models 
A statistical language model is a probability distribution over all possible word sequences in a 
language [Rosenfeld 2000]. Generally, the task of language modeling handles the problem: 
how likely would the ith word occur in a sequence given the history of the preceding i-1 words? 
In most applications of language modeling, such as speech recognition and information 
retrieval, the probability of a word sequence is decomposed into a product of n-gram 
probabilities. Let one assume that L denotes a specified sequence of k words, 

1 2... kL w w w .                                                           (4) 

An n-gram language model considers the sequence L to be a Markov process with probability 

1
1

1
( ) ( | )

k i
i i n

i
p L p w w .                                                  (5) 

When n is 1, it is a unigram language model which uses only estimates of the probabilities of 
individual words, and when n is equal to 2, it is the bigram model which is estimated using 
information about the co-occurrence of pairs of words. On the other hand, the value of n-1 is 
also called the order of the Markov process. 

To establish the n-gram language model, probability estimates are typically derived from 
frequencies of n-gram patterns in the training data. It is common that many possible n-gram 
patterns would not appear in the actual data used for estimation, even if the size of the data is 
huge. As a consequence, for a rare or unseen n-gram, the likelihood estimates that are directly 
based on counts may become problematic. This is often referred to as data sparseness. 
Smoothing is used to address this problem and has been an important part of various language 
models. 

4. A Generative Model for Sentiment Classification 

In this section, a language modeling approach to detect semantic orientation of document is 
proposed. This approach is very simple: one must observe the usage of language in contexts of 
terms appearing in positive and negative documents. “Favorable” and “unfavorable” language 
models are likely to be substantially different: they are prone to different language habits. This 
divergence in the language models is exploited to effectively classify a test document as 
positive or negative. 
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4.1 Two Assumptions 
Models usually have their own basic assumptions as foundation of reasoning and calculating, 
which support their further applications. The researchers also propose two assumptions in this 
study, and, based on them, employ a language modeling approach to deal with the sentiment 
classification problem. As mentioned above, ordinary words in a sentence might have 
correlation with the term in the same sentence. Therefore, this method follows the idea of 
learning positive and negative language models for each term within sentences. After this, the 
sentiment classification is transferred into calculating the generation probability of all 
subjective sentences in a test document by these sentiment models. The following two 
assumptions are presented: 

A1. A subjective sentence contains at least one sentiment term and is assumed to have 
obvious semantic orientation. 

A2. A subjective sentence is the processing unit for sentiment analysis. 

The first assumption (A1) gives the definition of subjective sentence, and it means a 
significant sentence for training or testing should contain at least one term. In contrast, a 
sentence without any term is regarded as an objective sentence because of its “no 
contribution” to sentiment. It also assumes that a subjective sentence has complete sentiment 
information to characterize its own orientation. 

The second assumption (A2) allows one to handle the classification problem of 
sentence-level processing. Therefore, the authors pay more attention to construct models 
within the given sentence in terms of this assumption. A2 is an intuitive idea in many cases. 

Previous work has rarely integrated sentence-level subjectivity detection with 
document-level sentiment polarity. Yu and Hatzivassiloglou [Yu and Hatzivassiloglou 2003] 
provide methods for sentence-level analysis and for determining whether a sentence is 
subjective or not, but do not consider document polarity classification. The motivation behind 
the single sentence selection method of Beineke et al. [Beineke et al. 2004] is to reveal a 
document's sentiment polarity, but they do not evaluate the polarity-classification accuracy of 
results. 

4.2 Document Representation 

Based on these two assumptions, a document d is naturally reorganized into subjective 
sentences, and the objective sentences are omitted from d. That is to say, the original d is 
reduced to: 

{ | }d s t s .                                                          (6) 
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Furthermore, a subjective sentence can be traditionally represented by a Chinese word 
sequence as follows, 

1 2 1 , 1 2 ...    ...  l i l l l nw w w t w w w .                                            (7) 

In this, “ti,l ” indicates one term ti appears in the sentence si, which is usually denoted as the 
serial number ‘l’ in the sequence. Moreover, the subsequence from w1 to wl-1 is the group of 
ordinary words on the left side of ti, and the subsequence from wl+1 to wn is the group of 
ordinary words on the right. In (7), ordinary words in this sentence consist of ti’s context (Cxi). 
So, a subjective sentence si is simplified to: 

,i i is t Cx .                                                           (8) 

The authors now focus on a special form, by which a document is represented. Let d be 
defined again, 

{ , }i id t Cx .                                                         (9) 

Definition (9) means that there also exists an independent assumption between sentences and 
every word has certain correlation with the term within a sentence. Each sentence has 
semantic orientation and makes a contribution to the global polarity. 

Note that it is possible for there to exist more than one term in a sentence. However, 
when investigating one of them, the others are to be treated as ordinary words. Each term can 
create a <t, Cx> structure. That is to say, one sentence may create more than one such 
structure. 

4.3 Sentiment Models of Term 
With respect to each term, each plays an important role in sentiment classification because the 
pivotal point of this work lies in learning and evaluating its context. This kind of classifying 
knowledge, derived from the contexts of terms in two subject-sentence collections labeled 
positive or negative in different contexts, would like to use words with polarity, such as “ݶ 
(Fast)” and “ኬ (Slow)”. A formalized depiction of classifying knowledge is shown as the 
following 3-tuple ki: 

, ,  P N
i i i i ik t t T .                                                 (10) 

The character “T” denotes the list of all terms obtained from collections. With respect to ti, its 
classifying knowledge is divided into two models: P

i  and N
i  which represent the positive 

and negative models, respectively. The model parameters are estimated from the training data. 
The contribution of wj to polarity is quantified by a triggered unigram model to express the 
long distance dependency, which is a language modeling idea explained in next subsection. 
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4.4 Language Modeling Approach for Sentiment Classification 
Language models applied to information retrieval [Pone and Croft 1998; Song and Croft 1999] 
have proven the effectiveness of this approach in an ad-hoc IR task. However, little work has 
been done in sentiment classification other than considering statistical language modeling. The 
most important idea in this study is to treat sentiment analysis of a document as the 
comparison of different generation probabilities in their subjective sentences. The difference 
is derived from the sentiment language models, { }P

i  and{ }N
i , of terms. 

Up to the present, the unigram model has been widely used in many applications due to 
its relatively small parameter space and suitability for avoiding data sparseness. The 
traditional unigram model takes a strict assumption that each word is independent from all 
others, consequently, the probability of a word sequence transfers into the product of the 
probabilities of individual words. In the authors’ model, a triggered unigram model based on 
subjective sentence collection is built. Thus, the sentiment classification of a document 
becomes a generation process. 

It is assumed that each subjective sentence has its own contribution. Therefore, the global 
document orientation is calculated by the differences between the probabilities of generating 
every subjective sentence in the document based on the sentiment language models. Thus, the 
logarithm decision function (11) is defined as: 

,

( | )( ; , ) ln
( | )

ln ( | , ) ln ( | , )
i i i

P
P N

N

P N
i i i i i it s s d

p dF d
p d

p s t p s t

.                  (11) 

Equation (11) means that, to a subjective sentence in the document, if it is more possibly 
generated by the positive language model of term “ti” than by its negative language model, the 
sentence gives more weight to positive orientation than the negative. If the opposite is true, the 
sentence is regarded as more negative. The value of these probabilities is then used to classify 
the documents: 

0
:

0
positive

F
negative

 .                                                   (12) 

It is obvious that decision value is the semantic orientation of the whole document. Every 
subjective sentence will also be calculated by the multiplication of each generation probability 
of an ordinary word in this sentence except the term itself, i.e.: 
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,

,

( | , ) ( | , )

( | , ) ( | , )

j i j i

j i j i

P P
i i i j i iw Cx w t

N N
i i i j i iw Cx w t

p s t p w t

p s t p w t
.                                 (13) 

Using the logarithm, one can rewrite (13) in its final form: 

,

,

ln ( | , ) ln ( | , )

ln ( | , ) ln ( | , )

j i j i

j i j i

P P
i i i j i iw Cx w t

N N
i i i j i iw Cx w t

p s t p w t

p s t p w t
.                              (14) 

Equations (13) and (14) are both composed of two functions corresponding to positive and 
negative cases, respectively. Finally, when one substitutes Equation (14) into Equation (11), 
one gets a new sentiment classifying function: 

,
( | , )

( ; , ) ln
( | , )i j i j i

P
j i iP N

s d w Cx w t N
j i i

p w t
F d

p w t
.                         (15) 

5. Parameter Estimation 

In equation (15), one has to estimate ( | , )P
j i ip w t , and ( | , )N

j i ip w t . 

5.1 MLE for ( | , )j i ip w t  
The researchers have two available training collections labeled with “positive” and “negative”. 
The detailed information of this corpus will be described in Section 6.1. 

Two methods are used to estimate the unigram probability: <1> the Maximum 
Likelihood Estimate (MLE); <2> the Dirichlet Prior Smoothing for language models. The two 
estimating methods are compared in sentiment classification. The language models are trained 
on the positive collection (CP) and negative collection (CN), respectively. The MLE is 

#( , | )
( | , )     

#( , | )
#( , | )

( | , )     
#( , | )

j i j iP P
mle j i i i

i i

j i j iN N
mle j i i i

i i

w t w Cx
p w t s C

t Cx
w t w Cx

p w t s C
t Cx

,                         (16) 

where #( , | )j i j iw t w Cx  is the number of times 
jw  co-occurring with it  in same 

subjective sentences in positive/negative document collection CP/CN, while #( , | )i it Cx  
is the total number of any word (*) co-occurring with the term it  in the same subjective 
sentences in CP/CN. 
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In the probability perspective, if a word wj often co-occurs with ti in sentences in the 
training corpus with a positive view, it may mean that it contributes more to a positive 
orientation than negative, and vice-versa. 

The training data consists of small document samples. The MLE models are inherently 
poor representations of the true models for unseen words that will be unreasonably assigned 
zero probability. Therefore, a smoothing language model is worthy of being tried to 
approximate their true models.�

5.2 Dirichlet Prior Smoothing 
Dirichlet Prior smoothing [Zhai and Lafferty 2001; Zhai and Lafferty 2002] is a general 
smoothing method for the problem of zero probabilities and is suitable for unigram smoothing. 
It belongs to a type of linearly interpolated method. The purpose of the Dirichlet Prior 
smoothing is to address the estimation bias due to the fact that a document collection has a 
relatively small amount of data used to estimate a unigram model. More specifically, it is 
designed to discount the MLE appropriately and assign non-zero probabilities to n-gram, 
which are not observed in the collection. This is the normal role of language model smoothing. 

The sentence generation is now taken into account. The basic models are the unigram 
models { }i  (includes { }P

i  and{ }N
i , respectively), which will result in models with the 

Dirichlet Prior smoothing. That is, 

( | , )     { }
( | , )

( | )     
i i i

dir i i
mle

p w t w Cx
p w t

p w C otherwise
,                                  (17) 

where ( | , )i ip w t  indicates the smoothed probability of w seen in the positive/negative 
subjective sentence collection of ti. The probability ( | )mlep w C  denotes the whole corpus 
( C ) language model based on MLE, and  is a coefficient controlling the probability mass 
assigned to unseen words, so that all probabilities sum to one. In general,  may depend on 
all ( | , )i ip w t . In this study, the authors exploit the following smoothing formalizations: 

#( , | , ) ( | )
  

#( , | , )
( | , )

#( , | , ) ( | )
  

#( , | , )

P
Pi i i mle
iP

i i i
i i N

Ni i i mle
iN

i i i

w t w Cx s C p w C
to

t Cx s C
p w t

w t w Cx s C p w C
to

t Cx s C

,              (18) 

and 

| |C
,                                                           (19) 
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where  is a controlling parameter that needs to be set empirically. 

In particular, Dirichlet Prior smoothing may play two different roles in the sentence 
likelihood generation method. One is to improve the accuracy of the estimated document 
language model, while the other is to accommodate generation of non-informative common 
words. The following experiment results further suggest that this smoothing measure is useful 
in the estimation procedure. 

6. Experiment Results and Discussions 

This study is interested in the subject of “digital product review”, and all documents are 
obtained from digital product review web sites. In terms of evaluating the results of sentiment 
classification, the researchers employ average accuracy based on 3-fold cross validation over 
the polarity corpus in the following several experiments.�

6.1 Document Set and Evaluating Measure 
The datasets select digital product reviews where the author rating is expressed either with 
thumbs “up” or thumbs “down”. For the works described in this study, the dataset only 
concentrates on discriminating between positive and negative sentiment. 

To avoid domination of the corpus by a small number of prolific reviewers, the corpus 
imposes a limit of fewer than 25 reviews per author per sentiment category, yielding a corpus 
of 900 negative and 900 positive reviews, with a total of more than a hundred reviewers 
represented. Some statistics about the corpus are shown in Table 1. 

Table 1. The two collections from the same domain (digital product reivew). 
Collections # of Documents Average # of Subjective Sentences Sizes (KB) 

Positive 900 28.3 462.99 
Negative 900 25.9 453.82 

Note that these 1800 documents in the corpus have obvious semantic orientations to their 
products: favorable or unfavorable. Furthermore, in terms of positive documents, they contain 
an average of 28.3 subjective sentences, while negative document collections contain an 
average of 25.9. All these digital product reviews downloaded from several web sites are 
about electronic products, such as DV, mobile phones, and cameras. On the other hand, all of 
these Chinese documents have been pre-processed in a standard manner: they are segmented 
into words and Chinese stop words are removed. All of these labeled documents are to be 
naturally divided into three collections in every process of 3-fold cross validation, which are 
used either for training or for testing. 

In evaluating processes, a document may be grouped into positive or negative. That is to 
say, there exist two kinds of classification errors called “false negative” and “false positive”. 
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Thus, the authors could build the following Contingency Table. 

Table 2. Contingency Table. 
 Tagged Positive Tagged Negative 

True Positive A B 
True Negative C D 

In the table A, B, C and D respectively indicate the number of every case. When the system 
classifies a true positive document into “positive” or classifies a true negative document into 
“negative”, these two are correct, yet the other two cases are wrong. Therefore, the accuracy is 
defined as a global evaluation mechanism: 

( ) /( )Accuracy A D A B C D .                                     (20) 

Obviously, the larger the accuracy value is, the better the system performance is. In the 
following experiments, the 3-fold cross validation based average accuracy is the major 
evaluating measure in the following experiments. 

6.2 Term Extraction 
The researchers extract term candidates using a term extractor from the previous work of the 
authors [Chen et al. 2005]. Following this study, the hybrid method for automatic extraction 
of terms from domain-specific un-annotated Chinese corpus is used through means of 
linguistic knowledge and statistical techniques. Then, hundreds of terms applied in the 
sentiment analysis are extracted from the digital product review documents. They are ranked 
by their topic-relativity scores. 

The main idea in [Chen et al. 2005] lies in finding the two neighboring Chinese 
characters with high co-occurrence, called “bi-character seeds”. These seeds can only be terms 
or the components of terms. For instance, the seed “։ᙃ” is the left part of the real term “։
ᙃ (Resolution)”. So the system has to determine the two boundaries by adding characters 
one by one to these seeds in both directions to acquire multi-character term candidates. 
Apparently, there exist many non-terms in these candidates, so one must take a dual filtering 
strategy and introduce a weighting formula to filter these term candidates via a large 
background corpus. 

Although the authors have adopted the dual filtering strategy in this system to improve 
performance, it cannot separate the terms and non-terms completely. Therefore, it also needs 
manual selection of the suitable terms that strictly belong to the digital product domain. The 
terms were chosen from the candidate list one by one via their topic-relativity scores. 

It is worth noting that all the selected terms are nouns/noun phrases that represent 
concepts that are usually evaluated in real-life contexts. For example, “䀀东ઌ (digital 
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camera, one of the digital products)”, “㢊ᕴ  (processor, a key part of some digital 
products)”. 

6.3 Experiments and Discussions 
Three experiments were designed to investigate the proposed method as compared to SVM. 
The first was to select the most suitable number of terms given their topic-relativity to the 
domain. The second was to select a suitable kernel from linear, polynomial, RBF and sigmoid 
kernels for sentiment classification. The last was to compare the performance between the 
language modeling approach and SVM. 

With respect to these three experiments, the 1800 digital product reviews were split into 
three parts: 1000 training samples (500 positive and 500 negative); 600 test samples (300 
positive and 300 negative); and the remaining 200 samples (100 positive and 100 negative) 
that were prepared for choosing a suitable number of terms. 

Table 3 shows a series of contrastive results by testing on the 200 samples after training 
models of terms ranging from 20 to 200 given their topic-relativity ranks. This is a method for 
selecting a suitable term set. In this experiment, unigram models are employed by MLE. Here, 
all of the Chinese words occurring are used as unigrams to learn the language models, and this 
is different from selecting a portion of them in the following experiments (see Section 6.4). 

Table 3. Average accuracy based on the number of terms from 20 to 200 according to 
their topic-relativity ranking scores. In this experiment, we employ the 
unigram model by MLE. 

# of 
terms 20 40 60 80 100 120 140 160 180 200 

Avg. 
Accuracy 48.31 50.50 57.11 58.78 70.83 74.27 79.31 77.04 76.78 73.50 

The experiment proves that it is not clear whether or not one ought to use a large term set 
for achieving better system performance, because redundant terms may bring “noise” to 
semantic polarity decision. As seen in Table 3, experimental results achieve the greatest 
accuracy when keeping 140 terms by topic-relativity ranking scores in the term set. According 
to this result, the authors use the 140 terms next for smoothing of sentiment language models 
and comparison with SVM. 

6.4 Comparison with SVM 
Unigrams are extracted as input feature sets for SVM. The following experiments compare the 
performance of SVM using linear, polynomial, RBF and sigmoid kernels, the four 
conventional learning methods commonly used for text categorization. The SVMlight package 
[Joachims 1999] was used for training and testing on the document-level, and other 
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parameters of different kernel functions were set to their default values in this package. This 
experiment aims at exploring which method is more suitable for the sentiment detection 
problem (See Table 4). 

To make sure that the results for the four kernels are not biased by an inappropriate 
choice of features, all four methods are run after selecting unigrams (Chinese words) 
appearing at least three times in the whole 1800 document collection. Finally, the total number 
of features in this study is 5783 for SVM, including those “terms” used in the language 
modeling approach. 

Table 4. Comparison of four kernel functions on the digital product review training 
and test corpus and average performance over two categories. Linear kernel 
achieves highest performance on unigram feature set. 

Features # of features Linear Polynomial Radial Basis Function Sigmoid 

unigrams 5783 80.17 61.25 53.09 51.26 

The result with the best performance in the test set is the linear kernel. Thus, the language 
model based method is compared with the SVM using linear kernel. The next table gives the 
results achieved by the language modeling approach and the control group. In this experiment, 
the 5783 single word forms (i.e. vocabulary) are also used as the features for language models. 

Table 5. Comparison between language model based method and SVM using linear 
kernel. 

 # of features AvgAccuracy % change over SVM 

SVM (Linear Kernel) 5783 80.17 — 

Uni-MLE 5783 83.10 +3.65 
Uni-Smooth ( =1100 ) 5783 85.33 +6.44 

Seen from table 5, Uni-MLE performs better on the unigrams features set than SVM, 
which achieved an average significant improvement of 3.65% compared with the best SVM 
result. As to the model smoothing, Dirichlet Prior smoothes unigram language model with 
parameter set to 1100 (In this experiment, the best result appears when 1100  in 
Dirichlet Prior smoothing). It makes a contribution to estimating a better unigram language 
model leading to a significantly better result than SVM (+6.44%). The effect of the smoothing 
method in sentiment analysis is just like its effect on most language model based applications 
in NLP. In practice, the unigram model built up from the two limited collections by simple 
MLE has not enough reasonability in terms of the unseen words. The smoothing method gives 
the unobserved ordinary words of every term a suitable non-zero probability and improves the 
system performance. 

The better results obtained by this generative model may be due to the sentiment 
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description within sentences, which proves that the two assumptions in Section 4.1 may be 
reasonable. The authors use the triggered unigram models to describe the classifying 
contribution of features of every term, and then construct sentiment language models. 
Accordingly, the motivation to further explore the refinement of sentiment language models 
based on learning higher order models and introduce more powerful smoothing methods in 
future is acquired. 

7. Conclusions 

In this paper, the authors have presented a new language modeling approach for sentiment 
classification. To this generative model, the terms of a domain are introduced as counting 
terms, and their contexts are learnt to create sentiment language models. It was assumed that 
sentences have complete semantic orientation when they contain at least one term. This 
assumption allows one to design models to learn positive and negative language models from 
the subjective sentence set with polarity. The approach is then used to test a real document in 
steps: first to generate all the subjective sentences in the document, and then to generate each 
ordinary word in turn depending on the terms by positive and negative sentiment models. The 
difference between the generation probabilities by the two models is used as the determining 
rule for sentiment classification. 

The authors have also discussed how the proposed model resolves the sentiment 
classification problem by refining the basic unigram model through smoothing. When the 
language model based method is compared with a popular discriminative model, i.e., SVM, 
the experiment shows the potential power of language modeling. It was demonstrated that the 
proposed method is applicable for learning the positive and negative contextual knowledge 
effectively in a supervised manner. 

The difficulty of sentiment classification is apparent: negative reviews may contain many 
apparently positive unigrams even while maintaining a strongly negative tone and vice-versa. 
In terms of the Chinese language, it is a language of concept combination, allowing the usage 
of words to be more flexible than in Indo-European languages, which makes it more difficult 
to acquire statistic information than other languages. All classifiers will face this difficulty. 
Therefore, the authors plan to improve the language model based method in the following 
three possibilities: 

Future works may focus on finding a good way to estimate better language models, 
especially the higher order n-gram models and more powerful smoothing methods. 

The authors have assumed an independent condition among sentences so far. It is also 
possible to introduce a suitable mathematic model to group the close sentences. Constructing 
an enlarged sentiment analyzing area may utilize more linking information between words. 
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The conceptual analysis of Chinese words may be helpful to sentiment analysis because 
this theory pays more attention to counting the real sense of concepts. In future works, the 
authors may integrate more conceptual features into the models. 
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An Empirical Study of Non-Stationary 

Ngram Model and its Smoothing Techniques 

Jinghui Xiao*, Bingquan Liu* and Xiaolong Wang* 

Abstract 

Recently many new techniques have been proposed for language modeling, such as 
ME, MEMM and CRF. However, the ngram model is still a staple in practical 
applications. It is well worthy of studying how to improve the performance of the 
ngram model. This paper enhances the traditional ngram model by relaxing the 
stationary hypothesis on the Markov chain and exploiting the word positional 
information. Such an assumption is made that the probability of the current word is 
determined not only by history words but also by the words positions in the 
sentence. The non-stationary ngram model (NS ngram model) is proposed. Several 
related issues are discussed in detail, including the definition of the NS ngram 
model, the representation of the word positional information and the estimation of 
the conditional probability. In addition, three smoothing approaches are proposed 
to solve the data sparseness problem of the NS ngram model. Several smoothing 
algorithms are presented in each approach. In the experiments, the NS ngram 
model is evaluated on the pinyin-to-character conversion task which is the core 
technique of the Chinese text input method. Experimental results show that the NS 
ngram model outperforms the traditional ngram model significantly by the 
exploitation of the word positional information. In addition, the proposed 
smoothing techniques solve the data sparseness problem of the NS ngram model 
effectively with great error rate reduction. 

Keywords: Ngram, Stationary Hypothesis, Pinyin-to-character Conversion, 
Smoothing 

1. Introduction 

Statistical language model plays an important role in natural language processing. It has a 
wide range of applications in many domains, such as speech recognition [Jelinek 1997], OCR 
[Kolak et al. 2003], machine translation [Brown et al. 1992], and pinyin-to-character 
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conversion [Gao et al. 2005; Xiao et al. 2005] etc. In recent years, great efforts are devoted to 
the research of language modeling. Many novel techniques are proposed, such as maximum 
entropy model [Rosenfeld 1994], maximum entropy Markov model [McCallum et al. 2000] 
and conditional random field model [Lafferty et al. 2001]. However, the ngram model is still a 
staple in practical applications. Therefore, it is well worthy of studying how to improve the 
performance of the ngram model. 

The ngram model takes the word sequence as a Markov chain. It makes the Markov 
hypothesis on the sequence so as to simplify the probability inference. There are actually two 
hypotheses implied by the Markov hypothesis, named the limited history hypothesis and the 
stationary hypothesis [Manning and Schutze 1999]. The first one assumes that the probability 
of the current word is determined only by a few of previous words, but irrelevant to the whole 
history of words. The second one assumes that the word probability is irrelevant to the actual 
word positions in the sentence. 

The most obvious extension to the traditional ngram model is simply to enlarge the 
number of history words and build up the higher-order ngram model [Carpenter 2005]. 
However, the high-order ngram model suffers from the curse of dimensionality [Novak and 
Ritter 1998]. The bigram model and the trigram model are currently two prevalent language 
models. 

From another point of view, the paper relaxes the stationary hypothesis and enhances the 
traditional ngram model by exploiting the word positional information. It is based on the 
philosophy that most words are not only constrained by their contextual information, but also 
influenced by their positions in the sentence. For example, the Chinese word “ !” (first of 
all) is usually used to start a sentence, but rarely occurs elsewhere in the sentence. Then higher 
probability should be assigned to it by a language model when it is in the front of a sentence, 
and lower probability elsewhere. Moreover, some of punctuations, such as full stop and 
exclamation, always appear at the end of a sentence. So it may be mistaken for a Chinese 
sentence that the exclamation appears in the middle of it. Therefore, a language model can 
benefit from modeling the word positional information. 

This paper enhances the traditional ngram model by the exploitation of the word 
positional information. The non-stationary ngram model (NS ngram model) is proposed. 
Several related issues are discussed in detail, including the definition of the NS ngram model, 
the representation of the word positional information and the estimation of the conditional 
probability. In addition, three smoothing approaches are proposed to solve the data sparseness 
problem of the NS ngram model. The NS ngram model is evaluated on the pinyin-to-character 
conversion task which is the core technique of the Chinese text input method. Experimental 
results show that the NS ngram model outperforms the traditional ngram model significantly 
and the smoothing techniques proposed in this paper solve the data sparseness problem of the 
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NS ngram model effectively with great error rate reduction. 

The remaining part of the paper is organized as follows. The related works are outlined in 
section 2. In section 3, the NS ngram model is proposed and several related issues are 
discussed in detail. In section 4, the data sparseness problem of the NS ngram problem is 
addressed and three smoothing approaches are proposed. The experimental results and 
discussions are presented in section 5 and the conclusion is drawn in section 6. 

2. Related Works 

There are many ways to improve the performance of the ngram model. The most obvious way 
is to relax the limited history hypothesis and build up the high-order ngram model, which has 
been discussed in the above section. Another way is to construct the skipping ngram model 
[Rosenfeld 1994; Ney et al. 1994], in which the current word is constrained by the skipped 
words in the word history, other than the adjacent words. The skipping ngram model can 
exploit more information of history words and avoid the curse of dimensionality meanwhile. 
In the experiments, it yields limited improvements by interpolating with the traditional ngram 
model. 

The class-based ngram model [Brown et al. 1992] is constructed based on word cluster 
instead of word. The syntax and semantic information can be well captured in this way. 
Meanwhile, the parameter space is reduced greatly and the data sparseness problem is 
alleviated. However, the predictive capability of the class-based ngram model is much lower 
than the traditional ngram model due to its small parameter space. It usually achieves limited 
improvements by interpolating with the traditional ngram model. 

The cache-based ngram model [Kuhn 1988; Kuhn and Mori 1990] assumes that people 
tends to use words as few as possible in the article. If a word has been used, it would possibly 
be used again in the future. The cache-based ngram model is usually utilized to construct a 
self-adaptive language model. 

3. Non-Stationary Ngram Model 

This section firstly reviews the traditional ngram model briefly. Secondly, it defines the NS 
ngram model formally. Thirdly, the word positional information is formalized. Finally, the 
estimation method is provided for the conditional probability of the NS ngram model. 

3.1 Ngram Model 
Language model aims to determine the probability of the sequence of words. The sequence 
probability is usually decomposed into the conditional probabilities of words which are 
composed of sequences. For the sequence of 

1 1 2 2, , ,...
m ml p l p l ps w w w= , its probability is 
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calculated in formula (1): 

1 1 2 2 1 1, , , ,
1

( ) ( | , ... )
i i i i

m
l p l p l p l p

i
P s p w w w w

- -
=

= ’ ,    (1) 

where ,i jl pw is the ith word in the lexicon and appears at the jth position in sequence S. 

The ngram model makes the Markov hypothesis on the sequence so as to simplify 
formula (1). The procedures are described in formula (2): 

1 1 1 1 1 1, , ,
1 1

( ) ( | ... ) ( | ... )
i i i n i n i i i i n i

m m
l p l p l p l l l

i i
P s p w w w p w w w

- + - + - - - + -
= =

ª ª’ ’ . (2) 

Actually, there are two hypotheses implied by the Markov hypothesis: 

1. The limited history hypothesis: the probability of current word is dependent only on 
the previous n-1 words, but irrelevant to the whole history of words. 

2. The stationary hypothesis: the word transition probability is determined only by the 
words which consist of the transition probability, but irrelevant to the positions where 
these words possess in the sequence. 

Formula (1) is firstly simplified by the limited history hypothesis, resulted in the second item 
of formula (2). Then, the stationary hypothesis is applied on it and the final form of the ngram 
model is obtained, as represented by the last item of formula (2). The paper substitutes 

il
w  

for ,i jl pw  since the conditional probability is irrelevant to word position. In literature, the 
limited history hypothesis is referred to frequently, but seldom is the stationary hypothesis. 

The most obvious way to extend the ngram model is simply to relax the limited history 
hypothesis and involve more history information of words. The higher-order ngram model is 
built up. However, the high-order ngram model suffers from the curse of dimensionality. As 
the model order increases, the parameter space explodes at an exponential rate. The data 
sparseness problem becomes very severe which hampers its applications gravely. From 
another point of view, the paper relaxes the stationary hypothesis and enhances the ngram 
model by the exploitation of the word positional information. The NS ngram model is 
proposed. It is described in the following sections. 

3.2 NS Ngram Model 
As presented in section 1, the occurrence of words is relevant to their positional information in 
sentence. It is beneficial for the language model to exploit the positional information to 
determine the word probability. However, the Markov hypothesis is too restricted to exploit 
the positional information due to its stationary assumption. The paper relaxes the stationary 
hypothesis of the traditional ngram model and proposes a non-stationary ngram model. The 
NS ngram model is formulized in as below: 
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In the NS ngram model, formula (1) is simplified merely by the limited history hypothesis, 
rather than the stationary hypothesis. The conditional probability of the current word is 
determined not only by history words but also by the words’ positions in sentence. The paper 
uses a single positional variable of t to denote the word positional information in formula (3). 
The traditional ngram model is a special case of the NS ngram model in which t is a constant. 

Important things for the NS ngram model are how to calculate the value of t and how to 
estimate the conditional probability of word in formula (3). 

3.3 Representation of t 
Since t denotes the word positional information in a sentence, it is a natural way to take the 
word position index as the concrete value of t. However, there are two serious problems with 
this method. Firstly, index has different meanings in sentences of different lengths. For 
example, there are two English sentences: “Yesterday I saw you” and “Yesterday I saw you 
were looking around here”. In both of the sentences, the word “you” has the same position 
index - 4. However, “you” appears at the end of the first sentence, while it is in the middle in 
the second. It possesses completely different positional information in these two sentences. 
Secondly, since a sentence may have arbitrary length, the t value can be any natural number. 
But computer can not deal with infinite value. 

A refined method is to use the ratio of the word position index to the sentence length, 
which maps t into a real number in the range of [0, 1]. But there are infinite real numbers in 
that range and it can not make statistics based on each real number. 

This paper divides the above range into several equivalent classes (bins). It assumes that 
the words in each bin share the same positional information. The value of t is set to the index 
of the according class. More formally, the above procedures are described as below: 

1. Calculate the ratio of the word position index to the sentence’s length, which maps t 
into the range of [0, 1]. 

2. Divide the range into several bins. The words in each bin share the same positional 
information. 

3. Set the t value of current word as the index of the according bin. 

Figure 1 shows an example of the above procedures: 
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Figure 1. Calculation of the t value in NS ngram model 

From the above procedures, the more number of bins it divides of the word sequence, the 
more accuracy of the positional information is extracted from the sentence. 

3.4 Training Method 
The section discusses how to estimate the conditional probability in formula (3), which is the 
training problem of the NS ngram model. Based on the representation of t in section 3.3, the 
sentences in the training corpus are divided into the same number of bins. The words in each 
bin share the same value of t. The paper builds up a specific ngram model for each value of t 
within each bin. All these specific ngram models constitute of the NS ngram model. Using k to 
denote the number of bins, there are totally k specific ngram models in the NS ngram model 
with k bins. The conditional probability of 

1 1
( | ... , )

i i n il l lp w w w t
- + -

 is estimated under the 
Maximum Likelihood Estimation (MLE) principle: 

1

1 1
1 1

( ... , )
( | ... , )
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1
( ... , )

i n il lC w w t
- +

 is the occurrence times that the word sequence 
1
...

i n il lw w
- +

 falls in the tth bin 
of the sentences in the training corpus. It is similar to interpreting 

1 1
( ... , )

i n il lC w w t
- + -

. 

In order to calculate the probability of a sentence, the t value is firstly obtained for each 
word. Then, the conditional probability of word is computed according to formula (4). Finally, 
the sentence probability is calculated by formula (3). The traditional ngram model is a special 
case of the NS ngram model in which there is only one bin. 

4. Smoothing Techniques 

As shown in section 3.4, there are totally k traditional ngram models in the NS ngram model 
with k bins. The space complexity of the NS ngram model is consequently k times more than 
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the traditional ngram model. Data sparseness problem is an inherent and severe problem in the 
traditional ngram model [Brown et al. 1992]. Therefore, it is more severe in the NS ngram 
model. Figure 2 illustrates the data sparseness problem in the NS ngram model. 

 
Figure 2. Data sparseness problem in NS ngram model 

In Figure 2, the color of deep shade indicates that the data sparseness problem is severe 
in the NS ngram model, while the color of light shade means that the problem is not severe. 
As shown in Figure 2, there are two main factors in determining the degree of the data 
sparseness problem in the NS ngram model. They are the model order n and the bin number k. 
As n (or k) increases, the problem becomes more severe, and the estimated probability 
becomes more unreliable. 

It is necessary to start with these two factors to solve the data sparseness problem of the 
NS ngram model. Considering the factor of the model order which is represented as the 
vertical axis in Figure 2, the high-order NS ngram model can be smoothed by lower-order NS 
ngram model, just as the traditional smoothing techniques do. It is our first smoothing 
approach. Considering the factor of the bin number which is shown as the horizontal axis, 
there are two ways to design the smoothing methods. The first way, the NS ngram model with 
larger value of k can be smoothed by the NS ngram model with smaller value of k. In 
particular, the traditional ngram model (k=1) can be utilized to smooth the NS ngram model 
(k>1). It is our second smoothing approach. The second way, the paper builds up a more 
compact form of the NS ngram model. It firstly constructs some statistical variables of the 
word positional information from the bins of the NS ngram model. Then, it calculates a weight 
from these variables for the traditional ngram probability. The weight is used to substitute for 
the concrete positional information which tends to cause the data sparseness problem in the 
NS ngram model. It is our third approach to smooth the NS ngram model. Until now, three 
smoothing approaches have been provided in sketch. They will be described in the following 



 

 

134                                                         Jinghui Xiao et al. 

sections in detail. 

4.1 The First Approach 
Since the NS ngram model is composed of several traditional ngram models, each of these 
component ngram models can be smoothed separately by the traditional smoothing techniques. 
The traditional smoothing techniques have been well studied before. Many smoothing 
algorithms have been proposed, such as the additive smoothing [Jeffreys 1948], the 
Good-Turing smoothing [Good 1953], the back-off smoothing [Katz 1987], the linear 
interpolation smoothing [Jelinek and Mercer 1980], the Kneser-Ney smoothing [Kneser and 
Ney 1995], and so on. Generally, they smooth the unreliable probabilities in the high-order 
ngram model by the reliable probabilities in the low-order ngram model. The paper can not try 
each existent smoothing algorithm on the NS ngram model. Three popular algorithms are 
taken in the paper. They are the additive smoothing, the back-off smoothing and the linear 
interpolation smoothing. The NS bigram model is taken as an example and the formulas are 
listed as below. 

Additive smoothing: 

1

1
1

~ ( , , ) 1
( | , )

( , )
i i

i i
i

l l
l l

l

C w w t
P w w t

C w t l
-

-

-

+
=

+
                                           (5) 

t is the positional variable which is defined in section 3.3; l is the lexicon size; and 
~
p  is the 

smoothed probability of the NS bigram model. 

Back-off smoothing: 
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PGT is the probability of the NS bigram model which is smoothed by the Good-Turing method. 
It is formalized as below: 
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and 
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E(C) is the expectation of the number of the bigram items which occurs C times in the corpus. 
In reality, N(C) is usually substituted for E(C). N(C) is the concrete number of the bigram 
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items which actually occurs C times in the training corpus. Formula (8) is reformulated as 
below: 
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However, N(C) can not be estimated reliably for some large values of C. At this time, formula 
(9) can not work properly and problems occur in the Good-Turing method. In particular, when 
C reaches its max value in the training corpus, 

1
( , , )

i iGT l lC w w t
-

 is calculated to be zero 
according to formula (9) because N(C+1) is equal to zero. It is obviously wrong. In this paper, 
a simple strategy is adopted to address the problem. Formula (7) and formula (9) are adopted 
only for the small value of C (i.e. below a threshold). For the large value of C, it is regarded 
that the bigram probabilities can be estimated reliably according to the word frequencies and 
they need not to be smoothed. The MLE principle is applied on them directly.  

In formula (6), $ is the coefficient for normalization and it is calculated as below: 
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Linear interpolation smoothing: 
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P is the probability of the NS bigram model which is estimated by formula (4); l(t) is the 
coefficient which is a function of t and can be estimated by the EM algorithm on the held-out 
corpus. 

4.2 The Second Approach 
As shown in Figure 2, when the value of k increases, there are more probability distributions 
in the NS ngram model to be estimated on the training corpus. The conditional probability 
becomes more specific and unreliable, and the data sparseness problem of the NS ngram 
model becomes more severe. Usually, the smoothing techniques utilize the general and 
reliable probability distributions to smooth the specific and unreliable ones. Therefore, it can 
make use of the reliable probability of the NS ngram model with small k, to smooth the 
unreliable probability of the NS model with large k. In particular, it can utilize the traditional 
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ngram model (k=1) to smooth the NS ngram model (k>1). However, the traditional ngram 
model also suffers from the data sparseness problem. Actually, the paper utilizes the smoothed 
traditional ngram model in this approach. 

Totally, three smoothing methods are investigated. They are the back-off method, the 
linear interpolation method and the hybrid method. The formulas are listed as below. 

Back-off smoothing: 
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$1 is the coefficient for normalization, and it can be calculated as below: 
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and 
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In formula (13), 
1

~
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 is the traditional bigram probability smoothed by the back-off 
method, and it is calculated as below: 
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$2 is the coefficient for normalization, and it can be computed as below: 
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Linear interpolation smoothing: 
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1

~
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 is the traditional bigram probability smoothed by the linear interpolation method, 
and it is calculated by formula (20): 
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The coefficients of l(t) and q can be optimized by the EM algorithm on the held-out corpus. 

Hybrid smoothing: 
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 is the NS bigram probability smoothed by the back-off method, and it can be 
calculated by formula (6); 

1

~
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 is the traditional bigram probability smoothed by the 
back-off method, and it can be calculated by formula (16). These two probabilities are 
interpolated into a hybrid probability of 
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 which forms the hybrid smoothing 
method. 

4.3 The Third Approach 
The above sections provide two smoothing approaches for the NS ngram model. They are 
mainly based on the traditional smoothing techniques. This section proposes a novel 
smoothing method and constructs a more compact model to solve the data sparseness problem 
of the NS ngram model. 

As shown in Figure 2, the model order and the bin number are two main factors in 
determining the degree of the data sparseness problem in the NS ngram model. The first one is 
also the dominant factor of the traditional ngram model. Then, the data sparseness in the NS 
ngram model, which is brought forth by the first factor, can be regarded as inheriting from the 
traditional ngram model. The second factor is specific to the NS ngram model. It brings forth 
the data sparseness problem when the positional information is modeled. Based on the above 
analysis, the smoothing method for the NS ngram model can be decomposed into two steps. 
The first step is to solve the data sparseness problem which is brought forth by modeling the 
word positional information. Some statistical variables are constructed to substitute for the 
concrete positional information. A more compact model is built up. The second step is to solve 
the data sparseness problem which is inherited from the traditional ngram model. The 
traditional smoothing techniques are utilized. 

After describing the motivation and the technique sketch, the formula is presented as 
below: 
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where 

l t is the positional variable. 

l ( )
il

E w is the expectation of the positional information of
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w in the training corpus. 
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V w is the variance of the positional information of
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w in the training corpus. 
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 is the smoothed traditional bigram probability. Any smoothing algorithm, 
such as the back-off algorithm and the linear interpolation algorithm, can be applied. 
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l l is the size of the lexicon 

To smooth the word positional information, the paper aims at reducing the parameter 
number of the NS ngram model. Different from the clustering technique in the class-based 
ngram model [Brown et al. 1992], the paper constructs the statistical variables of the word 
positional information to substitute for the concrete value of t in the NS ngram model. Two 
statistical variables are calculated: the expectation and the variance. The weight is computed 
for the bigram probability according to these variables. Such an assumption is made that more 
weight should be awarded if the current word position fits in better with the training corpus, 
and less weight vice versa. According to the assumption, the term of t-E(wli), which defines 
the difference between the current word position and its average position in the training corpus, 
is adopted in formula (22). As the value decreases, t fits in with the training corpus better and 
more weight should be awarded. Henceforth, the weight function is descendent with the value 
of t-E(wli) as formula (22) shows. Moreover, the weight function is ascendant with the 
variance V(wli). The term V(wli) is mainly used to balance the value of the term t-E(wli) for 
some active words. For example, some adjectives can appear at any position in a sentence. 
Then it is unreasonable to decrease the weight just as the term t-E(wli) increases. In such a 
situation, the value of V(wli) of the active word is usually bigger than that of the inactive. Then 
it can provide a balance for the value of t-E(wli). Until now, the section has described the 
method to solve the data sparseness problem which is brought forth by modeling the word 
positional information. It is the first step of this approach to smooth the NS ngram model. It 
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should be noticed that the way to constructing the weight is a purely empirical method. There 
is no theoretic foundation on it. However, it performs pretty well in the experiments, as 
presented later in section 5.4.3. In the second step, the traditional smoothing techniques can be 
adopted to solve the data sparseness problem which inherits from the traditional ngram model. 
The paper investigates two smoothing techniques: the back-off smoothing and the linear 
interpolation smoothing. 

Moreover, the coefficients of   and ! can be optimized by some automatic methods on 
the held-out corpus. The genetic algorithm is adopted in this paper. It is presented as below: 

Algorithms: Genetic algorithm to optimize   and ! 

Input: The held-out corpus 

Output: The optimal value of   and ! 

1. Initiation: generate the initial population of   and ! randomly 

2. Evolution of population 

   Step 1: calculate fitness for each individual  

   Step 2: selection 

   Step 3: crossover 

   Step 4: mutation 

   Step 5: if termination criterion is met 

              go to 3 

         else 

              go to step 1 

3. Choose the best individual as the solution 

The actual performance of formula (22) on the held-out corpus is taken as the fitness function 
in the above algorithm. 

Until now, a compact NS ngram model has been built up in the section. The parameter 
space is reduced by substituting the statistical variables for the concrete positional information, 
which results in a space complexity of O(ln+2l+2). The data sparseness problem is alleviated. 
However, the predictive capability is also lowered to some extent due to the small parameter 
space, which is the limitation of this smoothing approach. To overcome the above drawback, 
the paper constructs the statistical variables for the word ngram other than for the word itself. 
It results in a larger space complexity of O(3¥ln), and therefore yields a more powerful 
predictive capability. In addition, the compact model has a slight higher time complexity than 
the normal NS ngram model by calculation of the weight function. 



 

 

140                                                         Jinghui Xiao et al. 

5. Experiments and Discussions 

This section evaluates the NS ngram model and its smoothing techniques on the 
pinyin-to-character conversion task which is the core technique of the Chinese keyboard input 
method. The section is organized as follows. Firstly, the task and the data set are described. 
Secondly, the non-stationary property of words is investigated in a statistical way so as to 
verify the motivation of the paper. Thirdly, the performance of the NS ngram model is 
presented and compared with the traditional ngram model. Finally, the smoothing algorithms 
proposed in the paper are evaluated and the performances of the smoothed NS ngram model 
are provided. 

5.1 Task and Data Set Description 
Task Description 

The standard keyboard is initially designed for native English speakers. In Asia, such as China, 
Japan and Thailand, people can not input their language through the standard keyboard 
directly. Asian text input becomes the challenge for the computer users in Asia. Asian 
language input method is one of the most important techniques in Asian language processing. 
The pinyin-based input method is the most important Chinese text input method. There are 
over 97% of Chinese computer users using pinyin to input Chinese text [Chen 1997]. 
According to the scale of the input unit, the pinyin-based input method can be categorized into 
three types: the character-level input method, the word-level or phrase-level input method and 
the sentence-level input method respectively. The sentence-level input method becomes the 
most prevalent pinyin-based input method due to its high precision. The pinyin-to-character 
conversion task aims to convert the sequence of pinyin strings into one Chinese sentence. It is 
the core technique of the sentence-level pinyin-based Chinese text input method. Therefore, 
the improvement on the pinyin-to-character conversion task has a great effect on Chinese text 
input method. 

In Chinese, there are totally 410 pinyin symbols (without the tone information) which 
correspond to more than 30,000 Chinese characters. For a certain inputted pinyin sequence, 
there are many candidates of Chinese character sequence corresponding to it, but only one is 
what the user really wants to obtain. Language model is to select the most probable one among 
these candidates. Error rate is usually used to evaluate the performance of a language model 
on this task. 

The pinyin-to-character conversion task can also be taken as a simplified automatically 
speech recognition task [Gao et al. 2005]. Both of the two tasks aim to convert the phonetic 
information into the character sequence. However, unlike the speech recognition task, the 
pinyin-to-character conversion task doesn ’t have to deal with the acoustic ambiguity because 
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the pinyin strings are directly inputted on the keyboard by user. Therefore, our techniques also 
illuminate to the speech recognition task. 

Text Corpus 

The paper chooses the 6763 Chinese frequent characters as lexicon. Two sets of the People ’s 
Daily corpus are adopted in the experiments: the half year of corpus in 1998 for the 
experiments of the NS bigram model and the whole year of corpus in 2000 for the experiments 
of the NS trigram model. Each set of corpus is divided into three parts: the training corpus, the 
held-out corpus and the testing corpus. The detailed information is listed in Table 1.  

Table 1. Description of text corpus 

 
Training 

(months / #characters) 
Held-out 

(months / #characters) 
Testing 

(months / #characters) 

People’s Daily 
corpus in 1998 

1-5 months 
9.09¥106 

1/3 of 6th month 
6.29¥105 

2/3 of 6th month 
1.25¥106 

People’s Daily 
corpus in 2000 

1-11 months 
2.27¥107 

1/3 of 12th month 
7.01¥105 

2/3 of 12th month 
1.40¥106 

The paper chooses the large scale of corpus for the NS trigram model since its parameter 
space is much larger than that of the NS bigram model. In what follows, the paper presents the 
distributions of the lengths of the sentences in those corpora. The information is crucial to 
evaluating the NS ngram model which exploits the positional information of word in the 
sentences. The distributions are presented in Figure 3. 
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Figure 3. Distributions of the sentence length in text corpus 
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According to Figure 3, most of the lengths of the sentences fall in the range from 10 to 60. The 
average lengths of sentences are 27.41 on the corpus in 1998, and 29.64 on the corpus in 2000 
respectively. Moreover, the distributions of the sentences ’ lengths are much similar to each 
other among the three parts of the text corpus. 

Pinyin Corpus 

The pinyin corpus is necessary for evaluating the NS ngram models on the pinyin-to-character 
conversion task. The paper gets the pinyin corpus from the above text corpus by a conversion 
toolkit1 which yields 99.7% accuracy evaluated on a golden corpus. When the NS ngram 
models are evaluated, the pinyin corpus is firstly converted into the text corpus by the NS 
ngram model. Then, the converted results are compared with the standard text corpus and the 
error rate is calculated. As the pinyin corpus is not a golden corpus, the errors in the pinyin 
corpus could lead to the conversion error of the NS ngram model. Therefore, the actual error 
rate of the NS ngram model is a little lower than the reported results in the paper and the NS 
ngram model could get a little better performance in the real system. However, since there are 
not many errors in the pinyin corpus because of the high precision of the conversion toolkit, 
the reported error rate of the NS ngram model can be regarded to be close enough to the actual 
error rate. 

5.2 Non-Stationary Property of Words 
Section 1 has provided some intuitive examples for the non-stationary property (NS property) 
of words. However, the intuition is not enough for our motivation of the paper. The section 
will further present some statistical evidences. 

The NS property assumes that word behaves differently in different portions of sentences. 
Then their probability distributions would be different in different portions. The more 
differences between these distributions, the more positional information has been implied by 
word. The section investigates the probability distributions in the NS bigram model, and 
presents their differences by comparing them with the distribution in the traditional bigram 
model. The Kullback-Leibler (KL) distance [Cover and Thomas 1991] is taken as the metric. 
And only if the distances are great enough, could the NS bigram model be expected to 
outperform the traditional bigram model; otherwise, they would have similar performances. 

As mentioned in section 3, there are totally k probability distributions in the NS ngram 
model with k bins. So there are k different KL distances to be calculated between the 
traditional bigram model and the NS bigram model. The section calculates these KL distances 

                                                 
1 The toolkit can be obtained freely from the link:  

http://www.insun.hit.edu.cn/product/viewproduct.asp?id=105 
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for the NS bigram model with different k values. The experimental results are summarized in 
Table 2. 

Table 2. The KL distances between the traditional bigram model and the NS bigram 
model 

Bin number  

Bin index 
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

t=1 0 0.11 0.15 0.19 0.24 0.28 0.32 0.37 
t=2 --- 0.05 0.08 0.08 0.10 0.11 0.12 0.14 
t=3 --- --- 0.13 0.09 0.09 0.09 0.09 0.10 
t=4 --- --- --- 0.21 0.10 0.09 0.09 0.09 
t=5 --- --- --- --- 0.32 0.12 0.10 0.09 
t=6 --- --- --- --- --- 0.42 0.13 0.10 
t=7 --- --- --- --- --- --- 0.52 0.14 
t=8 --- --- --- --- --- --- --- 0.62 

Average KL Distance 0 0.08 0.12 0.15 0.17 0.18 0.19 0.21 

In the row of Table 2, the section lists the NS bigram models with various values of k 
which are up to 8. In the column, it calculates the KL distance between each distribution of the 
NS bigram model and the distribution of the traditional bigram model. At last, it calculates the 
average KL distance for each NS bigram model. 

According to the experimental results in Table 2, it is found that as k increases, the 
average KL distance becomes larger and larger, indicating that there are more and more 
differences between the distributions of the NS bigram model and that of the traditional 
bigram model. Therefore, more and more positional information is modeled by the NS bigram 
model, and more predictive capability is expected. Moreover, focusing on a certain column in 
Table 2, i.e. the column of k=5, it calculates the KL distance for each distribution of the NS 
bigram model with 5 bins. It is found that the KL distances calculated from the marginal 
positions are greater than the distances from the middle ones. For example, the KL distances 
of t=1 (0.24) and t=5 (0.32) are greater than the distance of t=3 (0.09). It is more obvious for 
the lager value of k. It indicates that the distributions in the marginal positions represent more 
positional information, and therefore contribute more to the ultimate performance of the NS 
bigram model than the middle ones. 

5.3 Experiments of NS Ngram Model 
This section evaluates the un-smoothed NS ngram model on the pinyin-to-character 
conversion task. Two sets of experiments, the close test and the open test, are carried out. The 
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test on the training corpus is referred to as the close test; and the test on the testing corpus is 
referred to as the open test. In order to avoid the zero-probability problem in the open test, the 
paper adds a small value2 to the zero-frequency words when estimating their probabilities. 
The un-smoothed traditional ngram model is taken as the baseline model. Both the NS bigram 
model and the NS trigram model are investigated. The experimental results of the NS bigram 
model are firstly presented in Table 3. 

Table 3. Experimental results of the NS bigram model 
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Error Rate 8.30% 7.17% 6.55% 6.08% 5.74% 5.43% 5.19% 4.98% Close 

test Reduction --- 13.61% 21.08% 26.75% 30.84% 34.58% 37.47% 40.00% 

Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% Open 

test Reduction --- 15.70% 12.09% 9.08% 6.95% 4.94% 3.01% 1.07% 

As mentioned in section 3.4, the traditional bigram model can be regarded as the NS 
bigram model in which k=1. According to the experimental results in Table 3, the NS bigram 
model outperforms the traditional bigram model significantly. It yields as much as 40% error 
rate reduction in the close test, and 15.7% reduction in the open test. It proves that the NS 
bigram model has more powerful predictive capability than the traditional bigram model. 
Moreover, as the value of k increases, the error rate of the NS bigram model in the close test is 
reduced constantly, proving that the improvement of the NS ngram model is due to the 
increasing positional information of word. However, in the open test, the error rate stops 
decreasing after k=2, because the data sparseness problem becomes more severe as k 
increases. 

The NS trigram model is also investigated. The experimental results are presented in 
Table 4. 

Table 4. Experimental results of the NS trigram model 
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Error Rate 2.21% 1.80% 1.73% 1.65% 1.61% 1.59% 1.57% 1.57% Close 
test Reduction --- 18.55% 21.71% 25.34% 27.15% 28.05% 28.96% 28.96% 

Error Rate 18.92% 19.72% 20.55% 21.34% 21.94% 22.61% 23.22% 23.74% Open 
test Reduction --- -4.06% -8.61% -12.79% -15.96% -19.50% -22.72% -25.47% 

                                                 
2 It is the minimum positive floating point value in the Windows system (the DBL_MIN constant), and 

has the value of 2.22¥10-308.  
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The experimental results are similar to those of the NS bigram model. As presented in 
Table 4, the NS trigram model outperforms the traditional trigram model significantly in the 
close test, and has achieved as much as 28.96% error rate reduction. It proves that the NS 
trigram model is more powerful than the traditional trigram model. Moreover, the error rate 
decreases along with the k value, proving that the improvements of the NS trigram model are 
due to the increasing positional information of word. However, unlike the NS bigram model, 
the NS trigram model performs worse in the open test, indicating that the NS trigram model 
suffers from much more severe data sparseness problem than the NS bigram model even 
though a larger training corpus is adopted in the experiments. 

To sum up, the NS ngram model achieves great improvements by exploiting the word 
positional information; however, it suffers from severe data sparseness problem. The 
following sections will investigate the smoothing techniques presented in section 4, and 
provide the experimental results of the smoothed NS ngram model. Without loss of the 
generality, all the following experiments are carried out on the NS bigram model.  

5.4 Experiments of Smoothing Techniques 
This section firstly investigates the three smoothing approaches separately. Then, these 
techniques are compared to each other and some conclusions are drawn. Finally, it investigates 
the performance of each probability distribution of the smoothed NS bigram model so as to 
gain further insight. All the experiments are carried out in the open test since the data 
sparseness problem occurs only on the unseen data. 

5.4.1 The First Approach 
This approach smoothes the probability distributions in the NS bigram model by the 
traditional smoothing techniques. Totally three smoothing algorithms are investigated: the 
additive smoothing, the back-off smoothing and the linear interpolation smoothing. The 
techniques have been well presented in section 4.1. The un-smoothed NS bigram model is 
taken as the baseline model from which the error rate reduction is calculated. The 
experimental results are provided in Table 5. 

Firstly, according to the experimental results, the traditional smoothing techniques 
smooth the NS bigram model effectively. It yields great error rate reductions on the 
pinyin-to-character conversion task. For example, as much as 15.77% error rate reduction has 
been yielded by the back-off smoothing technique. Secondly, the error reductions of the 
smoothed NS bigram model become more significant when k>2. It indicates that as the value 
of k increases, the data sparseness problem becomes more and more severe, and the smoothing 
technique plays a more important role. However, the most significant error rate reduction 
occurs at k=1 which is the traditional bigram model. It is for the reason that the baseline 
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accuracy of the traditional bigram model is relative lower than those of the NS bigram models. 
Thirdly, the error rate of the smoothed NS bigram model still increases when k>2, just as the 
un-smoothed NS bigram model does. It proves that the NS bigram model smoothed by this 
approach can not make full use of the increasing positional information of word so as to gain 
further improvements. It indicates that this smoothing approach can only alleviate the data 
sparseness problem of the NS bigram model, but can not really solve it. 

Table 5. Experimental results of the first smoothing approach 

Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% 

Error Rate 13.63% 12.22% 12.58% 12.9% 13.12% 13.41% 13.61% 13.87% 
Additive 

Reduction 8.95% 3.17% 4.41% 5.22% 5.81% 5.76% 6.27% 6.35% 

Error Rate 12.4% 10.88% 11.24% 11.54% 11.78% 12.05% 12.23% 12.51% 
Back-off 

Reduction 17.17% 13.79% 14.58% 15.21% 15.43% 15.32% 15.77% 15.53% 

Error Rate 12.17% 11.00% 11.42% 11.79% 12.07% 12.35% 12.58% 12.86% 
Interpolation 

Reduction 18.7% 12.84% 13.22% 13.37% 13.35% 13.21% 13.50% 13.17% 

5.4.2 The Second Approach 
In the second approach, the paper smoothes the NS bigram model by the traditional bigram 
model. Three smoothing algorithms are provided. They are the back-off method, the linear 
interpolation method and the hybrid method, as described in section 4.2. The experimental 
results are presented in Table 6. 

Table 6. Experimental results of the second smoothing approach 
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% 

Error Rate 12.4% 10.54% 10.83% 11.16% 11.47% 11.83% 12.18% 12.49% 
Back-off 

Reduction 17.17% 16.48% 17.71 18% 17.66% 16.87% 16.12% 15.67% 

Error Rate 12.17% 10.46% 10.46% 10.44% 10.4% 10.37% 10.36% 10.37% 
Interpolation 

Reduction 18.7% 17.12% 20.52% 23.29% 25.34% 27.13% 28.65% 29.98% 

Error Rate 12.4% 10.42% 10.34% 10.27% 10.21% 10.16% 10.12% 10.13% 
hybrid 

Reduction 17.17% 17.43% 21.43% 24.54% 26.70% 28.60% 30.30% 31.80% 

 



 

 

An Empirical Study of Non-Stationary Ngram Model and its Smoothing Techniques   147 

According to the experimental results, the second smoothing approach is more effective 
in smoothing the NS bigram model than the first one. For example, the hybrid method yields 
as much as 31.8% error rate reduction which is much higher than the best result of the first 
smoothing approach (which is 15.77% yielded by the back-off method). Moreover, for the 
linear interpolation method and the hybrid method, the error rate of the smoothed NS bigram 
model no longer increases along with the k value as the un-smoothed NS bigram model does, 
but decreases constantly. It proves that the NS bigram model smoothed by these methods can 
make full use of the increasing positional information of word and get further improvements. 
It can be concluded that these smoothing methods can really solve the data sparseness problem 
of the NS bigram model, rather than just alleviate the problem. The back-off smoothing 
method does not perform as well as the above two methods because it is based on the model 
selection methodology and can not make full use of each component model. 

5.4.3 The Third Approach 
The third approach smoothes the NS bigram model by reducing its parameter space and 
building up a more compact model. The statistical variables are utilized to substitute for the 
concrete positional information. A weight is calculated from these variables for the traditional 
bigram probability. The traditional smoothing techniques are utilized to smooth the bigram 
probability. Two smoothing techniques are investigated in the section: the back-off smoothing 
and the linear interpolation smoothing. The coefficients of   and ! are optimized by the 
genetic algorithm on the held-out corpus. The settings of the genetic algorithm are presented 
in Table 7. 

    Table 7. Settings of the genetic algorithm 

Population size 30 

Probability of reproduction 0.1  

Probability of crossover 0.65  

Probability of mutation 0.2  

Selection mechanism Rank selection 

Crossover mechanism Arithmetical crossover 

Mutation mechanism Normal mutation 

Fitness function Error rate of the pinyin-to-character converter 

The un-smoothed NS bigram model is taken as the baseline model. The experimental results 
are presented in Table 8. 
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Table 8. Experimental results of the third smoothing approach 
Bin Number k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

Un-smoothed Error Rate 14.97% 12.62% 13.16% 13.61% 13.93% 14.23% 14.52% 14.81% 

Error Rate 12.4% 10.59% 10.47% 10.47% 10.43% 10.43% 10.43% 10.41% 
Back-off 

Reduction 17.17% 16.09% 20.44% 23.07% 25.13% 26.70% 26.70% 29.71% 

Error Rate 12.17% 10.56% 10.48% 10.44% 10.43% 10.42% 10.43% 10.4% 
Interpolation 

Reduction 18.7% 16.32% 20.36% 23.29% 25.13% 26.77% 28.17% 29.78% 

Firstly, according to the experimental results, this approach can smooth the NS bigram 
model effectively. It achieves as much as 29.78% error rate reduction which is slightly lower 
than the second approach’s (31.8%), whereas much higher than the first one ’s (15.77%). This 
smoothing approach can not achieve the best performance because the compact model has a 
smaller parameter space and its predictive capability is lower than that of the NS bigram 
model. Secondly, the error rate of the smoothed NS bigram model decreases along with the k 
value constantly. It proves that the approach can really solve the data sparseness problem of 
the NS bigram model, just as the second approach does. Finally, the performance of the 
smoothed NS bigram model becomes stably after k=2, which indicates that a small number of 
bins are enough to estimate the statistical variables and get the performance improvements. 

5.4.4 Comparisons 
This section compares the performances of the three smoothing approaches with each other. In 
each approach, it presents the smoothing algorithm which yields the best experimental results. 
The smoothed traditional bigram model is also presented for comparison. The results are 
summarized in Figure 4. 

According to Figure 4, several conclusions can be drawn as follows. Firstly, the 
smoothed NS bigram model outperforms the smoothed traditional bigram model significantly 
by the exploitation of the word positional information. Secondly, all the smoothing approaches 
smooth the NS bigram model effectively with great error rate reduction. Thirdly, the second 
and the third approaches perform better than the first one. They can make full use of the 
positional information and really solve the data sparseness problem of the NS bigram model. 
Finally, the third approach yields the comparable experimental results with the second one, 
while it needs much smaller parameter space. 
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Figure 4. Comparison of the three smoothing approaches 

5.4.5 Performance of Each Distribution in NS Bigram Model 
In section 5.2, it has presented the NS property of words by investigating the probability 
distributions in the NS bigram model. In order to gain more insight, this section presents the 
performance of each probability distribution in the NS bigram model and evaluates their 
contributions to the ultimate performance of the NS bigram model. 

Generally speaking, it can not tell exactly which probability distribution in the NS 
bigram model leads to a certain error in the pinyin-to-character conversion process. An 
approximate method is then provided. The section simply divides each sentence of the test 
corpus into several bins according to the method in section 3.3, and then calculates the error 
rate in each bin separately. Each error rate corresponds to the performance of a particular 
probability distribution in the NS bigram model. All the following experiments are carried out 
in the open test. The hybrid algorithm in the second approach is utilized to smooth the NS 
bigram model. It yields the best experimental results in the above sections. The NS bigram 
model is built up on various values of k which are up to 8. The experimental results are 
summarized in Table 9. 
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Table 9. Performance of each probability distribution in the NS bigram model 

Bin number 
 

Bin index 
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 

t=1 12.4% 11.29% 11.06% 10.93% 10.70% 10.52% 10.42% 10.28% 

t=2 --- 9.48% 11.46% 11.18% 11.05% 10.93% 10.85% 10.77% 

t=3 --- --- 8.29% 11.39% 11.50% 11.20% 11.20% 10.99% 

t=4 --- --- --- 7.14% 10.96% 11.45% 11.23% 11.24% 

t=5 --- --- --- --- 6.13% 10.58% 11.17% 11.54% 

t=6 --- --- --- --- --- 5.33% 10.18% 11.09% 

t=7 --- --- --- --- --- --- 4.52% 9.62% 

t=8 --- --- --- --- --- --- --- 3.81% 

Overall error rate 12.4% 10.42% 10.34% 10.27% 10.21% 10.16% 10.12% 10.13% 

In the row of Table 9, the section lists the NS bigram model with various values of k 
which are up to 8. In the column, it presents the error rate of each probability distribution of 
the NS bigram model. In the last line, it lists the overall error rate of the NS bigram model. 

Focusing on a certain column in Table 9, the error rates of the probability distributions in 
the marginal positions are generally lower than those in the middle positions in the NS bigram 
model. For example, in the NS bigram model with k=5, the error rates of t=1(10.7%) and 
t=5(6.13%) are much lower than the error rate of t=3 (11.5%). It is more obvious for the 
larger values of k. The experimental results verify our speculations in section 5.2 and prove 
that the distributions in the marginal positions have more predictive capabilities than the 
middle ones, and consequently contribute more to the ultimate performance of the NS bigram 
model. In addition, it is found that the error rate at the end position is much lower than those 
in other positions. In the above example, the error rate of t=5(6.13%) is much lower than 
others. It is because many of punctuations are modeled in this probability distribution. These 
punctuations, such as full stop and exclamation, always appear at the end of the sentence. 
Their positional information is much richer than words ’. Therefore, the predictive capability 
of the probability distribution at the end position is much more powerful than other 
distributions in the NS bigram model, and it yields much higher performance. 

6. Conclusions 

This paper enhances the traditional ngram model by relaxing the stationary hypothesis and 
exploring the word positional information. The non-stationary ngram model is proposed. 
Several related issues are discussed in detail, including the definition of the NS ngram model, 
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the representation of the word positional information and the estimation of the conditional 
probability. In addition, three smoothing approaches are proposed to solve the data sparseness 
problem of the NS ngram model. Several smoothing algorithms are presented in each 
approach. In the experiments, the NS ngram model and its smoothing techniques are evaluated 
on the pinyin-to-character conversion task which is the core technique of Chinese text input 
method. According to the experimental results, several conclusions are drawn as follows: 

1. The NS ngram model outperforms the traditional ngram model significantly by the 
exploitation of the word positional information; however, it suffers from severe data 
sparseness problem. 

2. The traditional smoothing techniques are effective in smoothing the NS ngram model; 
however, they can only alleviate the data sparseness problem without solving it 
completely. 

3. The traditional ngram model is utilized to smooth the NS ngram model. Combined 
with the traditional smoothing techniques, this smoothing approach can solve the data 
sparseness problem completely and achieve the best experimental results. 

4. The third smoothing approach can also solve the data sparseness problem of the NS 
ngram model, and it yields a comparable experimental result to the second approach 
at the cost of a smaller parameter space. 

5. Among the probability distributions in the NS ngram model, the distributions in the 
marginal positions have more predictive capability than the middle ones, and 
therefore contribute more to the ultimate performance of the NS ngram model. 
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Abstract 

Web catalog integration has become an integral aspect of current digital content 
management for Internet and e-commerce environments. The Web catalog 
integration problem concerns integration of documents in a source catalog into a 
destination catalog. Many investigations have focused on flattened 
(one-dimensional) catalogs, but few works address hierarchical Web catalog 
integration. This study presents a hierarchical catalog integration (EHCI) approach 
based on the conceptual thesauri extracted from the source catalog and the 
destination catalog to improve performance. Experiments involving real-world 
catalog integration are performed to measure the performance of the improved 
hierarchical catalog integration scheme. Experimental results demonstrate that the 
EHCI approach consistently improves the average accuracy performance of each 
hierarchical category. 

Keywords: Hierarchical catalog integration, conceptual relationships, thesaurus, 
Support Vector Machines (SVMs) 

1. Introduction 

Automatically integrating various information sources is pertinent for many real applications 
given the large, and still rapidly growing, amount of information available. For instance, an 
on-line service provider may merge various catalogs from other on-line vendors into its local 
catalog to provide customers with versatile content, and a Web portal may also have to 
integrate different Web catalogs from other portals to provide increasingly abundant 
information services to users [Agrawal and Srikant 2001]. In these examples, users can gain 
more relevant and organized information in an integrated catalog. They can also save 
considerable time, because they do not need to browse different Web catalogs. According to 
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previous studies [Keller 1997; Stonebraker and Hellerstein 2001; Kim et al. 2002; Marrón et 
al. 2003], Web catalog integration has attracted much research interest. 

Web catalog integration is not just a straightforward classification task [Agrawal and 
Srikant 2001]. Exploring implicit source information can effectively improve the integration 
accuracy [Agrawal and Srikant 2001]. Many methods for enhancing catalog integration 
performance have been proposed so far. The most important approach, called ENB, enhances 
the Naive Bayes classifiers with implicit source information. Other state-of-the-art approaches, 
including Support Vector Machines (SVMs) [Sarawagi et al. 2003; Tsay et al. 2003; Zhang 
and Lee 2004a; Chen et al. 2005; Chen et al. 2006; Ho et al. 2006] and the Maximum Entropy 
model [Wu et al. 2005], have been also presented to elevate the performance of Web catalog 
integration, and they further outperform the ENB approach. 

 Past studies in text classification [MacCallum et al. 1998; Dumais and Chen 2000] have 
indicated that exploiting a hierarchical structure can bring strong advantages over using a 
flattened structure in classification. [MacCallum et al. 1998] presented a probabilistic 
framework, and a shrinkage approach was proposed to improve text classification in a 
hierarchy of classes. Experimental results indicate that hierarchical text classification with 
large numbers of features (feature set > 10000) can obtain better average accuracy 
performance than flattened text classification. However, the shrinkage approach may either 
have no effect or hurt slightly in some classes with a large amount of training data 
[MacCallum et al. 1998]. 

Previous hierarchical data integration studies [Doan et al. 2002; Rajan et al. 2005] 
examined the hierarchical structures of the destination catalog are studied to improve the 
accuracy of catalog integration. [Doan et al. 2002] extracted the domain constraint features 
obtained from the neighboring nodes to enhance the mapping of ontological data. [Rajan et al. 
2005] developed a maximum likelihood-based framework that exploits the hierarchical 
structure of categories, and examined four mapping scenarios. Experimental results have 
demonstrated that hierarchical relationships in the destination catalog are effective in catalog 
integration. Some source class labels can further be integrated into the destination catalog as 
new classes to maintain a new hierarchy. 

However, hierarchical relationships of the categories and subcategories between the 
source and destination catalogs have not been investigated in the previous work. Moreover, 
experimental results indicate that the previously proposed approaches only integrate the data 
into the leaf nodes of the destination catalog. Although past methods for conventional text 
classification and hierarchical catalog integration can benefit from using a hierarchical 
structure, they only address the hierarchical structure in the destination categories and do not 
consider the differing hierarchical structures in the source and destination catalogs. Hence, 
this work performs some pilot studies for the hierarchical catalog integration problem by 
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Conceptual Relationships in a Thesaurua 

considering the implicit information embedded in the hierarchical structure of both the source 
and destination catalogs. The pilot experimental results reported in Chen et al. [2006] indicate 
that the implicit hierarchical information does indeed contribute to the hierarchical Web 
catalog integration problem. 

While extending the results of our previous pilot study, this work presents an enhanced 
hierarchical catalog integration (EHCI) approach with conceptual relationships extracted from 
the source and destination catalog thesauri to improve the integration performance. An EHCI 
approach based on SVM was adopted in these experiments due to its good classification 
performance. To demonstrate the effectiveness of EHCI, its performance is compared with 
that of a simple hierarchical catalog integration approach (SHCI) based on previous 
hierarchical classification studies [Dumais and Chen 2000; Sun and Lim 2001; Sun et al. 2003; 
Vural and Dy 2004]. 

Results of experiments with real-world catalogs reveal that the EHCI approach 
consistently raises the accuracy of hierarchical Web catalog integration in almost all 
hierarchical levels in both Yahoo!-to-Google and Google-to-Yahoo! catalog integration. These 
results also demonstrate that EHCI attains an average accuracy improvement of 11.1% in 
Yahoo!-to-Google catalog integration, and 21.6% in Google-to-Yahoo! catalog integration. 
The results further indicate that hierarchical catalog integration can be effectively improved by 
enhancing the conceptual relationships discovered from the hierarchical thesauri. 

The remainder of this paper is organized as follows. Section 2 reviews the related studies 
of catalog integration. Section 3 then describes in detail the hierarchical Web catalog 
integration and the enhanced hierarchical integration approach. Next, Section 4 shows the 
environmental settings and discusses the experimental results. Finally, conclusions are drawn 
in Section 5, along with recommendations for future research. 

2. Related Work 

Most methods proposed for solving the catalog integration problem have been based on a 
flattened structure, implying that the categories in a catalog are isolated and lack hierarchical 
relationships. Agrawal and Srikant were the first to study this problem in 2001, and presented 
an enhanced Naive Bayes approach (ENB) to improve the integration accuracy by exploiting 
implicit information from the source catalog [Agrawal and Srikant 2001]. Experimental results 
involving real-world catalogs indicate that ENB can achieve an average accuracy 
improvement of more than 14%. Their promising results reveal that exploiting implicit source 
information indeed benefits the accuracy for automated catalog integration. 

 Several algorithms have been proposed in the past few years to increase the accuracy of 
catalog integration based on a flattened structure. Since SVM has presented superior 
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performance in classification problems [Dumais et al. 1998; Joachims 1998; Yang and Liu 
1999; Rennie and Rifkin 2001], many related studies have also adopted the SVM classifiers 
with different strategies to extract the implicit information and improve the integration 
accuracy. These SVM-based integration approaches include a cross-training technique for 
SVM classifiers (SVM-CT) [Sarawagi et al. 2003], a topic restriction strategy (SVM-TR) 
[Tsay et al. 2003], a cluster shrinkage approach (CS-TSVM) [Zhang and Lee 2004a], and an 
iterative approach with pseudo-relevance feedback (SVM-IA) [Chen et al. 2005]. Most of 
these approaches employing the SVM classifiers were found to have higher accuracy then 
ENB. 

 In addition to the SVM-based approaches, some state-of-the-art investigations have also 
been presented to enhance the catalog integration accuracy with a flattened structure. Zhang 
and Lee proposed a co-bootstrapping approach with boosting to obtain the optimal 
combination of heterogeneous weak hypotheses without adjusting feature weights manually 
[Zhang and Lee 2004b]. Wu et al. first extracted the source hierarchical information and then 
applied the Maximum Entropy model to increase the accuracy of catalog integration in a 
flattened structure. Their experimental results showed that their approach is more accurate 
than ENB. 

 Most previous catalog integration studies adopted a flattened structure to simplify the 
catalog integration problem, thus neglecting the hierarchical relationships among the 
categories. Since previous studies on text classification problems have reported that a 
hierarchical structure can improve performance, an approach called shrinkage was presented 
to further improve the Bayesian classifiers in hierarchical text classification [MacCallum et al. 
1998]. With the shrinkage-based approach, the parameter estimation of a node is smoothed by 
interpolation from the parent nodes, thus significantly reducing the number of prediction 
errors in hierarchical text classification. 

Experimental results indicate that the accuracy performance of the method of MacCallum 
et al. [1998] can be raised by shrinking each leaf node with linear interpolation of the parent 
nodes in the destination hierarchy. However, the classification is based on the same hierarchy, 
instead of considering both the source and the destination hierarchies, respectively. Therefore, 
the original algorithm may need to be modified for application to hierarchal Web catalog 
integration. 

Rajan et al. [2005] presented a two-stage mapping and integration approach, and 
discussed four integration scenarios. They comprehensively investigated their hierarchical 
catalog integration scheme using a maximum likelihood approach, and found that its 
integration performance is very promising, particularly in one-to-many mapping (Scenario 3). 
Rajan et al. further demonstrated that the hierarchical structure of the destination catalog is 
helpful in improving integration accuracy in different data sets. However, the implicit 
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information in the source hierarchy has not been utilized in this work. 

The hierarchical relationships between the source catalog and the destination catalog 
requires further investigation when considering hierarchical Web catalog integration. Chen et 
al. preliminarily explored the effectiveness of a hierarchical catalog integration scheme with 
the consideration of both the source catalog and the destination catalog [Chen et al. 2006]. 
Their experimental results indicated a consistent improvement in accuracy of real-world Web 
catalog integration over the EHCI approach. Although the performance improvements are 
significant, the integration effectiveness based on a hierarchical structure has not been 
comprehensively studied. The following sections first define the problem, and then describe 
the ECHI approach in detail. 

3. Hierarchical Web Catalog Integration 

The integration process of the hierarchical catalog integration problem involves two 
hierarchical catalogs. Figure 1 illustrates the integration process in which the source catalog S 
with a set of m categories S1, S2,…, Sm, is integrated into the destination catalog D with a set of 
n categories D1, D2,…, Dn. These categories may have subcategories, such as S11, D11 and 
D121. 

The integration process in Figure 1 is performed by merging each document di in S into a 
correspondent destination category in D. Thus, for each directory in the hierarchy, the training 
documents trained as directory classifiers and local classifiers are utilized to help integrate 
each document di into a corresponding directory. Only the documents integrated into the 
corresponding level categories and subcategories are regarded as correctly integrated. 

 

Figure 1. The process of hierarchical catalog integration.  
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This study adopts SVM classifiers with linear kernel functions [Yang and Liu 
1999], : nf X R RŒ Æ  to locate a hyperplane that can separate the positive 
examples, ( ) 1f x ≥ + , from the negative examples, ( ) 1f x £ - . The linear function is in the 
form 1( ) ( , ) n i iif x x b b w x b== + = +Â  where ( , ) nw b R RŒ Æ . The linear SVM is trained to 
determine the optimal values of w and b such that ||w|| is minimized. These trained SVM 
classifiers are employed in the simple hierarchical catalog integration (SHCI) approach and 
the enhanced hierarchical catalog integration (EHCI) approach in hierarchical catalog 
integration. The SHCI approach and the EHCI scheme are described as follows. 

3.1 The Simple Hierarchical Catalog Integration (SHCI) Approach 
In SHCI, the SVM classifiers are trained with the training documents coming from the 
destination catalog and are used to integrate the test documents from the source catalog into 
the destination catalog. Whether a training document is considered a positive document or a 
negative document depends on its subordinate relationship to each destination category. 
Referring to Sun and Lim [2001] and Sun et al. [2003], the destination catalog was designed 
with two classifiers at every category node, namely a directory classifier and a local classifier. 

The directory classifiers were designed to categorize the source documents into different 
category and subcategory trees. The directory classifiers are trained with equal numbers of 
positive and negative examples. The positive examples were chosen from the categories and 
their subcategories where the documents were located. The negative examples were selected 
from the remaining categories and their subcategories under the same level. The local 
classifiers were designed to classify the source documents further into different destination 
levels in each category tree. The local classifiers in each level were trained with the positive 
examples chosen from each destination level, and the negative examples selected from the 
subcategories under that level. 

In real-world Web catalogs, a document may be integrated into more than one category. 
Therefore, a “one-against-rest” strategy was adopted to extend the binary SVM classifiers and 
solve the multi-class catalog integration problem. This study uses the SHCI approach as a 
baseline for hierarchical catalog integration, and considers the performance improvement of 
the SVM classifiers resulting from the enhancement of conceptual relationships in thesauri. 

3.2 Conceptual Relationships in Web Thesaurus 
Foskett utilized a thesaurus as a dictionary and a reference for classification [Foskett 1997]. A 
thesaurus can be defined as a set of related terms in a given domain knowledge, and these 
related terms are the basic semantic units for conveying concepts [Wikipedia: thesaurus]. 
Since a hierarchical thesaurus defines broad and narrow terms, its classification system can be 
considered a vocabulary hierarchy. Likewise, the child nodes in a hierarchical Web catalog 
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structure generally comprise related terms to express the classified concepts of the parent 
nodes, and so the classified terms in a hierarchical Web catalog can be treated as a hierarchical 
thesaurus. Figure 2 shows an example in which the “Automotive” category in Yahoo! Web 
catalog is categorized like a hierarchical thesaurus with some conceptual relationships in the 
hierarchy. 

 
Figure 2. The illustration of a Web thesaurus in Yahoo! catalog 

In Figure 2, the term “Automotive” is the thesaurus root, which expresses a broad term in 
the hierarchy, and has different narrow terms to define different types of “Automotive”. 
Narrower terms are defined down to the leaf nodes in the hierarchy. In the Web catalog 
hierarchy, the conceptual relationships can be extracted from the hierarchical thesaurus and 
can construct different semantic concepts. Therefore, different domain knowledge can be 
extracted from the Web catalog hierarchy, thus enhancing the performance of the SVM 
classifiers. 

3.3 Enhanced Hierarchical Catalog Integration (EHCI) Scheme 
To elevate the integration performance, a weighting formula, Equation (1), is designed to 
exploit the conceptual relationships from the hierarchical Web thesaurus, where the terms in 
different category levels are extracted as label features. Equation (1) calculates the feature 
weight of each document, FeatureWeight(x, d), where Li denotes the relevant label weight 
assigned exponentially as 1/2 i, fx represents the occurrence ratio of feature x in the document, 
and ' indicates the magnitude relation of the label weight. In Equation (1), the weight of each 
thesaurus is exponentially decreased and accumulated based on the increased levels, where n 
denotes the depth of a document in the hierarchy. If feature x appears in the label feature, then 
Lx is denoted as the label weight with the level where x is located. Otherwise, Lx=0. 
Consequently, Equation (1) is applied to both the source and destination hierarchies to 
represent the semantic concepts obtained from the source category labels and the destination 
category labels. 
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Table 1. The label weights assigned for different hierarchical levels 
Hierarchical Level Label Weight 

Document Level (L0) 1/20 
One Level Upper (L1) 1/21 
Two Levels Upper (L2) 1/22 
… … 
n Levels Upper (Ln) 1/2n 

 
Figure 3. The process of the enhanced hierarchical catalog integration 

In Equation (1), Li further denotes the label weight at a depth of i. The label weight falls 
from the document level (i=0) to top level n. This thesaurus weighting method can be utilized 
to transform the conceptual relationships of the hierarchical source categories, and add them 
into the test documents. Table 1 lists the weights of different hierarchical labels, where L0 
denotes the document level; L1 represents one level above, and so on down to Ln representing 
n levels above. 

Similarly, the EHCI scheme is used in the destination catalog to build enhanced 
classifiers in destination categories. With the enhancement of the features and native category 
label information, the classifiers can thus be trained to be more distinctive to classify the 
documents into the correct categories. The weights of the features and native category label 
information in the destination catalog are also calculated according to Equation (1). The 
threshold l  is set with different values from 0 to 1 to find the optimized weights for the 
source thesauri to enhance the destination classifiers, as are the values of l  set in the native 
destination category. Moreover, the features occurring in the upper categories are removed to 
avoid misleading integration in the subcategories. 
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Figure 3 displays a three-level example to demonstrate the concept of the EHCI approach. 
In the source catalog, the hierarchical thesaurus information is added to the test documents 
with different label weights accumulated upward from their current categories to the top-level 
category according to the weighting formula. In the destination catalog, the test documents are 
integrated into the destination categories based on the EHCI integration scheme. Figure 3 also 
indicates that a document d1 may be integrated into more than one destination category. 

3.4 Enhanced Catalog Integration Process 
Since a Web document generally comprises HTML tags, script codes and texts, the HTML 
tags and scripts codes are eliminated, and only the texts obtained after retrieving the Web 
documents from both the source and destination catalogs are kept. In the preprocessing stage, 
the texts are segmented into terms by removing the stopwords and stemming the terms with 
the Porter Stemmer [Porter 1980]. The weight of each stemmed term x is assigned by 

x iTF TFÂ , where i denotes the number of the stemmed terms in each document. This 
preprocessing flow and feature weight strategy is applied to both the SHCI and EHCI 
schemes. 

The source
documents in the

source catalog

Training the
directory
classifiers

Extracting the Web
thesaurus from the

source catalog

The documents in
the destination

catalog hierarchy

Adding the source
labels into the test

documents

Extracting the Web
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Removing the
common features
from the parent
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Training the
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Integrating the test
documents into the
destination layers

Directory
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Figure 4. The process of enhanced hierarchical catalog integration 

Figure 4 shows the process of hierarchical catalog integration with the EHCI scheme. In 
the integration process, the terms transformed from the test documents are added with the 
source catalog labels based on Equation (1). Similarly, the terms transformed from the 
documents in the destination categories are trained using the labels extracted from the 
destination catalog. To establish the directory classifiers and local classifiers in the destination 
catalog, the common features in the parent categories are removed in the training stage to 
avoid building ambiguous classifiers. 
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In Figure 4, the directory classifiers are trained with the positive documents from their 
categories and subcategories to represent the classifiers of the category trees. The local 
classifiers are trained by the positive documents of the same levels to represent the classifiers 
of their local levels. The selection of negative examples in the directory classifiers and the 
local classifiers is similar to the SHCI approach as described in Section 3.1. The test 
documents are then integrated into the destination categories through both the directory 
classifiers and the local classifiers. The integration process is finished when all the test 
documents from their source categories are integrated into the designated destination 
categories. 

4. Experiments and Discussion 

Experiments were performed involving real-world catalogs from both Yahoo! and Google to 
examine the performance of the EHCI schemes with SVM light [Joachims 2002]. The average 
integration performance with different l  values between 0 and 1 were compared. The 
results with the optimal l  value are listed in detail. Experimental results indicate that the 
EHCI approach consistently enhances the SVM classifiers in almost all levels and boosts the 
integration accuracy of a hierarchical structure. The following subsections describe the data 
sets and the experimental results. 

4.1 Data Sets 
Five categories were extracted from Yahoo! and Google. Table 2 shows the statistics of our 
experimental data including the number of hierarchical classes, the training documents and the 
test documents in these five categories. The experimental data were collected after neglecting 
the documents that could not be retrieved and removing the documents with error messages. 
The stopword list in Frakes and Baeza-Yates [1992] was adopted to remove the stopwords in 
preprocessing. Over 38,000 terms were employed for training and testing after removing the 
stopwords and stemming. As in [Agrawal and Srikant 2001], documents appearing in only one 
catalog were used as the training documents in the destination catalog D, and the common 
documents were adopted as the test documents in the source catalog S. 

Table 2. The experimental data collected from the Google catalog 
Category Google |G-Y| |G Class| |G Test| Yahoo! |Y-G| |Y Class| |Y Test| 
Autos …/Autos/… 1094 312 437 …/Automotive/… 1823 148 404 
Movies …/Movies/… 5174 1165 1340 …/Movies_Film/… 7776 1035 1211 
Outdoors …/Outdoors/… 2308 523 224 …/Outdoors/… 1724 100 177 
Photo …/Photography/… 615 158 206 …/Photography/… 1399 80 175 
Software …/Software/… 5693 1185 683 …/Software/… 1940 109 646 
Total   14884 3343 2890   14662 1472 2613 
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A set of 1,472 classes in the Yahoo! catalog and a set of 3,343 classes in the Google 
catalog were organized according to the original hierarchy to a depth of six levels as shown in 
Table 2. The test documents were chosen by cross-referencing the documents of Yahoo! with 
those of Google. Table 2 indicates that the numbers of test documents in Yahoo! and Google 
were different, in the sense that some test documents may appear in more than one class 
simultaneously. The training documents of the Yahoo! catalog and the Google catalog were 
accumulated by subtracting the common documents in the other catalog. In this experiment, 
the documents were integrated both from Yahoo! into Google and from Google to Yahoo!. 

Tables 3 and 4 further describe the number of the hierarchical classes, the training 
documents, and the test documents of six levels in the Google and Yahoo! catalogs. Since 
most of the sixth levels contain less than ten documents, the hierarchies were only retrieved 
down to the sixth level, and any documents below the sixth level were merged upward to the 
sixth level. Tables 3 and 4 indicate that the numbers of some Level 1 classes were zero, 
meaning that the destination category contained no Level 1 test documents. This experiment 
only considered the documents that were correctly integrated into the destination categories, 
thus we list the number of classes with common test documents. 

Table 3. The experimental data collected from the Google catalog 
  Level 1 Level 2 Level3 Level 4 Level 5 Level 6 Total 
Class # in Autos 0 14 98 148 46 6 312 
Training doc.# in Autos 0 144 422 389 127 12 1094 
Test doc. # in Autos 0 86 218 111 19 3 437 
Class # in Movies 1 27 115 700 245 77 1165 
Training doc.# in Movies 3 136 2581 1554 718 182 5174 
Test doc. # in Movies 0 131 524 348 302 35 1340 
Class # in Outdoors 1 23 114 111 104 170 523 
Training doc.# in Outdoors 1 104 594 376 434 799 2308 
Test doc. # in Outdoors 0 40 76 69 24 15 224 
Class # in Photo 0 9 29 50 52 18 158 
Training doc.# in Photo 0 28 172 227 141 47 615 
Test doc. # in Photo 0 26 88 59 25 8 206 
Class # in Software 1 59 281 352 306 186 1185 
Training doc.# in Software 2 547 1784 1656 1189 515 5693 
Test doc. # in Software 2 29 149 241 157 105 683 
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Table 4. The experimental data collected from the Yahoo! catalog 
 Level 1 Level 2 Level3 Level 4 Level 5 Level 6 Total 

Class # in Autos 1 24 61 39 17 6 148 
Training doc.# in Autos 56 490 575 467 186 49 1823 
Test doc. # in Autos 11 126 119 101 38 9 404 
Class # in Movies 1 27 91 195 584 137 1035 
Training doc.# in Movies 2 653 992 2210 3260 659 7776 
Test doc. # in Movies 0 140 180 353 404 134 1211 
Class # in Outdoors 1 26 47 17 5 4 100 
Training doc.# in Outdoors 63 455 815 305 25 61 1724 
Test doc. # in Outdoors 0 44 114 18 0 1 177 
Class # in Photo 1 18 28 14 17 2 80 
Training doc.# in Photo 28 266 453 138 496 18 1399 
Test doc. # in Photo 1 72 78 19 5 0 175 
Class # in Software 1 15 24 24 26 19 109 
Training doc.# in Software 50 366 488 489 364 183 1940 
Test doc. # in Software 3 146 133 155 174 35 646 

Table 5. The analysis of common classes between Google and Yahoo! 
 Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

Common class # in Autos - 2 39 1 0 0 

Common class # in Movies - 16 24 9 6 1 

Common class # in Outdoors - 5 3 2 3 0 

Common class # in Photo - 4 2 1 3 0 

Common class # in Software - 7 6 8 8 3 

Since hierarchical catalog integration is not like hierarchical text classification on the 
basis of the same hierarchy, the structure of the source hierarchy can be very different from 
the structure of the destination hierarchy. Table 5 further analyzes the number of common 
classes in different levels between the Yahoo! catalog and the Google catalog. Table 5 
indicates that the number of common classes from Level 2 to Level 6 was very small. For 
example, the Level 2 category of “Autos” contains only two common classes 
(chats_and_forums and makes_and_models) between the Google catalog (14 classes) and the 
Yahoo! catalog (24 classes). 

In addition to the common classes in the same Level 1 categories, the common classes in 
different Level 1 categories were also analyzed. The results reveal that the different Level 1 
categories had very few common classes or even no common classes in other hierarchical 
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subcategories. For instance, Yahoo! “Outdoor” has only one common Level 2 subcategory in 
Google “Movie”, and no common Level 2 subcategories in Google “Autos”, “Photo”, and 
“Software”. Prior analysis reveals that the hierarchical structure of the source catalog in the 
real-world experimental data is different from that of the destination catalog.  

4.2 Measurement 
Since some documents may appear in more than one category of the same catalog, the number 
of test documents may vary slightly between Yahoo! and Google. This experiment followed 
an assumption in Agrawal and Srikant [2001] by measuring the performance of hierarchical 
catalog integration with accuracy defined in the following equation. 

Number of the test documents correctly integrated into  
Total number of the test documents in the dataset

iD                      (2) 

 To measure the performance of hierarchical catalog integration, Equation (2) was 
adopted in each level of the destination categories to assess its accuracy performance. In each 
level of the destination categories, the numerator denotes the test documents correctly 
integrated into that level, and the denominator represents the total test documents to be 
correctly integrated. The accuracy of each level in the destination categories and the average 
accuracy of the five categories were measured. 

4.3 Results and Discussion 
In the experiment, the documents were integrated both from Yahoo! into Google and from 
Google to Yahoo!. In the EHCI approach, the conceptual relationships between the 
hierarchical thesauri in both the source and destination categories added to an increasing l  
value in the range 0–1. To further verify the effectiveness of the EHCI approach, three sets of 
negative examples were randomly chosen for Google training and the other three sets of 
negative examples were used for Yahoo! training. The overall performance of the EHCI 
approach is significantly boosted in all of these six sets. The best average performance 
improvements from Yahoo! to Google with the three sets of negative examples were 9.0%, 
11.1%, and 21.6%. In contrast, the best performance improvements from Google to Yahoo! 
with the other three sets of negative examples were 18.1%, 21.6%, and 23.7%. Table 6 and 
Table 7, notably, list the medians and detail the average integration results with l  increasing 
from 0 to 1. 

Table 6 shows the average catalog integration performance from Yahoo! to Google, and 
Table 7 lists that from Google to Yahoo!. Both first columns represent the l  values of the 
source catalog, and the first rows represent the l  values of the destination catalog. As 
indicated in Tables 6 and 7, the accuracy with the SHCI approach ( 0.00l = ) from Yahoo! to 
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Google was 61.4% and that from Google to Yahoo! was 63.7%. The best performance 
improvements with EHCI were achieved at 0.01l =  in the destination catalog and 0.30l =  
in the source catalog. The average accuracy from Yahoo! to Google and Google to Yahoo! 
was 72.5% and 85.3%, respectively. 

Table 6. The average integration performance from Yahoo! to Google 
S \ D 0.00 0.01 0.05 0.10 0.30 0.50 0.70 0.90 1.00 
0.00 61.4% 61.1% 52.4% 38.4% 17.8% 15.1% 14.2% 13.9% 13.7% 
0.01 60.7% 62.3% 54.9% 40.7% 18.4% 15.2% 14.3% 14.0% 13.7% 
0.05 63.6% 66.2% 63.4% 52.1% 21.2% 15.9% 14.6% 14.2% 14.0% 
0.10 66.3% 69.6% 68.0% 60.3% 27.6% 17.6% 15.3% 14.3% 14.2% 
0.30 68.7% 72.5% 72.1% 68.5% 54.7% 35.9% 26.2% 18.2% 17.4% 
0.50 67.1% 71.2% 71.7% 69.9% 61.6% 53.7% 40.1% 30.8% 28.0% 
0.70 64.6% 68.5% 69.1% 68.2% 61.2% 58.7% 52.2% 41.3% 37.9% 
0.90 64.1% 67.8% 69.0% 68.5% 62.7% 60.5% 56.8% 51.9% 47.6% 
1.00 63.6% 67.4% 68.9% 68.5% 63.3% 61.5% 58.5% 53.8% 51.8% 

Table 7. The average integration performance from to Google to Yahoo! 
S \ D 0.00 0.01 0.05 0.10 0.30 0.50 0.70 0.90 1.00 
0.00 63.7% 61.7% 33.1% 15.0% 0.8% 0.2% 0.1% 0.1% 0.1% 
0.01 66.0% 65.6% 37.8% 16.9% 1.0% 0.2% 0.1% 0.2% 0.1% 
0.05 72.4% 74.2% 54.2% 29.4% 1.8% 0.3% 0.2% 0.2% 0.1% 
0.10 76.7% 80.4% 64.9% 42.2% 4.6% 0.6% 0.2% 0.2% 0.2% 
0.30 81.8% 85.3% 75.5% 57.1% 29.7% 12.2% 2.3% 0.3% 0.2% 
0.50 80.2% 85.0% 77.7% 60.4% 39.6% 26.2% 16.4% 8.4% 4.3% 
0.70 77.5% 83.5% 77.8% 61.7% 43.2% 32.7% 24.3% 19.6% 14.5% 
0.90 75.8% 82.5% 78.1% 62.9% 45.9% 38.5% 30.0% 24.2% 21.0% 
1.00 75.2% 81.7% 78.3% 63.1% 46.6% 38.9% 32.0% 26.2% 24.2% 

Since the best accuracy in both Google-to-Yahoo! and Yahoo!-to-Google integration was 
obtained by adding the hierarchical label weights with 0.30l = , we can infer that the 
conceptual thesaurus extracted from the source hierarchy significantly improves hierarchical 
catalog integration. Conversely, the conceptual thesaurus extracted from the destination 
hierarchy to enhance the hierarchical classifiers is not as effective as the source hierarchical 
thesaurus. Tables 6 and 7 show that the improvement in accuracy obtained by changing from 

0.00l =  to 0.01l =  was less than 5%. Experimental results indicate that the conceptual 
relationships in the source hierarchical thesaurus are more likely to enhance hierarchal Web 
catalog integration than those in the destination hierarchical thesaurus. 
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Tables 8 and 9 further describe the integration accuracy of the six hierarchical levels with 
0.01l =  in the destination catalog and 0.30l =  in the source catalog. Analytical results 

indicate that the EHCI approach consistently improves the accuracy performance of each level 
in almost all cases. However, Table 8 still indicates that the EHCI approach induced a 2.7% 
accuracy decrease at Level 3 and a 23.8% accuracy decrease at Level 6 in the Software 
category when integrating from Yahoo! to Google. Table 9 also indicates a 0.7% accuracy 
decrease at Level 6 in the Movies category, and a 5.7% accuracy decrease at Level 6 in the 
Software category when integrating from Google to Yahoo!. The main reason for these falls in 
accuracy is probably due to the training documents in those destination levels lacking the 
hierarchical thesauri extracted from the source catalog. 

Table 8. The Yahoo!-to-Google integration performance in six levels 
  Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total 
Autos 0.0% (0) 84.9% (73) 50.0% (109) 40.5% (45) 52.6% (10) 0.0% (0) 54.2% (237) 
Autos_E 0.0% (0) 91.9% (79) 74.8% (163) 60.4% (67) 68.4% (13) 66.7% (2) 74.1% (324) 
Movies 0.0% (0) 63.4% (83) 75.4% (395) 56.6% (197) 54.0% (163) 37.1% (13) 63.5% (851) 
Movies_E 0.0% (0) 71.8% (94) 80.0% (419) 61.5% (214) 70.2% (212) 40.0% (14) 71.1% (953) 
Outdoors 0.0% (0) 70.0% (28) 75.0% (57) 69.6% (48) 79.2% (19) 46.7% (7) 71.0% (159) 
Outdoors_E 0.0% (0) 72.5% (29) 93.4% (71) 87.0% (60) 87.5% (21) 73.3% (11) 85.7% (192) 
Photo 0.0% (0) 42.3% (11) 55.7% (49) 39.0% (23) 36.0% (9) 25.0% (2) 45.6% (94) 
Photo_E 0.0% (0) 61.5% (16) 68.2% (60) 57.6% (34) 52.0% (13) 25.0% (2) 60.7% (125) 
Software 100.0% (2) 72.4% (21) 63.1% (94) 68.0% (164) 58.0% (91) 58.1% (61) 63.4% (433) 
Software_E 100.0% (2) 86.2% (25) 60.4% (90) 82.6% (199) 73.2% (115) 34.3% (36) 68.4% (467) 

Table 9. The Google-to-Yahoo! integration performance in six levels 
  Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Total 
Autos 63.6% (7) 68.3% (86) 64.7% (77) 52.5% (53) 47.4% (18) 88.9% (8) 61.6% (249) 
Autos_E 100.0% (11) 84.9% (107) 89.1% (106) 88.1% (89) 84.2% (32) 100.0% (9) 87.6% (354) 
Movies 0.0% (0) 72.1% (101) 56.7% (102) 50.1% (177) 53.7% (217) 50.7% (68) 54.9% (665) 
Movies_E 0.0% (0) 91.4% (128) 78.9% (142) 94.9% (335) 65.6% (265) 50.0% (67) 77.4% (937) 
Outdoors 0.0% (0) 70.5%(31) 80.7% (92) 44.4% (8) 0.0% (0) 100.0% (1) 74.6% (132) 
Outdoors_E 0.0% (0) 100.0% (44) 97.4% (111) 88.9% (16) 0.0% (0) 100.0% (1) 97.2% (172) 
Photo 0.0% (0) 63.9% (46) 60.3% (47) 84.2% (16) 40.0% (2) 0.0% (0) 63.4% (111) 
Photo_E 0.0% (0) 90.3% (65) 93.6% (73) 84.2% (16) 60.0% (3) 0.0% (0) 89.7% (157) 
Software 100.0% (3) 83.6% (122) 75.9% (101) 76.1% (118) 79.9% (139) 71.4% (25) 78.6% (508) 
Software_E 100.0% (3) 93.8% (137) 85.0% (113) 91.6% (142) 97.1% (169) 65.7% (23) 90.9% (587) 
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Figures 5 and 6 depict the overall performance between the EHCI and SHCI approaches. 
The results indicate that EHCI outperforms SHCI in both Yahoo!-to-Google and 
Google-to-Yahoo! catalog integration. Figure 5 indicates that the EHCI approach achieved an 
average accuracy improvement of 11.1% in Yahoo!-to-Google catalog integration. In Figure 6, 
the EHCI approach obtained an average accuracy improvement of 21.6% in Google-to-Yahoo! 
catalog integration. The results further indicate that hierarchical catalog integration can be 
effectively boosted by enhancement of the conceptual relationships extracted from the 
hierarchical thesauri. 
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Figure 5. The average integration performance from Yahoo! to Google 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Autos Movies Outdoors Photo Software

SHCI
EHCI

 
Figure 6. The average integration performance from Google to Yahoo! 
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As well as the accuracy performance, the computation cost of SHCI and EHCI 
approaches was further analyzed. The experimental environment was in an IBM PC with an 
Intel Core Duo T2400 CPU and 1GB memory. The overall CPU runtime provided by SVM light

 

 was to analyze the training and testing time, excluding the data I/O time, in a Windows XP 
environment. Results of runtime analysis demonstrate that SHCI took 65.60 seconds to 
perform Google-to-Yahoo! catalog integration and 6.40 seconds to perform Yahoo!-to-Google 
catalog integration. Conversely, EHCI took 86.53 seconds to perform Google-to-Yahoo! 
catalog integration and 6.69 seconds to perform Yahoo!-to-Google catalog integration. The 
reason for the faster CPU time of Yahoo!-to-Google integration is the much smaller number of 
Google classifiers than Yahoo! classifiers. The CPU runtime analysis further indicates that the 
proposed approach can efficiently complete the catalog integration work. 

5. Conclusion 

Web catalog integration is a significant issue in Web content management. Although past 
studies have indicated that a hierarchical structure is superior to a flattened structure in 
classification, recent studies have only presented a few primitive results and have not 
comprehensively studied hierarchical structures in hierarchical Web catalog integration. This 
study addresses the problem of hierarchical catalog integration, and proposes an enhanced 
hierarchical catalog integration (EHCI) scheme. 

This study further reports experimental results concerning the improvement in Web 
catalog integration accuracy resulting from the use of EHCI. The integration accuracy is 
significantly improved by exploiting the conceptual relationships extracted from the source 
and destination catalog thesauri to enhance hierarchical catalog integration. Experimental 
results indicate that EHCI is effective for hierarchical Web catalog integration, and achieves 
improvements in almost every hierarchical level on real-world catalogs with SVM classifiers. 
In overall performance of hierarchical catalog integration, the EHCI approach can consistently 
improve accuracy in real-world catalog integration. 

To conclude, this study demonstrates that the conceptual relationships learned from the 
source and destination catalog thesauri can enhance hierarchical catalog integration. 
Experimental results indicate that the accuracy improvements in a hierarchical structure are 
very promising, especially the hierarchical thesaurus extracted from the source catalog. Future 
work will involve investigating other classification models in order to build an integration 
platform for hierarchical catalog integration. Furthermore, complex catalog integration issues 
will be considered through ontology relationships. 
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Small-Scale Experimental Syntax 

James Myers  

Abstract 

MiniJudge is free online open-source software to help theoretical syntacticians 
collect and analyze native-speaker acceptability judgments in a way that combines 
the speed and ease of traditional introspective methods with the power and 
statistical validity afforded by rigorous experimental protocols. This paper shows 
why MiniJudge is useful, what it feels like to use it, and how it works. 

Keywords: Syntax, Experimental Linguistics, JavaScript, R, Generalized Linear 
Mixed Effect Modeling 

1. Introduction 

Every theoretical syntactician has faced the problem of native-speaker judgments that, instead 
of correlating neatly with the theoretical issue at hand, vary unexpectedly across sentences or 
speakers. This problem is generally dealt with indiscriminately, either by fiat (“assuming these 
judgments are correct...”) or by dropping the data entirely, along with the potentially 
important theoretical issue it may provide. Perhaps forty years ago [Chomsky 1965:19-20] 
was right to declare that “[t]he critical problem for grammatical theory today is not a paucity 
of evidence but rather the inadequacy of present theories of language to account for masses of 
evidence that are hardly open to serious question.” However, as [Schütze 1996:27] observed 
(ten years ago now), “the questions linguists are now addressing rely crucially on facts that are 
indeed ‘open to serious question’.” 

Acceptability judgments reflect grammatical knowledge, but as data they are merely a 
form of linguistic behavior, parallel to the accuracy rates or reaction times measured by 
psycholinguists ([Chomsky 1965], [Penke and Rosenbach 2004]). From a cognitive science 
perspective, then, the ideal solution to the linguists’ data woes would be for them to adopt the 
rigorous experimental protocols honed over the two centuries scientists have been struggling 
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to extract information about mental structure from often messy behavioral data. When 
linguistic judgments are collected with such protocols, they often (though not always) 
reconfirm the essential validity of empirical claims made on the basis of more informal 
methods, but they can also go beyond simple reconfirmation (or falsification) to reveal 
hitherto unsuspected theoretical insights. Recent examples of the growing experimental syntax 
literature include [Sorace and Keller 2005], [Featherston 2005], and [Clifton et al. 2006]; 
[Cowart 1997] is a user-friendly handbook. 

Unfortunately, full-fledged experimental syntax is complex, forcing the researcher to 
spend considerable time on work that is not theoretically very interesting. Fortunately, the 
complexity of an experiment need only be proportional to the subtlety of the effect it is trying 
to detect. Most judgments are very clear (perhaps because a grammar must be shared by a 
speech community, and hence must be “obvious” enough to learn), and so are reliably detected 
even with traditional “trivially simple” methods. Very subtle or variable judgments, or 
hypotheses involving gradient degrees of acceptability or interactions between grammar and 
processing, may require full-fledged experimental methods. However, in the large area in 
between, a compromise seems appropriate, where methods are powerful enough to yield 
statistically valid results, yet are simple enough to apply quickly. This is where MiniJudge 
comes in. 

MiniJudge [Myers 2007a] is a family of software tools designed to help theoretical 
syntacticians design, run, and analyze linguistic judgment experiments quickly and painlessly. 
Though MiniJudge experiments are small-scale experiments, testing the minimum number of 
speakers and sentences in the shortest amount of time, they use statistical techniques designed 
to maximize interpretive power from small data sets. In this paper, I first define more 
precisely what makes a MiniJudge experiment small-scale. Then, I walk through a sample 
MiniJudge experiment on Chinese. Finally, I reveal MiniJudge’s inner workings, which 
involve some underused or novel statistical techniques. The most updated implementation of 
MiniJudge is MiniJudgeJS, which is written in JavaScript, HTML, and the statistical language 
R [R Development Core Team 2007]. It has been tested most extensively in Firefox for 
Windows XP, but also seems to work properly in Internet Explorer and Opera in Windows, 
Firefox for Linux (though line breaks are not handled properly in R for Linux), and Firefox, 
Opera, and Safari for Macintosh. There is also a Java implementation called MiniJudgeJava 
[Chen et al. 2007] with somewhat different internal algorithms and interface, but which 
otherwise works the same as the JavaScript version described in this paper. 
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2. Small-Scale Experimental Syntax 

Experimental syntax (at least the type carried out in laboratories) generally adheres rather 
closely to conventions developed in psycholinguistics: multiple stimuli and subjects (naive 
ones rather than the bias-prone experimenters themselves), factorial designs (where materials 
represent all possible combinations of the experimental factors, to avoid confounds and make 
it possible to study interactions between factors), filler items (to prevent subjects from 
guessing which materials are the theoretically crucial ones), counterbalancing (so no subject is 
presented with “minimal pairs” differing only in theoretically relevant factors), continuous 
response measures (e.g., open-ended judgment scales, to permit the use of standard statistical 
techniques like the analysis of variance, or ANOVA), and statistical analysis (to determine 
how unlikely the obtained results were to have occurred by chance alone). Together, these 
conventions can make the designing, running, and analysis of syntax experiments quite 
time-consuming and intimidating to the novice, especially if the experiment ends up merely 
reconfirming results already suspected from informally collected judgments. 

In a small-scale judgment experiment, however, only the most essential of these 
conventions are maintained, as summarized in Table 1. 

Table 1. Key characteristics of small-scale experimental syntax 
Very few sentence sets (about 10) No fillers 
Very few (naive) speakers (about 10-20) No counterbalancing of sentence lists 
Maximum of two binary factors Random sentence order 
Binary yes/no judgments Order treated as a factor in the statistics 

The very small number of sentence sets and speakers (in comparison with the typical 
psycholinguistics experiment) means that experiments can be designed and conducted quite 
quickly. Statistical power need not be sacrificed, since, as explained below, the statistical 
analysis uses all of the raw data; hence an experiment with ten speakers judging ten sentence 
pairs yields 200 distinct observations. Restricting to two binary factors also speeds up 
experimental design, and reflects quite well the sorts of designs implicit in most actual 
syntactic research; an example demonstrating this is given below. Binary yes/no judgments are 
inherently less information-rich than judgments on a continuous scale, but they are generally 
easier for naive subjects to provide (see, e.g., [Snyder 2000]); unclear cases can simply be 
responded to with an arbitrary guess (which may feel random, but rarely is). Though binary 
judgments are the default when judgments are collected informally, they are often avoided 
when experimenters intend to analyze their results statistically, one reason being that the most 
familiar statistical techniques (like ANOVA) are designed for continuous data. Rather than 
adjusting the judgment conventions to suit the statistics, MiniJudge adjusts the statistics to suit 
the judgment conventions of actual practicing syntacticians, adopting a recently developed 
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method designed specifically for binary response measures collected across both subjects and 
materials (see 4.2.1). 

The lack of fillers and counterbalancing means that subjects have more opportunities to 
guess the purpose of the experiment than is typically tolerated in psycholinguistics, but the 
effect of any biases that may result is limited due to the treatment sentence order. First, as is 
standard in psycholinguistic experiments, materials are presented in random order, since by far 
the most powerful (hence, annoying) bias in linguistic responses is memory of recently 
processed forms. Second, going beyond standard practice, MiniJudge is capable of ignoring in 
the statistics any lingering order effects (see 4.2.2). As I demonstrate below, this feature is 
sometimes essential to bring particularly subtle and sensitive judgment patterns up to the level 
of statistical significance. 

For further justification of the built-in restrictions of MiniJudge, see the MiniJudge 
homepage [Myers 2007a]. 

3. Using MiniJudge 

To show how MiniJudge is used, I describe a recent application of it to a morphosyntactic 
issue in Chinese (see [Myers 2007b] for discussion of the linguistic background). MiniJudge 
has also been used to run syntax experiments on English and Taiwan Sign Language, as well 
as to run pilots for larger studies and to help teach basic concepts in experimental design. 
MiniJudge can also be used for judgments experiments in pragmatics, semantics, and 
phonology. 

3.1 Goal of the Experiment 
[He 2004] presents an interesting observation about the interaction of compound-internal 
phrase structure and affixation of the plural marker men in Chinese. Part of his paradigm is 
shown in Table 2, where V = verb and O = object (based on his (2) & (4), pp. 2-3). 

Table 2. The VOmen paradigm of He (2004) 
 [+men] [-men] 

[+VO] *zhizao yaoyan zhe men 
make rumor person PLURAL 

zhizao yaoyan zhe 
make rumor person 

[-VO] yaoyan zhizao zhe men 
rumor make person PLURAL 

yaoyan zhizao zhe 
rumor make person 

He’s analysis is not relevant here; the question is simply whether or not his observation 
about the judgment pattern in Table 2 is empirically correct. As a non-native speaker of 
Chinese, I have no intuitions myself. When I have informally asked colleagues and students to 
double-check the judgments, I have received a mixed response. Some looking at He’s paper 
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seem to be influenced more by the printed star pattern than the examples themselves. Others 
rule out men or VO entirely, but this misses the point, since He’s claim concerns the 
ungrammaticality of the VOmen form relative to all the others. It may also be that He’s 
generalization works for the few examples he cites, but fails in general. My goal, then, was to 
use MiniJudge to generate more examples to test systematically on native speakers. 

3.2 The MiniJudgeJS Interface 
MiniJudgeJS is simply a JavaScript-enabled HTML form. Input and output are handled by text 
areas; generated text includes code to run statistical analyses in R. Like the rest of the 
MiniJudge family, MiniJudgeJS divides the experimental process into the steps in Table 3. 

Table 3. The steps used by MiniJudge 
I. Design experiment II. Run experiment III. Analyze experiment 

Choose experimental factors Choose number of speakers Download and install R 

Choose set of prototype sentences Write instructions for speakers Enter raw results 

Choose number of sentence sets Print or email survey forms Generate data file 

Segment prototype set (optional) Save schematic survey file Save data file 

Replace segments (optional)  Generate R code 

Save master list of test sentences  Paste R command code into R 

3.3 Designing the Experiment 
A MiniJudge experiment is defined by its experimental factors. Thus, the paradigm in Table 2 
is derived via two binary factors: [±VO] (VO vs. OV) and [±men] (with or without men 
suffixation). As noted above, He’s observation doesn’t relate to each factor separately, but 
rather to an interaction: the combination of the factor values [+VO] and [+men] is claimed to 
result in lower acceptability, relative to overall judgments for [+VO] and for [+men]. 

The next step is to enter the prototype set of sentences (a pair if one factor, a quartet if 
two factors). Similar to the example sets shown in syntax papers and presentations, the 
prototype set serves multiple purposes. Most fundamentally, it helps to make the logic of 
factorial experimental design intuitive for novice experimenters. Syntacticians are not always 
aware of the importance of contrasting sentences that differ only in theoretically relevant 
factors, or of the central role played by interactions in many syntactic claims (for further 
discussion of the relevance of factors and interactions in syntax experiments, see [Cowart 
1997], as well as the MiniJudge main page [Myers 2007a]). 
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Another purpose of the prototype set is that it can be used to help generate further 
sentence sets that maintain the same factorial contrasts but vary in irrelevant lexical properties. 
In the case of the present experiment, the claim made in [He 2004] says nothing about the 
particular verb, object, or head that is used. Thus the judgment pattern claimed for Table 2 
above should also hold for the sets shown in Table 4 below, regardless of any additional 
influences from pragmatics, frequency, suffixlikeness (zhe vs. the others), or freeness (ren vs. 
the others); the stars here represent what He should predict (lexical content for the new sets 
was chosen with the help of Ko Yu-guang and Zhang Ning). 

Table 4. Extending the VOmen paradigm of He [2004] 
 [+men] [-men] 

[+VO] *chuanbo bingdu yuan men 
spread virus person PLURAL 

chuanbo bingdu yuan 
spread virus person 

[-VO] bingdu chuanbo yuan men 
virus spread person PLURAL 

bingdu chuanbo yuan 
virus spread person 

[+VO] *sheji shipin ren men 
design ornaments person PLURAL 

sheji shipin ren 
design ornaments person 

[-VO] shipin sheji ren men 
ornaments design person PLURAL 

shipin sheji ren 
ornaments design person 

MiniJudge partly automates the process of creating new sentence sets by dividing up the 
prototype sentences into the largest repeating segments and replacing them with user-chosen 
substitutes. The prototype segments for Table 2 are shown in the first row of Table 5. The user 
only has to find parallel substitutes for four segments, rather than having to construct whole 
new sentences consistent with the factorial design (Table 5 shows the segments needed to 
generate the new sets in Table 4). The segmentation and set generation algorithms (see 4.1) 
are designed to work equally well in English-like and Chinese-like orthographies. Of course, 
since MiniJudge knows no human language, it sometimes makes strange errors, so users are 
allowed to correct its output, or even to generate new sets manually. 

Table 5. Prototype segments and new segments for the VOmen experiment 
Set 1 (prototype) segments: zhizao yaoyan zhe men 

Set 2 segments: chuanbo bingdu yuan men 

Set 3 segments: sheji shipin ren men 

After the user has corrected and approved the master list of sentences, it can be saved to a 
file for use in reports. In the present experiment, the master list contained 48 sentences (12 
sets of 4 sentences each). This is an unusually large number of sentences for a MiniJudge 
experiment; significant results have been found with experiments with as few as 10 sentences. 



 

 

MiniJudge: Software for Small-Scale Experimental Syntax              ˄ˋ˄ 

3.4 Running the Experiment 
In order to run a MiniJudge experiment, the user must make three decisions. The first concerns 
the maximum number of speakers to test. It is possible to get significant results with as few as 
7 speakers, but in the present experiment, I generated 30 surveys. As it turned out, only 18 
surveys were returned. 

The second decision concerns whether surveys will be distributed by printed form or by 
email. In MiniJudgeJS, printing surveys involves saving them from a text area and printing 
them with a word processor. MiniJudgeJS cannot send email automatically, so emailed 
surveys must be individually copied and pasted. In the present experiment, I emailed thirty 
students, former students, or faculty of my linguistics department who did not know the 
purpose of the experiment. 

The final decision concerns the instructions, which the user may edit from a default. 
MiniJudgeJS requires that judgments be entered as 1 (yes) vs. 0 (no). Chinese instructions for 
the VOmen experiment were written with the help of Ko Yu-guang. 

Surveys themselves are randomized individually to prevent order confounds, as is 
standard in psycholinguistics. The randomization algorithm, taken from [Cowart 1997:101], 
results in every sentence having an equal chance to appear at any point in the experiment (by 
randomization of blocks), while simultaneously distributing sentence types evenly and 
randomly. 

Each survey starts with the instructions, followed by a speaker ID number (e.g. “##02”), 
and finally the survey itself, with each sentence numbered in the order seen by the speaker. 
Because the speakers’ surveys intentionally hide the factorial design, the experimenter must 
save this information separately in a schematic survey file. This file is meant to be read only 
by MiniJudgeJS; as an example, the first line of the schematic survey file for the present 
experiment is explained in Table 6. 

Table 6. The structure of the schematic survey information file for the VOmen 
experiment 

File line: 01 20 05 01 -VO -men 

Explanation: speaker ID 
number 

sentence ID 
number 

set ID number order in 
survey 

value of first 
factor 

value of 
second factor 

After completed surveys have been returned, the experimenter pastes them into a text 
area in any order (as long as each survey still contains its ID number), and pastes the 
schematic survey information back into another text window. MiniJudgeJS extracts judgments 
from the surveys and creates a data file in which each row represents a single observation, 
with IDs for speakers, sentences, and sets, presentation order of sentences, factor values (1 for 
[+] and -1 for [-]), and judgments. As an example, the first three lines of the data file for the 
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VOmen experiment are shown in Table 7. 

Table 7. First three lines of data file for the VOmen experiment 
Speaker Sentence Set Order VO men Judgment 

1 20 5 1 -1 -1 1 

1 45 12 2 1 1 0 

3.5 Analyzing the Results 
For novice experimenters, the most intimidating aspect of psycholinguistic research is 
statistical analysis. MiniJudge employs quite complex statistical methods that are unfamiliar 
even to most psycholinguists, yet hides them behind a relatively user-friendly interface. Data 
from a MiniJudge experiment are both categorical and repeated-measures (grouped within 
speakers). Currently the best available statistical model for repeated-measures categorical data 
is generalized linear mixed effect modeling (GLMM), which can be thought of as an extension 
of logistic regression (see e.g. [Agresti et al. 2000]. 

GLMM poses serious programming challenges, so MiniJudgeJS passes the job to R, the 
world’s foremost free statistical package [R Development Core Team 2007]. R is an 
open-source near clone of the proprietary program S [Chambers and Hastie 1993], and like S, 
is a full-featured programming language. Its syntax is somewhere between C++ and Matlab, 
and, of course, it has a wide variety of built-in statistical functions, including many 
user-written packages. The specific R package for GLMM used by MiniJudgeJS is lme4 and 
its prerequisite packages [Bates and Sarkar 2007]. 

However, since R is a command-line program, and its outputs can be unintelligible 
without statistical training, MiniJudgeJS handles the interface with it. The user merely enters 
the name of the data file, decides whether or not to test for syntactic satiation (explained 
below in section 3.5.2), and pastes the code generated by MiniJudgeJS into the R window. 
After the last line has been processed by R, the code will either generate a warning (that the 
file was not found or was not formatted correctly), or, if all went well, display a simple 
interpretive summary report. A much more detailed technical report is also saved 
automatically; this report is explained, step by step for the novice user, in the MiniJudge help 
page (Myers 2007a). 

3.5.1 A Null Result? 
When the data file containing the 18 completed surveys in the VOmen experiment was 
analyzed using the R code generated by MiniJudgeJS, the summary report in Figure 1 was 
produced along with the bar graph in Figure 2. The summary report has three parts: a table 
showing the number of yes judgments for each category (shown graphically in Figure 2), a 
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listing of significant patterns (if any), and a statement about whether there was any significant 
confound between items and factors (explained more fully in section 4.2.5). 

 
Number of YES judgments for each category: 

 [+V] [-V] Total  V = VO 
[+m] 23 74 97  m = men 
[-m] 89 163 252   
Total 112 237 349   

 
Significance summary (p < .05): 
 

The factor VO had a significant negative effect. 
The factor men had a significant negative effect. 
Order had a significant negative effect. 
There were no other significant effects. 
 
Items and factors were significantly confounded, so the above 
results take cross-item variability into account. 
 

Figure 1. Default results summary generated by MiniJudgeJS for the VOmen 
experiment 

[+VO] [-VO]

[+men]
[-men]

Number of YES judgments

C
ou

nt
s

0
50

10
0

15
0

20
0

 

Figure 2. Default graph generated by MiniJudgeJS for the VOmen experiment 
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The negative effects of the [VO] and [men] factors mean that items containing VO or 
men were judged worse, on average. These patterns are also clear from the table and graph. 
However, as noted in 3.1, these patterns are not what the empirical claim of He [2004] is 
concerned with. What we expected to see was a significant interaction between [VO] and 
[men], but this was not found. Instead, inspection of the technical results file shows that the p 
value for the interaction was .89 for the by-speaker-only analysis and .73 for the 
by-speaker-and-sentence analysis, clearly non-significant (p > .05). 

However, this is not a refutation of He’s claim, but merely a null result. Indeed, the 
number of yes judgments trends in the predicted direction: for VO forms, non-men forms were 
judged better than men forms by a ratio of almost 4:1 (89/23 = 3.87), about twice as high as 
the ratio for OV forms (163/74 = 2.20). That is, it was worse to affix men to VO forms than to 
OV forms, just as He claims. 

One possible cause of a null result is a confound with a nuisance variable. A clue to what 
this nuisance variable might be here is the significant negative effect of order, which means 
that judgments got worse as the experiment progressed (i.e. there was a rising probability of 
judging a form as unacceptable). This shift in judgments suggests that further analysis may be 
advisable, as described next. 

3.5.2 Syntactic Satiation 
Though MiniJudge factors out raw order effects in its default analysis, it is possible that order 
also interacts with one or more factors. Testing for interactions with continuous variables 
without a specific theoretical reason may make it more difficult to interpret main effects (see 
e.g. [Bernhardt and Jung 1979], but MiniJudge offers the option to test for interactions with 
order because it helps in the detection of syntactic satiation. Satiation is the phenomenon 
(known informally as “linguist’s disease”) in which linguistic intuitions are dulled by repeated 
testing, making it harder to be confident in one’s judgments. MiniJudge tests for satiation by 
looking for interactions with order: early on, the effect of a factor is strong, but later it’s weak. 

[Snyder 2000] argues that satiation could provide a new window into grammar and/or 
processing, since different types of syntactic violations differ in whether or not they satiate. 
Snyder suggests two possible reasons for such differences. On the one hand, satiation may be 
caused by processing, not grammar, thus providing a diagnostic for performance influences on 
acceptability (a position taken by [Goodall 2004]). On the other hand, satiability may differ 
due to differences between the components of competence itself, thus permitting a new 
grammatical classification tool (a position taken by [Hiramatsu 2000]). 

Although [He 2004] makes no predictions relating to satiation, the unexpected null result 
noted in section 3.5.1 suggests that it may be worthwhile trying out a more complex analysis 
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that includes interactions with order. Running this analysis simply involves telling 
MiniJudgeJS that we want to test for satiation by clicking a check box, and then pasting the 
newly generated code into R. 

Since we chose to test satiation, MiniJudge changes the format of the graph to a line 
graph, as in Figure 3, which makes the overall order effect quite clear. A satiation trend is also 
visible in the graph, since the lines not only drop over time, but also get closer together, 
meaning that discrimination between sentence types weakened over the course of the 
experiment. Unfortunately, factoring out satiation doesn’t result in any change in the main 
report, which comes out the same as the earlier one shown in Figure 1: no significant 
interaction between [VO] and [men]. 
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Figure 3. Graph generated by MiniJudgeJS when testing for satiation 

The technical report for this analysis, automatically saved under a different name from 
the earlier one, clarifies what happened. The summary report gives the analysis that takes both 
cross-speaker and cross-sentence variability into account, since this model had statistically 
better coverage of the data, as indicated by the statement in the summary report that “items 
and factors were significantly confounded.” This analysis only shows marginally significant 
satiation of the VOmen effect (p = .08), and the VOmen effect itself shows p = 0.17. However, 
in the less stringent, but still meaningful, by-speakers-only analysis, factoring out satiation did 
make the interaction between the factors [VO] and [men] significant (p = .023), and this 
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analysis also shows a three-way interaction between [VO], [men] and order (p = .016), that is, 
satiation of the VOmen effect. 

This experiment, thus, not only provided reliable evidence in favor of the empirical claim 
made by [He 2004], though only in the less stringent by-speakers analysis. It also revealed 
three additional patterns not reported by He: overall lower acceptability for VO forms relative 
to OV forms, overall lower acceptability of men forms, and the satiability of the VOmen effect. 
Detecting satiation, and the VOmen effect it obscured, depended crucially on the use of 
careful experimental design and statistical analysis, and would have been impossible to 
confirm using traditional informal methods. Despite this power, the MiniJudge experiment 
was designed, run, and analyzed within a matter of days (with most of the delay due to tardy 
subject replies), rather than the weeks required for full-fledged experimental syntax. 

4. The Inner Workings 

MiniJudgeJS, as with MiniJudgeJava and all future versions in the MiniJudge family, is free 
and open source. The JavaScript and R code can be modified freely, and both are heavily 
commented on to make them easier to follow. In this section I give overviews of the 
programming relating to material generation and statistical analysis. 

4.1 Material Generation 
As described in section 3.3, MiniJudgeJS can assist with the generation of additional sentence 
sets. This involves two major phases: segmenting the prototype sentences into the largest 
repeated substrings, and substituting new segments for old segments in the new sentence sets. 

The first step is to determine whether the prototype sentences contain any spaces. If they 
do, words are treated as basic units, and capitalization is removed from the initial word and 
any sentence-final punctuation mark is also set aside (for adding again later). If there are no 
spaces (as in Chinese, or in a phonology or morphology experiment involving single words), 
characters are treated as basic units and there is no capitalization adjustment. Next, the 
boundaries between prototype sentences are demarcated to indicate that cross-sentence strings 
can never be segments. The algorithm for determining other segment boundaries requires the 
creation of a lexicon containing all unique words (or characters) in the prototype corpus. If the 
algorithm detects that items from the corpus and from the lexicon match only if one of the 
items is lowercase, this item is recapitalized. Versions of the prototype sentences with 
“word-based” capitalization are later used when old segments are replaced by new ones. 

The most crucial step in the segmentation algorithm is to check each word (or character) 
in the lexicon to determine whether or not it has at least two neighbors on the same side in the 
corpus. For example, suppose the prototype set consists of the sentences “A dog loves the cat. 
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The cat loves a dog.” The lexical item “loves” has two neighbors on the left: “dog” and “cat”. 
Thus a segment boundary should be inserted to the left of “loves” in the corpus. Similarly, the 
right neighbor of “loves” is sometimes “the” and sometimes “a”; hence “loves” will be treated 
as a whole segment. By contrast, the lexical item “cat” always has the same item to its left 
(once sentence-initial capitalization is removed): “the”. Similarly, the right neighbor of “the” 
is always “cat”. Thus “the cat” will be treated as a segment, and the same logic applies to “a 
dog”. The prototype segments are thus “a dog”, “loves”, “the cat”. 

The final phase involves substituting the user-chosen new segments for the prototype 
segments using JavaScript’s built-in regular expression functions. 

4.2 Statistical Analysis 
The statistical analyses conducted by MiniJudgeJS involve several innovations: the use of 
GLMM, the inclusion of order and interactions with order as factors, the use of JavaScript to 
communicate with R, the use of R code to extract key values from R’s technical output so that 
a simple report can be generated, and the use of R code to compare by-subject and 
by-subject-and-item analyses to decide whether the latter is really necessary. In this section I 
describe each of these innovations in turn. 

4.2.1 GLMM 
As explained in section 3.5, generalized linear mixed effect modeling (GLMM) is 
conceptually akin to logistic regression, which is at the core of the sociolinguistic 
variable-rule analyzing program VARBRUL and its descendants [Mendoza-Denton et al. 
2003], but unlike logistic regression, GLMM regression equations also include random 
variables (e.g., the speakers); see [Agresti et al. 2000]. One major advantage of a 
regression-based approach is that no data is thrown away as it is when by-subject and by-item 
averages are analyzed in separate ANOVAs, as is standard in psycholinguistics (see 4.2.5). 
Moreover, since each observation is treated as a separate data point, GLMM is usually not 
affected much by missing data as long as it is missing non-systematically (this is why 
participants in MiniJudge experiments are requested to judge all sentences, guessing if they’re 
not sure). 

Though GLMM is the best statistical model currently available for repeated-measures 
categorical data, it does have some limitations. First, R’s implementation of GLMM tests 
significance using z scores, which are most reliable if the number of observations is greater 
than 100 or so, but in actual practice, 100 judgments are trivial to collect (e.g. 5 speakers 
judging 10 sentence pairs). Second, like regression in general, GLMM assumes that the 
correlation between the dependent and independent variables is not perfect, so it is 
paradoxically unable to confirm the significance of perfect correlations. Third, like logistic 
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regression (but unlike ANOVA or ordinary regression), it is impossible to calculate GLMM 
coefficients and p values exactly; they can only be estimated. Unfortunately, the best way to 
estimate GLMM values is extremely complicated and slow, so R uses “simpler” yet less 
accurate estimation methods. Currently, R provides two options for estimating GLMM 
coefficients: the faster but less accurate penalized quasi-likelihood approximation, and the 
slower but more accurate Laplacian approximation. MiniJudgeJS uses the latter. 

The function in the lme4/Matrix packages used for GLMM is lmer, which can also 
handle linear mixed-effect modeling (i.e. repeated-measures linear regression). The syntax is 
illustrated in Figure 3, which shows the commands used to run the final analyses described 
above in section 3.5.2. “Factor1” and “Factor2” are variables whose values are set in the R 
code to represent the actual factors. The use of categorical data is signaled by setting the 
distribution family to “binomial”. The name of the loaded data file is arbitrarily called 
“minexp” (for MiniJudge experiment). The first function treats only subjects as random, while 
the second function treats both subjects and items as random. The choice to test for satiation 
or not is determined by the user; based on this choice, JavaScript generates different versions 
of the R code. The choice to run one-factor or two-factor analyses is determined by the R code 
itself by counting the number of factors in the data file. Both analyses in Figure 4 are always 
run, then compared with another R function described in 4.2.5. 

 
glmm1 = lmer(Judgment ~ Factor1 * Factor2 * Order + (1|Speaker), 
data = minexp, family = "binomial", method = "Laplace") 

glmm2 = lmer(Judgment ~ Factor1 * Factor2 * Order + (1|Speaker) 
+ (1|Sentence), data = minexp, family = "binomial", method = 
"Laplace") 

 
Figure 4. R commands for GLMM when testing satiation in a two-factor 

experiment 

4.2.2 Order as a Factor 
MiniJudgeJS includes order as a factor whether or not the user tests for satiation to 
compensate for the fact that MiniJudge experiments use no counterbalanced lists of sentences 
across subgroups of speakers. List counterbalancing is used in full-fledged experimental 
syntax so that speakers don’t use an explicit comparison strategy when judging sentences from 
the same set (a comparison strategy may create an illusory contrast or have other undesirable 
consequences). However, comparison can only occur when the second sentence of a matched 
pair is encountered. If roughly half of the speakers get sentence type [+F] first and half get [-F] 
first, then on average, judgments for [+F] vs. [-F] are only partially influenced by a 
comparison strategy. The comparison strategy (if any) will be realized as an order effect: early 
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judgments (when comparison is impossible) will be different from later judgments. Thus, 
factoring out order effects in the statistics serves roughly the same purpose as counterbalanced 
lists. 

4.2.3 JavaScript as an R interface 
JavaScript is much more powerful than many programmers realize. In fact, a key inspiration 
for MiniJudgeJS was the Logistic Regression Calculating Page [Pezzullo 2005], a 
JavaScript-enabled HTML file written by John C. Pezzullo. Using only basic 
platform-universal JavaScript, the page collects data, reformats it, estimates logistic regression 
coefficients via a highly efficient maximum likelihood estimation algorithm, and generates 
chi-square values and p values. Thus, a JavaScript-only version of MiniJudgeJS is conceivable, 
without any need to pass work over to R. 

Currently, however, in MiniJudgeJS, the role of JavaScript in the statistical analysis is 
mainly as a user-friendly GUI. Since the statistics needed for a MiniJudge experiment are 
highly standardized, very little input is needed from the user, but the potential to use 
JavaScript to interface with R in more flexible ways is there. This would help fix a major 
limitation with R, which has a command-line interface that is quite intimidating for novice 
users along with online help that leaves a lot to be desired (cf. [Fox 2005]). 

Of course, JavaScript has its own limitations, the most notable of which are the built-in 
security constraints that prevent JavaScript from being able to read or write to files, or to 
communicate directly with other programs. For example, it’s impossible to have JavaScript 
run R in the background, to save users the bother of copying and pasting in R code. This is 
why we developed MiniJudgeJava as well, though, in its current version, it still requires the 
user to interface with R by pasting in code. 

4.2.4 R Code to Simplify Output 
GLMM is a high-powered statistical tool, unlikely to be used by people who don’t already 
have a strong background in statistics; therefore, the outputs generated by R are not 
understandable without such a background. Since MiniJudge is intended for statistical novices, 
extra programming is needed to translate R output into plain language. For MiniJudgeJS, the 
most crucial portion of R’s output for GLMM is the matrix containing the regression 
coefficient estimates and p values, like that shown in Figure 5 (from the VOmen experiment, 
without testing for satiation). The trick is to extract the estimates (the signs of which provide 
information about the nature of the pattern) and the p values (which indicate significance) in 
order to generate a simple summary containing no numbers at all. 
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 Estimate Std. Error z value Pr(>|z|) 
(Intercept) -0.198279 0.392239 -0.506 0.6132 
Factor1 -1.125097 0.252556 -4.455 8.40e-06 
Factor2 -1.420005 0.253253 -5.607 2.06e-08 
Order -0.019289 0.007518 -2.566 0.0103 
Factor1:Factor2 0.087524 0.251891 0.347 0.7282 
 

Figure 5. Output generated by lmer for the VOmen experiment without testing for 
satiation 

The current version of MiniJudgeJS extracts values from the lmer output by “sinking” 
lmer’s displayed output to an offline file, and then reading this file back in as a string (the 
offline file becoming the permanent record of the detailed analysis). The string is then 
searched for the string “(Intercept)” which always appears at the upper left of the value matrix. 
The coefficient is the first value to the right of the left-most column, and the p value is the 
fourth value (skipping “<”, if any). 

If the p value associated with a factor or interaction is less than 0.05, a summary line is 
generated that gives the actual factor name and the sign of the estimate, as in Figure 1 above. 
The R code generates the summary table and bar graph counting the number of yes judgments 
for each category (see Figures 1 and 2) directly from the data file itself. When satiation is 
tested, the line graph (as in Figure 3) is created by computing the mean judgment values (i.e. 
proportion of 1 judgments) across speakers with each order value (i.e. 1, 2, ...), separately for 
each item type (as defined by the experimental factors), and then plotting linear regression 
lines for each item type. 

4.2.5 By-Subject and By-Item Analyses 
MiniJudgeJS runs both by-subject and by-subject-and-item analyses, but it reports only the 
first in the main summary unless it finds that the more complex analysis is really necessary. 
This approach differs from standard psycholinguistic practice, where both by-subject and 
by-item analyses are always run. A commonly cited reason for always running a by-item 
analysis is that it is required to test for generality across items, just as a by-subject analysis 
tests for generality across subjects. However, this logic is based on a misinterpretation of 
[Clark 1973], which is the paper usually cited as justification. 

First, it is wrong to think that by-item analyses check to see if any item behaves 
atypically (i.e. is an outlier). For parametric models like ANOVA, it is quite possible for a 
single outlier to cause an illusory significant result, even in a by-item analysis (categorical 
data analyses like GLMM don’t have this weakness). To test for outliers, there’s no substitute 
for checking the individual by-item results manually. MiniJudge helps with this by reporting 
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the by-sentence rates of yes judgments in a table saved as part of the offline analysis file; 
items with unusually low or high acceptability relative to others of their type stand out clearly. 
In the case of the VOmen experiment, this table did not seem to show any outliers. 

The second problem with the standard justification for performing obligatory by-item 
analyses, as [Raaijmakers et al. 1999] emphasize, is that the advice given in [Clark 1973] 
actually applies only to experiments without matched items, such as an experiment comparing 
a random set of sentences with transitive verbs (“eat”, etc.) with a random set of sentences 
with unrelated intransitive verbs (“sleep”, etc.). Such sentences will differ in more than just 
the crucial factor (transitive vs. intransitive), so, even if a difference in judgments is found, it 
may actually relate to uninteresting confounded properties (e.g. the lexical frequency of the 
verbs). However, if lexically matched items are used, as in the VOmen experiment, there is no 
such confound, since items within each set differ only in terms of the experimental factor(s). If 
items are sufficiently well matched, taking cross-item variation into account won’t make any 
difference in the analysis (except to make it much more complicated), but if they are not well 
matched, ignoring the cross-item variation will result in misleadingly low p values. 

Nevertheless, if we only computed models that take cross-item variation into account, we 
might lose useful information. After all, a high p value does not necessarily mean that there is 
no pattern at all, just that we have failed to detect the pattern. Thus, it may be useful to know 
if a by-speaker analysis is significant even if the by-speaker-and-sentence analysis is not. Such 
an outcome could mean that the significant by-speaker result is an illusion due to an 
uninteresting lexical confound, but it could instead mean that if we do a better job matching 
the items in our next experiment, we will be able to demonstrate the validity of our 
theoretically interesting factor. Moreover, it is quite difficult to compute GLMM models with 
two random variables, making such models somewhat less reliable than those with only one 
random variable. Just in the last year, the lme4 package in R has been upgraded, so that the 
lmer function now gives different results for by-subjects-and-items analyses than it did when 
MiniJudge was first developed. Due to concerns like these, MiniJudge runs both types of 
analyses and only chooses the by-subjects-and-items analysis for the main report if a 
statistically significant confound between factors and items is detected. The full results of both 
analyses are saved in an off-line file, along with the results of the statistical comparison of 
them. 

The R language makes it quite easy to perform this comparison, since the model in which 
only speakers are treated as random is a special case of the model in which both speakers and 
sentences are treated as random. This means the two GLMM models can be compared by a 
likelihood ratio test using ANOVA [Pinheiro and Bates 2000]. As with the output of the lmer 
function, the output of the lme4 package’s anova function makes it difficult to extract p 
values, so again the output is “sunk” to the offline analysis file to be read back in as a string. 
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Only if the p value is below 0.05 is the more complex model taken as significantly better. If 
the p value is above 0.2, MiniJudgeJS assumes that items and factors are not confounded and 
reports only the by-subjects-only analysis in the main summary. Nevertheless, MiniJudgeJS, 
erring on the side of caution, gives a warning if 0.2 > p > 0.05. In any case, both GLMM 
analyses are available for inspection in the offline analysis file. Each analysis also includes 
additional information, generated by lmer, that may help determine which analysis is really 
more reliable, including variance of the random variables and the estimated scale (compared 
with 1); these details are explained in the MiniJudge help page. 

In the case of the VOmen experiment, the comparison of the two models showed that the 
by-subjects-only model was sufficient, unsurprisingly, given that the materials were almost 
perfectly matched, and that the items table showed no outliers among the sentence judgments. 

The final problem with the standard justification for automatic by-item analyses is one 
that even [Raaijmakers et al. 1999] fail to point out. Namely, since repeated-measures 
regression models make it possible to take cross-speaker and cross-sentence variation into 
account at the same time, without throwing away any data, they are superior to standard 
models like ANOVA. To learn more about how advances in statistics have made some 
psycholinguistic traditions obsolete, see [Baayen 2004]. 

5. Conclusions 

MiniJudge, currently implemented as MiniJudgeJS and MiniJudgeJava, is software for 
theoretical syntacticians who want a reliable and easy way to collect and interpret judgments 
consistent with the key methodological principles of experimental cognitive science. 
MiniJudge is limited in some ways, in particular in how it interfaces with R, though, in 
ongoing work, we are developing efficient code to compute GLMM within JavaScript or Java 
itself. Nevertheless, even in its current version, MiniJudge is quite easy to use, as testing by 
my students has demonstrated, and powerful enough to detect theoretically interesting patterns 
with very little data. Behind this power is original programming and statistical techniques. 
Finally, MiniJudge is an entirely free, open-source program (as will be all future versions). 
Anyone interested is invited to try it out and contribute to its further development. 
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Improve Parsing Performance by Self-Learning 

Yu-Ming Hsieh , Duen-Chi Yang , and Keh-Jiann Chen  

Abstract 

There are many methods to improve performance of statistical parsers. Resolving 
structural ambiguities is a major task of these methods. In the proposed approach, 
the parser produces a set of n-best trees based on a feature-extended PCFG 
grammar and then selects the best tree structure based on association strengths of 
dependency word-pairs. However, there is no sufficiently large Treebank 
producing reliable statistical distributions of all word-pairs. This paper aims to 
provide a self-learning method to resolve the problems. The word association 
strengths were automatically extracted and learned by parsing a giga-word corpus. 
Although the automatically learned word associations were not perfect, the 
constructed structure evaluation model improved the bracketed f-score from 
83.09% to 86.59%. We believe that the above iterative learning processes can 
improve parsing performances automatically by learning word-dependence 
information continuously from web. 

Keywords: Parsing, Word association, Knowledge Extraction, PCFG, PoS 
Tagging, Semantic. 

1. Introduction 

How to solve structural ambiguity is an important task in building a high-performance 
statistical parser, particularly for Chinese. Since Chinese is an analytic language, words can 
play different grammatical functions without inflection. A great deal of ambiguous structures 
would be produced by parsers if no structure evaluation were applied. There are three main 
steps in our approach that aim to disambiguate the structures. The first step is to have the 
parser produce n-best structures. Second, we extract word-to-word associations from large 
corpora and build semantic information. The last step is to build a structural evaluator to find 
the best tree structure from the n-best candidates. 

There have been some approaches proposed in the past to resolve structure ambiguities. 
For instance: 
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Adding on lexical dependencies. Collins [1999] solves structural ambiguity 
by extracting lexical dependencies from Penn WSJ Treebank and applying 
dependencies to the statistic model. Lexical dependency (or Word-to-word 
association, WA) is one type of semantic information. It is a current trend to add 
on semantic related information in traditional parsers. Some incorporate 
word-to-word association in their parsing models, such as the Dependency 
Parsing in Chen et al. [2004]. They take advantage of statistical information of 
word dependency in the parsing process to produce dependency structures. 
However, word association methods suffer low coverage when lacking very 
large tree-annotated training corpora while checking dependency relationships 
between word pairs. 

  

Adding on word semantic knowledge where CiLin and HowNet 
information are used in the statistic model in the experiment [Xiong et al. 2005]. 
Their results work to solve common parsing mistakes efficiently. 

 

Using a re-annotation method in grammar rules. Johnson [1998] thinks that 
re-annotating each node with the category of its parent category in Treebank is 
able to improve parsing performance. Klein et al. [2003] proposes internal, 
external, and tag-splitting annotation strategies to obtain better results. 

  

Building an evaluator. Some people re-rank the structure values and find 
the best parse [Collins 2000; Charniak et al. 2005]. At first, the parser produces a 
set of candidate parses for each sentence. Later, the re-ranker finds the best tree 
through relevance features. The performance is better than without the re-ranker. 

 

This paper is going to show a self-learning method to produce imperfect (due to errors 
produced by automatic parsing) but unlimited amount of word association data to evaluate the 
n-best trees produced by a feature-extended PCFG grammar. The parser with this WA 
evaluation is considerably superior to those without the evaluation. 

The organization of the paper is as follows: Section 2 describes how to generate n-best 
trees in a simple way. In Section 3, we account for building word-to-word association and a 
primitive semantic class as well. As to the design of the evaluating model, our probability 
model, coordination of rule probability, and word association probability are presented in 
Section 4. In Section 5, we discuss and explain the experimental data and results. Ambiguities 
of PoS are to be considered in a practical system. Section 6 deals with further experiments on 
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automatic tagging with PoS. Finally, we offer concluding remarks in Section 7. 

2. Feature Extension of PCFG Grammars for Producing the N-best Trees 

It is clear that Treebanks [Chen et al. 2003] provide not only instances of phrasal structures 
and word dependencies but also their statistical distributions. Recently, probabilistic 
preferences for grammar rules and feature dependencies were incorporated to resolve 
structure-ambiguities and had great improvement on parsing performance. However, the 
automatically extracted grammars and feature-dependence pairs suffer the problem of low 
coverage. We proposed different approaches to solve these two different types of low 
coverage problems. For the low coverage of extracted grammar, a linguistically-motivated 
grammar generalization method is proposed [Hsieh et al. 2005]. The low coverage of word 
association pairs is resolved by a self-learning method of automatic parsing and extracting 
word dependency pairs from very large corpora. 

The linguistically-motivated generalized grammars are derived from probabilistic 
context-free grammars (PCFG) by right-association binarization and feature embedding. The 
binarized grammars have better coverage than the original grammars directly extracted from 
Treebank. Features are embedded into the lexical and phrasal categories to improve the 
precision of generalized grammar. The important features adopted in our grammar are 
described in the following: 

 
Head (Head feature): The PoS of phrasal head will propagate all intermediate nodes 

within the constituent. 
Example: S(NP(Head:Nh:ה)|S’-Head:VF(Head:VF: |S’-Head:VF(NP(Head:Nb:

 (((((ؼ:Head:Na)Head:VC:ᖚ| NP)VP |(ޕ
Linguistic motivations: To constrain the sub-categorization frame. 

 
Left (Leftmost feature): The PoS of the leftmost constitute will propagate one-level to its 

intermediate mother-node only. 
Example: S(NP(Head:Nh:ה )|S’-Head:VF(Head:VF: |S’-NP(NP(Head:Nb:ޕ

)| VP(Head:VC:ᖚ| NP(Head:Na:ؼ))))) 
Linguistic motivation: To constrain linear order of constituents. 

 
Head 0/1 (Existence of 

phrasal head): 
If phrasal head exists in intermediate node, the nodes will be 
marked with feature 1; otherwise 0. 

Example: S(NP(Head:Nh: ה )|S’-1(Head:VF:  |S’-0(NP(Head:Nb: ޕ
)|VP(Head:VC:ᖚ| NP(Head:Na:ؼ))))) 

Linguistic motivation: To enforce unique phrasal head in each phrase. 
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There are two functions of applying the embedded features: one is to increase the 
precision of the grammar and the other is to produce more candidate parse structures. With 
features embedded in phrasal categories, PCFG parsers are forced to produce varieties of 
different possible structures1. In order to achieve a better n-best oracle performance (i.e. the 
ceiling performance achieved by picking the best structure from n bests), we designed some 
different feature-embedded grammars and try to find a grammar with the better n-best oracle 
performance. For instance, “S(NP(Head:Nh: ה )|Head:VF:  | NP(Head:Nb: ޕ  )| 
VP(Head:VC:ᖚ| NP(Head:Na:ؼ)))”. The explanations of feature sets are as follow. 

 

Rule type-1: 

Intermediate node: add on “Left and Head 1/0” features. 

Non-intermediate node: if there is only one member in the NP, add on “Head” feature. 

Example: S(NP-Head:Nh(Head:Nh:ה)|S’-Head:VF-1(Head:VF:|S’-NP-0(NP-Head:Nb(Head:Nb:ޕ
)|VP(Head:VC:ᖚ| NP-Head:Na(Head:Na:ؼ))))) 

 

Rule type-2: 

Intermediate node: add on “Left and Head 1/0” features. 

Non-intermediate node: add on “Head and Left” features, if there is only one member in 
the NP, add on “Head” feature. 

Example: S-NP-Head:VF(NP-Head:Nh(Head:Nh:ה)|S’-Head:VF-1(Head:VF:
|S’-NP-0(NP-Head:Nb(Head:Nb:ޕ)|VP-Head:VC(Head:VC:ᖚ| NP-Head:Na(Head:Na:ؼ))))) 

 

Rule type-3: 

Intermediate node: add on “Left, and Head 1/0” features. 

Top-Level node: add on “Head and Left” features.   (see example of S-NP-Head:VF) 

Non-intermediate node: if there is only one member in the NP, add on “Head” feature. 

Example: S-NP-Head:VF(NP-Head:Nh(Head:Nh:ה)|S’-Head:VF-1(Head:VF:
|S’-NP-0(NP-Head:Nb(Head:Nb:ޕ)|VP(Head:VC:ᖚ| NP-Head:Na(Head:Na:ؼ))))) 

 

                                                 
1 The parser adopts an Earley's Algorithm. It is a top-down left-to-right algorithm. So, in parts that have 

the same non-terminals, we keep only the best structure after pruning, to reduce the load of calculation 
and thus fasten the parsing speed. Therefore, if we add different features in the Top-Level rules, we'll 
get more results. 
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Rules and their statistical probabilities are extracted from the transformed structures. The 
grammars are derived and trained from Sinica Treebank2. Sinica Treebank contains 38,944 
tree-structures and 230,979 words. Table 1 shows the number of rule types in each grammar 
and Table 2 shows their 50-best oracle bracketed f-scores on three sets of testing data. The 
three sets of testing data used in our experiments represent “moderate”, “difficult”, and “easy” 
scale of Chinese language respectively. Black [1991] proposed two structural evaluating 
systems in 1991; the more strictly based is named PARSEVAL, and the less strictly based is 
crossing. We adopt PARSEVAL measures to evaluate the bracketed f-score. The formula 
represents as follows: 

 

data  testingof parse sparser'in  tsconstituenbracket  #
data  testingof parse sparser'in  tsconstituencorrect brack  #(BP)precision  bracketed  

data  testingof parse sk'in treeban tsconstituenbracket  #
data  testingof parse sparser'in  tsconstituencorrect brack  #(BR) recall bracketed  

BRBP
BRBPf 2**(BF) score-  bracketed  

 

A bracket represents the phrasal scope. The reason we don't use a labeled f-score is that we 
aim to evaluate the phrasal scope, rather than the effect brought by the phrasal category. For 
example, the dependency information is much more related to the structure. 

Table 1. Numbers of rules for each grammar. 

Rule Type 
 

Rule-1 Rule-2 Rule-3 

Rule number 9,899 26,797 13,652

Table 2. The 50-best oracle performances from the different grammars. 

Rule type 
Testing Data Sources Hardness

Rule type-1 Rule type-2 Rule type-3 

Sinica Balanced corpus Moderate 92.97 94.84 96.25 

Sinorama Magazine Difficult 90.01 91.65 93.91 

Textbook Elementary school Easy 93.65 95.64 96.81 

 
                                                 
2 http://treebank.sinica.edu.tw/ 



 

 

˅˃˃                                                       Yu-Ming Hsieh et al. 

From the above table, we can observe that the “Rule type-3” outperforms the “Rule 
type-1” and “Rule type-2”. We adopt the approach used in Charniak et al. [2005] to analyze 
the n-best parse. Table 3 shows the best bracketed f-score values of different n-best parse trees. 
From the results, we observe that the improvement after n=5 is slight. Thus, the number of 
ambiguous candidates can be dynamically adjusted according to the complexity of input 
sentences. For normal sentences, we may consider to take n=5 in order to minimize the 
complexity. For long sentences or sentences with auto PoS tagging should take as large as 
n=50 to raise the ceiling of the best f-score. 

Table 3. Oracle bracketed f-scores as a function of number n of n-best parses. 

n 
Testing Data 

1 2 5 10 25 50 

Sinica 91.88 94.39 95.91 96.17 96.25 96.25 

Sinorama 86.69 90.44 92.87 93.47 93.86 93.91 

Textbook 92.24 95.01 96.21 96.61 96.78 96.81 

For each candidate tree, its syntactic plausibility is obtained by rule probabilities 
produced by PCFG parser. In addition to this, we need semantic related information to help 
with finding the best tree structure among candidate trees. In the next section, we will look at 
some methods of attaining semantic related information. 

3. Auto-Extracting World Knowledge 

We could extract word knowledge from Treebanks, but the availability of a very large set of 
trees with rich linguistic annotations has long been a problem. A cheaper way to extract word 
knowledge is to automatically parse a large amount of data. We believe that with good parsing 
performance, we could get sufficient information. 

Therefore, in our experiments, we use a Gigaword Chinese corpus to extract word 
dependence pairs. The Gigaword corpus contains about 1.12 billion Chinese characters, 
including 735 million characters from Taiwan's Central News Agency (traditional characters), 
and 380 million characters from Xinhua News Agency (simplified characters) 3 . Word 
associations are extracted from the texts of Central News Agency (CNA). First we use 
Chinese Autotag System [Tsai et al. 2003], developed by Academia Sinica, to process the 
segmentation and PoS tagging of the texts. This system reaches a performance of 95% 
segmentation and 93% tagging accuracies. Then we parse each sentence4 in the corpus and 
assign semantic roles to each constituent. Based on the head word information, we extract 
                                                 
3 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2003T09 
4 An existing parser is used to produce 1-best tree of a sentence. 
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dependence word-pairs between head words and their arguments or modifiers. The following 
illustrates how the automatic knowledge extraction works. We input a Chinese sentence to the 
parser: 

 

ʳה ʳ ʳޕ   ᖚʳ ʳؼ ʳ  
Ta  jiao  Li-si   jian  qiu 
He  ask  Li-si   pick  ball 

"He asked Li-si to pick up the ball." 

 

Here is the sentence after segmentation and PoS tagging: 

 

ʳ(Nh)ה ʳ(VF) ʳ(Nb)ޕ ᖚ(VC)ʳ  (Na)ؼ 

 

The parser analyzes the sentence structure and assigns roles to each phrase as follows. Then, 
word-pair knowledge of heads and their modifiers are extracted as shown in Figure 1. 

 

 

 

 

 

 

 

 

 
 
 
 

Figure 1. A sample for word association extraction. 

 

Role1 PoS1 Word1 Role2 PoS2 Word2

agent[NP] Nhaa ה Head[S] VF2  

Head[S] VF2  goal[NP] Nba  ޕ

Head[S] VF2  theme[NP] VC2 ᖚ 

Head[S] VC2 ᖚ goal[NP] Nab  ؼ

S

agent
NP

Head
Nhaa

ה

Head
VF2

 ޕ ᖚ ؼ

Head
Nba

Head
VC2

Head
Nab

goal
NP

theme
VP

goal
NP
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Figure 1 shows the examples of extracted word associations. “Role1/PoS1/Word1 and 
Role2/Role2/Word2” represent the right- and left-part of the word-pairs. “Role”, “PoS”, and 
“Word” here mean semantic role, part-of-speech and word respectively. To reduce the number 
of word association types, we transform the original word-pairs into three simplified types of 
the word pairs: 

 

(a) head word on the left hand side: (H_W_C, X_W_C);  

(b) head word on the right hand side: (X_W_C, H_W_C);  

(c) coordinating structure: (H_W_C, H_W_C). 

 

In the word pairs, “H” denotes Head, “W” means word, and “C” refers to the simplified PoS 
tag5, “X” refers to any semantic role other than Head role. So, we get basic information of 
experimental data as follows: 

Role1 PoS1 Word1 Role2 PoS2 Word2

X Nh ה H VF  

H VF  X Nb ޕ

H VF  X VC ᖚ 

H VC ᖚ X Na ؼ

The processes above are repeated for each new input sentence from the Gigaword corpus. 

Finally, we obtain a great deal of knowledge about dependent word pairs and their 
association strengths. In our experiments, we have 37,489,408 sentences that are successfully 
parsed and contain word association information. The number of extracted word associations 
is 221,482,591. The extracted word to word associations that undergo structure analysis and 
head word assignment are not perfectly correct, but they are more informative and precise than 
simply taking words on the left and right hand window. 

3.1 Coverage Rates of the Word Associations 
Data sparseness is always a problem of statistical evaluation methods. As mentioned in the 
last section, we automatically segment, tag, parse and assign roles in CNA data, and then 
extract word associations. We test our extracted word association data in five different levels 
of granularities. Level-1 to Level-5 represents HWC_WC, HW_W, HC_WC, HW_C, and 
HC_C respectively. The 5 levels of word associations derived from Figure 1 are as follows: 
                                                 
5 The simplified way please refer to CKIP 93-05 Technical Report. 
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Level Type Word Associations 
Level-1 HWC_WC   (VF_ᖚ/VC//H) (Nb/ޕ_VF//H) (VF//Nh _H/ה)

(H/ᖚ/VC_/Na) 

Level-2 HW_W (ה_H/) (H/ޕ_) (H/_ᖚ) (H/ᖚ_ؼ) 

Level-3 HC_WC (ה/Nh_H/VF) (H/VF_ޕ/Nb) (H/VF_ᖚ/VC) (H/VC_ؼ/Na) 

Level-4 HW_C (Nh_H/) (H/_Nb) (H/_VC) (H/ᖚ_Nb) 

Level-5 HC_C (Nh_H/VF) (H/VF_Nb) (H/VF_VC) (H/VC_Na) 

Theoretically, the precision of fine-grain level like HWC_WC is much better, but it 
suffers the problem of data sparseness, hence, its coverage rate is low; on the other hand, the 
coarse-grain level has best coverage rate but relatively low precision. This is the trade-off 
between precision and coverage. Therefore, we carry out a series of experiments to find a 
balanced measurement by linear combination of different level associations. There will be 
experimental results in the following sections. 

Why not use HWC_W or HC_W? From our observation, we have found that these two 
show similar performance with HWC_WC and HC_WC respectively; therefore, we exclude 
them. Besides, there are some asymmetric representations, such as the use of “HW_C”. They 
are used to raise the coverage rate in word association while not being too general. 

We like to see the bi-gram coverage rates for each level of representation. After CNA 
producing word associations in each level, we observe the relationship between the amount of 
word associations and the coverage rates of the three texts: Sinica, Sinorama, and Textbook. 
We extracted word associations from the three data sets in each level and calculated their 
coverage rates. 

We tested the coverage rates for 10 different size word association data, of which each 
was extracted from different size corpora. Figure 2 shows coverage relationships between five 
levels and sizes of word association data for three testing data. 

Figure 2 shows that larger data increases the coverage rates, but the coverage of the 
fine-grained level word associations, e.g. Level-1 (HWC_WC), is only about 70%, which is 
far from saturation. Nonetheless, the coverage rate can be improved by reading more texts 
from the web. The coarse-grained level associations, e.g. Level-5 (HC_C), cover the most 
bi-gram categories. However, it may not be very useful, since syntactic associations which are 
partially embedded in the PCFG are redundant. To attain a better evaluation model, we 
derived new associations between semantic classes. Criteria for semantic classification are 
discussed in the following section. 
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Figure 2. Coverage rates vs. size of Corpus: (a) Sinica; (b) Sinorama; (c) Textbook. 

3.2 Incorporating Semantic Knowledge 
For precision and coverage tradeoffs, we face a dilemma of using word or PoS category. We 
find that the coverage of word is low, though its precision is high; on the contrary, the 
coverage of PoS is too high to be discriminative. We hope to find a classification that covers 
enough information and is discriminative as well; that is, a classification system that falls 
between word and PoS category. A semantic classification is the solution. 
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There are many ways to classify semantic properties of words. Xiong et al. [2005] adopt 
CiLin and HowNet as their semantic classes in their experiment; however, the data sparseness 
is still a problem to be solved. Here, we propose a simple approach to build a 
semantic-class-based association strength for word pairs, which will be our Level-6 (HS_S). 
Semantic class information is put into Level-6 in order to get high coverage and to avoid 
redundant syntactic associations in other levels. Besides, it can smooth the problem of data 
sparseness. 

The idea is to classify words into their head morpheme. It begins with the transformation 
of every input “WORD, POS” in the data. We adopt the affix database of high frequency verbs 
and nouns [Chiu et al. 2004] to set up noun and verb classes. There are 34,857 examples of 
compound words in the database. As to determinative measures (DM), we refer to the 
dictionary of measure words, and divide the DMs in the data into thirteen categories, 
according to the meanings of the measure words. The thirteen categories include general, 
event, length, science, approximate measures, weight, square measures, container, capacity, 
time, currency value, classification measures, and measures of verbs. Finally, we consult parts 
of speech analyses [CKIP 1993] and set up the transformation rules to transform a word-PoS 
pair into its semantic class. The transformation algorithm is shown at Appendix A. Take “ޕ
, Nb” as example, its semantic class is “PersonalName(Գټ)” in our classification. In 
another instance, the semantic class of “ؼ, Na” is “Na_”. The transformation rules are 
PoS dependent. Each PoS is referred to CKIP [1993], which explains the PoS with words and 
examples. We set up discriminative subcategorization on some parts-of-speech: N/P/D/A 
according to the distribution of PoS and word frequency. As to the verbs, we use an initial step 
to assign initial value. Take PoS as "A" for example, adding prefix information is more useful 
than using "A" alone. 

Role1 PoS1 Word1 Class1 Role2 PoS2 Word2 Class2 

X Nh ה ה H VF   

H VF  VF_ X Nb ޕ PersonalName 

H VF  VF_ X VC ᖚ VC_ᖚ 

H VC ᖚ VC_ᖚ X Na ؼ Na_ 

The following example is the result of DM, prefix and affix, through a function in Level-6 
(HS_S): 

 

S(theme:NP(quantifier:DM:ࠟଡ|Head:Nab:Գ)|deontics:Dbab:౨|Head:VC1:ڇ

|goal:GP(DUMMY:NP(property:Nad:Գس|Head:Nad:ளຜ)|Head:Ng:խ)) 
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Role1 PoS1 Word1 Class1 Role2 PoS1 Word1 Class2 

X DM ࠟଡ general_DM H Na Գ Na_Գ 

X Na Գ Na_Գ H VCL  ڇ_VCL ڇ

X D ౨ D_౨ H VCL  ڇ_VCL ڇ

H VCL X Na ளຜ..խ ڇ_VCL ڇ Na..Ng 

X Na Գس N_Գ H Na ளຜ Na_ຜ 

X Na ளຜ Na_ຜ H Ng խ Location 

It is necessary to discriminate syntactic head from semantic head in word association 
extraction of GPs and PPs. From the table above, Row 4, signified by the different color 
shows that “ளຜ” is the semantic head of the GP “ளຜ..խ”, while the word “խ” is the 
syntactic head of the phrase. 

We estimate the word association coverage rate of the Level-6 associations. From the 
results shown in Figure 3, the coverage rate of Level-6 is higher than Level-2, and the problem 
of data sparseness is indeed moderately smoothed. 
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Figure 3. WA coverage rate of Level-6. 

Next, we will use different levels of associations to construct an evaluation model to find 
the best structure among the numerous ambiguous candidates. 

4. Building Evaluation Model 

A sentence structure is evaluated by its syntactic and semantic plausibility. The syntactic 
plausibility is modeled by products of phrase rule probabilities of its syntactic tree. The 
semantic plausibility is modeled by the word association strengths between head words and 
their arguments or modifiers. For an input sentence S, the feature-embedded PCFG parser 
produces its n-best trees 1{ ( ),..., ( )}ny s y s . The evaluating model finds out the best structure 



 

 

                 Improve Parsing Performance by Self-Learning                 ˅˃ˊ 

according to the rule probability (syntactic) and corresponding word association probability 
(semantic). Rule probabilities are generated by the PCFG parser when n-best trees are 
produced. We will estimate word association probabilities in the following formula. In the 
formula, “Head” means the Head of a word association, notated as HWC, HC, or HW. 
“Modify” means dependent daughter, notated as WC, W, or C. 

( , )( | )
( )

freq Head ModifyP Modify Head
freq Head

 (1) 

Data sparseness is a common problem in dealing with corpora. A minimal value  is 
used to smooth data sparseness: 

1 1
221482591total number of  WA token

 

The evaluation value ( ( ))nValue y s  to each candidate tree Yn(S) is defined as: 

( ( ))
* ( ( )) (1 ) ( ( ))

n

n n

Value y s
RuleValue y s WAValue y s

 (2) 

where ( ( ))nRuleValue y s is the rule probability of the sentence and ( ( ))nWAValue y s  is the 
total word association value in different level n. RuleValue and WAValue are normalized, i.e. 
(i-min)/(max-min). The following shows weighting in different levels and explanation of 
formula: 

6

1
( ( )) * ( ( ))n level level n

level
WAValue y s WA y s  (3) 

_ _ _ _ ( )
( ( )) ( | )

n

level n
all word association for y s

WA y s P Modify Head  (4) 

After semantic probability collocating with rule probability, we hope to find the best tree 
*( )y s . 

*( ) arg max ( ( ))ny s Value y s  /*Yi on all i (5) 

We calculate related  and  values from the development sets. The development 
sets are adopted from trees in training data. In evaluation, we substitute  and  for every 
interval of 0.1 from 0 to 1. Then, we find out the best results in certain probability. The 
experiment results will be shown in the following section. Moreover, we justify whether the 
word associations are reasonable. 

For instance, the following example has eight different ambiguous parsing results 
produced by the parser. 
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Input segmentation with PoS tag: ݺଚ(Nh)ʳ ຟ(D)ʳ ᦟ(VK)ʳ ᓗᓘ(Na) 
Parsing results: 
#1:1.[0] S(NP(Head:Nh:ݺଚ)|D:ຟ|Head:VK:ᦟ|NP(Head:Na:ᓗᓘ))# 
#1:2.[0] NP(Nh:ݺଚ|Head:NP(VP(D:ຟ|Head:VK:ᦟ)|Head:Na:ᓗᓘ))# 
#1:3.[0] VP(PP(Head:Nh:ݺଚ)|VP(D:ຟ|Head:VK:ᦟ)|Head:Na:ᓗᓘ)# 
#1:4.[0] NP(VP(Head:Nh:ݺଚ)|Head:NP(VP(D:ຟ|Head:VK:ᦟ)|Head:Na:ᓗᓘ))# 
#1:5.[0] VP(Head:VP(VP(Head:Nh:ݺଚ)|VP(D:ຟ|Head:VK:ᦟ))|NP(Head:Na:ᓗᓘ))# 
#1:6.[0] NP(S(NP(Head:Nh:ݺଚ)|D:ຟ|Head:VK:ᦟ)|Head:Na:ᓗᓘ)# 
#1:7.[0] VP(PP(Head:Nh:ݺଚ)|Head:VP(VP(D:ຟ|Head:VK:ᦟ)|VP(Head:Na:ᓗᓘ)))# 
#1:8.[0] VP(Head:VP(VP(Head:Nh:ݺଚ)|VP(Head:D:ຟ))|Head:VP(Head:VK:ᦟ|NP(Head:Na:ᓗᓘ)))# 
 

 Prob (log2) 
Rule -23.74 

 
Type WA Prob (log2) 
Level-1 
(HWC_WC) 

 (ଚ/Nh_H/ᦟ/VKݺ)
(ຟ/D_H/ᦟ/VK) 
(H/ᦟ/VK_ᓗ/Na) 

log2(76/21528)+log2(578/21528)+ 
log2(2/12200) = -25.9395936826742 

Level-2 
(HW_W) 

 (ଚ_H/ᦟݺ)
(ຟ_H/ᦟ) 
(H/ᦟ_ᓗ) 

log2(76/21528)+log2(578/21528)+ 
log2(2/12200) = -25.9395936826742 

Level-3 
(HC_WC) 

 (ଚ/Nh_H/VKݺ)
(ຟ/D_H/VK) 
(H/VK_ᓗ/Na) 

log2(25520/3235010)+log2(49025/3235010)+ 
log2(8/2501420) = -31.2844226460991 

Level-4 
(HW_C) 

(Nh_H/ᦟ) 
(D_H/ᦟ) 
(H/ᦟ_Na) 

log2(3257/21528)+log2(6160/21528)+ 
log2(2927/11741) = -6.53387135079941 

Level-5 
(HC_C) 

(Nh_H/VK) 
(D_H/VK) 
(H/VK_Na) 

log2(230163/3235010)+log2(1086580/3235010)+ 
log2(575635/2601356) = -7.56305573913316 

Level-6 
(HS_S) 

 (ଚ_H/VKݺ)
(Dຟ_H/VK) 
(H/VK_Na) 

log2(81/23809)+ log2(586/23809)+ 
log2(2/13986) = -26.3155277463539 

Figure 4. An Example of Rule calculationand and WA probability. 

Figure 4 shows the WA values of the first sentence at each level. Similarly the WA data 
are produced for all other input sentences. Then, we derive the evaluation values 

( ( ))nValue y s for each ambiguous sentence and find the best result with respect to different 
weights. 
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5. Experimental Results 

The parsing performance and our evaluating model are evaluated by standard PARSEVAL 
metrics. In our experiments, we only use sentences longer than 6 words for our testing, since 
Hsieh et al. [2005] found that the bracketing f-score of short sentence (the length of a sentence 
is from 1 to 5 words) is over 90%. We use the n-best tree structures produced from “Rule 
type-3” mentioned in the Section 2. The oracle 50-best and the top 1-best bracketed f-scores of 
“Rule type-3” are listed in Table 4. Take the data of Sinica for example, we find that for the 
50-best results, the oracle score is 90.11%. In contrast the 1-best f-score is 83.09%. 

Table 4. The bracketed f-scores of 1-best and oracle performance of 50-best. 
(sentence length 6) 

Testing data 
Top n-best 

Sinica Sinorama Textbook 

1-best 83.09 77.54 83.19 

50-best 90.11 87.44 89.94 

To simplify our evaluation model, we try to find the most effective levels of associations 
first. In turn, the parser uses only one level of association and rule probabilities to select the 
best structure from n candidates. That is: 

_ _ _ _ ( )

( ( )) ( ( ))
( | )

n

n level n

all word association for y s

WAValue y s WA y s
P Modify Head  (6) 

Figure 5 displays the bracketing f-scores of testing data for each different level of 
association. The best results of Level-1 slightly surpass that of Level-2; results of Level-6 
overtake that of Level-3; Level-6 has better performance than Level-5. Therefore, in 
considering type of information, data coverage, and dimension reduction only three levels 
(Level-1, Level-4 and Level-6) are taken into consideration to form the final evaluation 
model. 
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Figure 5. Matching rule with WA value in each level (sentence length 6). 
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Finally, we adjust the weights of L1, L4, and L6 associations and rule probabilities to 
evaluate the plausibility of structures from the 50-best parses tree of the developing data and 
the results of experiments on the three testing data are shown in Table 5. For our experiments, 

 =0.7, 1 =0.7, 4 =0.3, and 6 =0.5. 

Table 5. The bracketed f-scores of 50-best parses (sentence length 6) 
Testing data 

Models 
Sinica Sinorama Textbook

R, L1, L4, L6 86.59 82.81 85.97 

1-best 83.09 77.54 83.19 

50-best 90.11 87.44 89.94 

From the results shown in Table 5, we see that semantic information is effective in 
finding better structures. About 3.5%~5.2% of the bracketing f-scores are raised. In Charniak 
et al. [2005], the f-score was improved from 89.7% (without re-ranking) to 91.02% (with 
re-ranking) for English6; the oracle f-score was 96.8% for n-best in their paper. We also 
believe that with more data parsed, better word-association values will be obtained; hence, the 
parsing performance will be improved by self-learning. Our WA was first extracted from the 
1-best result from parser. With the parser producing n-best and the evaluating system finding 
the best structure, we can continuously derive more and better word associations. Similarly, if 
we have a better WA referent statistic, we should be able to choose the better structure. This is 
the idea of how self-learning works. The left side of Figure 6 denotes how we produce 
knowledge initially, and the right side of Figure 6 explains the repeated procedure of 
automatic knowledge extraction and accumulation. From the results shown in Table 4 and 
Table 5, we see that there is much space for improvement. 

                                                 
6 The English parser has better evaluating results than the Chinese one due to the better performance of 

the parser and language differences. The charateristic of a strictly regulated grammar in English gives 
an  advantage in parsing. Nonetheless, we have to admit that there is plenty of room for improvement 
in Chinese parsing. 
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Figure 6. Procedure of self-learning. 

6. Further Experiments on Sentences with Automatic PoS Tagging 

Perfect testing data was used in the above experiments without considering PoS tagging errors. 
However, in reality, PoS tagging errors will degenerate parsing performance. The real parsing 
performance of accepting input from a PoS tagging system is shown in Table 6(1). In this 
table, “Autotag” means to markup the best PoS on the segmented data. The naïve approach to 
overcome the PoS tagging errors is to delay some of the ambiguous PoS resolution for words 
with lower confidence tagging scores and leave the ambiguous PoS to be resolved in the 
parsing stage. In Tsai et al. [2003], the tagging confidence of each word is measured by the 
following value: 

)()(
)(

 valueConfidence
,2,1

,1

wcPwcP
wcP  (7) 

where P(c1,w) and P(c2,w) are probabilities assigned by the tagging model for the best 

candidate “c1,w” and the second best candidate “c2,w”. Some examples follow: 

 

confidence value=1.0 
ʳ({Nh,Nes})ה ʳ({VG,VF}) ʳ(Nb)ޕ ᖚ({VC,VB})ʳ  (Na)ؼ
confidence value=0.8 
ʳ(Nh)ה ʳ({VG,VF}) ʳ(Nb)ޕ ᖚ(VC)ʳ  (Na)ؼ
confidence value<0.5 
ʳ(Nh)ה ʳ(VF) ʳ(Nb)ޕ ᖚ(VC)ʳ  (Na)ؼ
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In Table 6(2), “Autotag with confidence value=1.0” means that if confidence value Љ 
1.0, we list all possible PoSs for the parser to decide. The experimental results of the 1-best, 
Table 6(2), show that delaying ambiguous PoS resolution does not improve parsing 
performance, since PoS ambiguities increase structural ambiguities and the PCFG parser is not 
robust enough to select better syntactic structures. However, for the experiment of 50-best, 
take the oracle score as the example; the 50-best oracle f-scores shown in Table 6(2) are better 
than the results without leaving ambiguous tags as shown in Table 6(1). Therefore, it is more 
likely to find better results after applying our evaluation model on the set of data with better 
oracle scores. Hence, we try to see the power of our evaluation model by leaving ambiguous 
PoS tags for the testing data. 

Table 6. Oracle bracketed f-scores of different autotag for parsing:  
(1)Autotag; (2)Autotag with confidence value = 1.0. 

Testing data 
Top n-best 

Sinica Sinorama Textbook

(1) 1-best  75.31 72.05 79.27 

 50-best  84.09 83.36 87.54 

(2) 1-best  73.41 68.34 77.83 

 50-best  86.45 83.99 88.83 

We then apply our evaluation model to select the best structure from the 50-best parses. 
The results are shown in Table 7. The experiment above takes “Rule type-3” for n-best parses. 
The bracketed f-score is raised from the original 73.41% to 79.34%, for about 4% 
improvement in the Sinica testing data. Sinorama data is improved from 68.34% to 74.78%. 
Textbook data is from 77.83% to 82.59%. This proves that our evaluating model is robust 
enough to handle ambiguous PoS tagging and produces better results than solely using the 
unique tag produced by Autotag. 

Table 7. The bracketed f-scores in Autotag with confidence value=1.0 and 
50-best parses (sentence length 6). 

Testing data 
Models 

Sinica Sinorama Textbook

R, L1, L4, L6 79.34 74.78 82.59 

1-best 73.41 68.34 77.83 

50-best 86.45 83.99 88.83 
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7. Conclusion 

Parsers of any language aim to correctly analyze the syntactic structure of a sentence, often 
with the help of semantic information. This paper shows a self-learning method to produce 
imperfect (due to errors produced by automatic parsing) but unlimited amount of word 
association data to evaluate the n-best trees produced by a feature-extended PCFG grammar. 
We prove that, although the statistical association strengths produced by automatic parsing are 
not perfect, the extracted data is reliable enough in measuring plausibility of ambiguous 
structures. The parser with this WA evaluation is considerably superior to those without 
evaluation. We believe that the above iterative learning processes can improve parsing 
performances automatically by learning word-dependence knowledge continuously from web. 
We also propose a method to modify our grammars to increase the oracle scores of the 
produced n-best sentences. 

On the other hand, we offer a general syntactic and semantic evaluation model. We input 
n-best parses to our evaluating model. The evaluating model selects the best parse from this 
set of parses using a rule and semantic probability. The system we described, using the 
standard PARSEVAL framework, has a bracketed f-score of the selected trees, which is 
86.59% higher than the original 1-best. Furthermore, the ambiguous PoS of a word is also 
parsed and evaluated on n-best, and we prove that our evaluating model is robust enough to 
improve parsing results on sentences with ambiguous PoS tagging. 

From our experiment results, we find that sentences with coordinate structures are more 
difficult to deal with. The information of semantic parallelism instead of semantic 
dependencies is required for solving conjunctive structures. The extracted word associations 
don’t have enough discriminative power to resolve both syntactic and semantic symmetry of 
conjunctive structures. The possible improvement may come from modifying the extraction 
method or predicting their plausible ranges before parsing. As to other difficult sentences, for 
example, in Figure 2, the coverage rate of Level 2 (HW_W) associations is only about 70%, 
which is far less than needed. We may expand our data to read more web texts to resolve this 
problem. 

In future research, we plan to improve the quality of word-association. Four aspects need 
to be addressed: improving the accuracy of the PoS tagger, enhancing the parser's ability to 
solve common mistakes (such as parsing conjunctive structures), extracting more word 
associations by reading, and parsing text from web. As to the evaluation model, properly 
corresponding semantic classifications from coarse to fine-grained categories are needed in 
Level-6. 
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Appendix A. Transformation algorithm 
 
Notation: 

WORD: user input Word 
 POS: user input PoS of the word 
 CLASS: transformation class of the word 
 Affix(WORD): input WORD to find mapping affix from table 
 Prefix(WORD): prefix of the WORD 
 Suffix(WORD): suffix of the WORD 
 DM(WORD): input Word to find DM category 
Input:  WORD, POS 
Output: CLASS 
Initial Step: 
 CLASS=WORD; 
 if WORD in affix table then CLASS=affix(WORD); 
 if POS is verb or adverb then CLASS=POS+prefix(WORD); 
 if POS is noun then CLASS=POS+suffix(WORD); 
Mapping Step: 
 if POS is non-predicative adjective then CLASS='A'+prefix(WORD);   /* e.g. A */ 
 if POS is preposition then CLASS='P'+suffix(WORD);  /* e.g. P */ 
 if POS is SHI then CLASS='SHI';   /* e.g. ਢ */ 
 if POS is V_2 then CLASS='V_2';   /* e.g. ڶ */ 
 if POS is DM or Measure and exist in DM table then CLASS=DM(WORD); 

/* e.g. DM/Nf */ 
 if POS is conjunction then CLASS=POS+prefix(WORD);   /* e.g. Caa/Cab/Cba/Cbb */ 
 if POS is determinative then CLASS=POS;   /* e.g. Nep/Neqa/Neqb/Nes/Neu */ 
 if POS is pronoun then CLASS=WORD;   /* e.g. Nh */ 
 if POS is time noun then CLASS='Time';   /* e.g. Nd */ 
 if POS is Postposition/Place Noun/Localizer then CLASS='Location'; 

/* e.g. Ng/Nc/Ncd */ 
 if POS is Proper Noun and is family names then CLASS='PersonalName';   /* e.g. Nb */ 
 if POS is aspectual adverb then CLASS=POS  /* e.g. Di */ 
 if POS is pre/post-verbal adverb of degree then CLASS='Df'+suffix(Word) 

/*e.g. Dfa/Dfb */ 
 if POS is VD/VCL/VL then CLASS=POS+suffix(WORD) 
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A Comparative Study of Histogram Equalization (HEQ) 

 for Robust Speech Recognition 

Shih-Hsiang Lin , Yao-Ming Yeh , and Berlin Chen  

Abstract 

The performance of current automatic speech recognition (ASR) systems often 
deteriorates radically when the input speech is corrupted by various kinds of noise 
sources. Quite a few techniques have been proposed to improve ASR robustness 
over the past several years. Histogram equalization (HEQ) is one of the most 
efficient techniques that have been used to reduce the mismatch between training 
and test acoustic conditions. This paper presents a comparative study of various 
HEQ approaches for robust ASR. Two representative HEQ approaches, namely, the 
table-based histogram equalization (THEQ) and the quantile-based histogram 
equalization (QHEQ), were first investigated. Then, a polynomial-fit histogram 
equalization (PHEQ) approach, exploring the use of the data fitting scheme to 
efficiently approximate the inverse of the cumulative density function of training 
speech for HEQ, was proposed. Moreover, the temporal average (TA) operation 
was also performed on the feature vector components to alleviate the influence of 
sharp peaks and valleys caused by non-stationary noises. All the experiments were 
carried out on the Aurora 2 database and task. Very encouraging results were 
initially demonstrated. The best recognition performance was achieved by combing 
PHEQ with TA. Relative word error rate reductions of 68% and 40% over the 
MFCC-based baseline system, respectively, for clean- and multi- condition training, 
were obtained. 

Keywords: Automatic Speech Recognition, Robustness, Histogram Equalization, 
Data Fitting, Temporal Average 

1. INTRODUCTION 

With the successful development of much smaller electronic devices and the popularity of 
wireless communication and networking, it is widely believed that speech will play a more 
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active role and will serve as the major human machine interface (HMI) for the interaction 
between people and different kinds of smart devices in the near future [Lee and Chen 2005]. 
Therefore, automatic speech recognition (ASR) has long been one of the major preoccupations 
of research in the speech and language processing community. Nevertheless, varying 
environmental effects, such as ambient noise, noises caused by the recording equipment and 
transmission channels, etc., often lead to a severe mismatch between the acoustic conditions 
for training and test. Such a mismatch will no doubt cause substantial degradation in the 
performance of an ASR system. Substantial effort has been made and a large number of 
techniques have been presented in the last few decades to cope with this issue for improving 
ASR performance [Gong 1995; Junqua et al. 1996; Huang et al. 2001]. In general, they fall 
into three main categories [Gong 1995]: 

 Speech enhancement, which removes the noise from the observed speech signal. 

 Robust speech features extraction, which searches for noise resistant and robust features. 

 Acoustic model adaptation, which transforms acoustic models from the training (clean) 
space to the test (noisy) space. 

Techniques of each of the above three categories have their own reasons for superiority and 
their own limitations. In practical implementation, acoustic model adaptation often yields the 
best recognition performance, because it directly adjusts the acoustic models parameters (e.g., 
the mean vectors or covariance matrices of mixture Gaussian models) to accommodate the 
uncertainty caused by noisy environments. Representative techniques, include, but are not 
limited to, the maximum a posteriori (MAP) adaptation [Gauvain and Lee 1994; Huo et al. 
1995], the maximum likelihood linear regression (MLLR) [Leggeter and Woodland 1995; 
Gales 1998], etc. However, such techniques generally require a sufficient amount of extra 
adaptation data (either with or without reference transcripts) and a significant computational 
cost in comparison with the other two categories. Moreover, most of the speech enhancement 
techniques target enhancing the signal-to-noise ratio (SNR) but not necessarily at improving 
the speech recognition accuracy. On the other hand, robust speech feature extraction 
techniques can be further divided into two subcategories, i.e., model-based compensation and 
feature space normalization. Model-based compensation assumes the mismatch between clean 
and noisy acoustic conditions can be modeled by a stochastic process. The associated 
compensation models can be estimated in the training phase, and then exploited to restore the 
feature vectors in the test phase. Typical techniques of this subcategory, include, but are not 
limited to, the minimum mean square error log spectral amplitude estimator (MMSE-LSA) 
[Ephraim and Malah 1985], the vector Taylor series (VTS) [Moreno 1996], the stochastic 
vector mapping (SVM) [Wu and Huo 2006], the multi-environment model-based linear 
normalization (MEMLIN) [Buera et al. 2007], etc. 
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Robust Speech Recognition 

Feature space normalization is believed to be a simpler and more effective way to 
compensate for the mismatch caused by noise, and it has also demonstrated the capability to 
prevent the degradation of ASR performance under various noisy environments. Several 
attractive techniques have been successfully developed and integrated into the state-of-the-art 
ASR systems. As an example, the cepstral mean subtraction (CMS) [Furui 1981] is a simple 
but effective technique for removing the time-invariant distortion introduced by the 
transmission channel; while a natural extension of CMS, called the cepstral mean and variance 
normalization (CMVN) [Vikki and Laurila 1998], attempts to normalize not only the means of 
speech features but also their variances. Although these two techniques have already shown 
their capabilities in compensating for channel distortions and some side effects resulting from 
additive noises, their linear properties still make them inadequate in tackling the nonlinear 
distortions caused by various noisy environments [Torre et al. 2005]. Accordingly, a 
considerable amount of work on seeking more general solutions for feature space 
normalization has been done over the past several years. For example, not content with using 
either CMN or CMVN merely to normalize the first or the first two moments of the 
probability distributions of speech features, some researchers have extended the principal idea 
of CMN and CMVN to the normalization of the third [Suk et al. 1999] or even more higher 
order moments of the probability distributions of speech features [Hsu and Lee 2004, 2006]. 
On the other hand, the histogram equalization (HEQ) techniques also have gained much 
attention, and have been widely investigated in recent years [Dharanipragada and 
Padmanabhan 2000; Molau et al. 2005; Torre et al. 2005; Hilger and Ney 2006; Lin et al. 
2006]. HEQ seeks for a transformation mechanism that can map the distribution of the test 
speech onto a predefined (or reference) distribution utilizing the relationship between the 
cumulative distribution functions (CDFs) of the test speech and those of the training (or 
reference) speech. Therefore, HEQ not only attempts to match the means and variances of 
speech features but also completely match the distributions of speech features between 
training and test. More specifically, HEQ normalizes all moments of the probability 
distributions of test speech features to those of the reference ones. However, most of the 
current HEQ techniques still have some inherent drawbacks for practical usage. For example, 
they require either large storage consumption or considerable online computational overhead, 
which might make them infeasible when being applied to the ASR systems built on devices 
with limited resources, such as personal digital assistants (PDAs), smart phones and embedded 
systems, etc. 

With these observations in mind, in this paper we present a comparative study of various 
HEQ approaches for robust speech recognition. Two representative HEQ approaches, namely, 
the table-based histogram equalization (THEQ) and the quantile-based histogram equalization 
(QHEQ), were first investigated. Then, a polynomial-fit histogram equalization (PHEQ) 
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approach, exploring the use of the data fitting scheme to efficiently approximate the inverse of 
the cumulative density function of training speech for HEQ, was proposed. Moreover, the 
temporal average (TA) operation was also performed on the feature vector components to 
alleviate the influence of sharp peaks and valleys that were caused by non-stationary noises. 

The remainder of this paper is organized as follows. Section 2 describes the basic 
concept of HEQ and reviews two representative HEQ approaches, namely, THEQ and QHEQ. 
Section 3 elucidates our proposed HEQ approach, namely, PHEQ, and also briefly introduces 
several standard temporal average operations. Section 4 gives an overview of the Aurora 2 
database as well as a description of the experimental setup, while the corresponding 
experimental results and discussions are also presented in this section. Finally, conclusions are 
drawn in Section 5. 

2. HISTOGRAM EQUALIZATION (HEQ) 

2.1 Theoretical Foundation of HEQ 
Histogram equalization is a popular feature compensation technique that has been well studied 
and practiced in the field of image processing for normalizing the visual features of digital 
images, such as the brightness, grey-level scale, contrast, and so forth. It has also been 
introduced to the field of speech processing for normalizing the speech features for robust 
ASR, and many good approaches have been continuously proposed and reported in the 
literature [Dharanipragada and Padmanabhan 2000; Molau et al. 2003; Torre et al. 2005; 
Hilger and Ney 2006; Lin et al. 2006]. Meanwhile, HEQ has shown its superiority over the 
conventional linear normalization techniques, such as CMN and CMVN, for robust ASR. One 
additional advantage of HEQ is that it can be easily incorporated with most feature 
representations and other robustness techniques without the need of any prior knowledge of 
the actual distortions caused by different kinds of noises. 

Theoretically, HEQ has its roots in the assumptions that the transformed speech feature 
distributions of the test (or noisy) data should be identical to that of the training (or reference) 
data and each feature vector dimension can be normalized independently of each other. The 
speech feature vectors can be estimated either from the Mel-frequency filter bank outputs 
[Molau 2003; Hilger and Ney 2006] or from the cepstral coefficients [Segura et al. 2004; 
Torre et al. 2005; Lin et al. 2006]. Since each feature vector dimension is considered 
independently, from now on, the dimension index of each feature vector component will be 
omitted from the discussion for the simplicity of notation unless otherwise stated. Under the 
above two assumptions, the aim of HEQ is to find a transformation that can convert the 
distribution of each feature vector component of the input (or test) speech into a predefined 
target distribution which corresponds to that of the training (or reference) speech. The basic 
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idea of HEQ is illustrated in Figure 1. 

Accordingly, HEQ attempts not only to match the means and variances of the speech 
features, but also to completely match the speech feature distributions of training and test data. 
Phrased another way, HEQ normalizes all the moments of the probability distributions of the 
speech features. The formulation of HEQ is described as follows [Torre et al. 2005]. For each 
feature space dimension, let x  be the feature vector component that follows the distribution 

Testp x . A transformation function F x  converts x  to y  and follows a reference 
distribution Trainp y , according to the following expression: 

1
1 ,Train Test Test

dF ydxp y p x p F y
dy dy

        (1) 

where 1F y  is the inverse function of F x . Moreover, the relationship between the 
cumulative probability density functions (CDFs) associated with the test and training speech, 
respectively, is governed by: 

1
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             ( )
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Figure 1. The basic idea of HEQ. 
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where TestC x  and TrainC y  are the CDFs for the test and training speech, respectively; 
y  is the corresponding output of the transformation function F x ; and the transformation 

function F x  has the following property: 

1 ,Train TestF x C C x              (3) 

where 1
Train

C  is the inverse function of TrainC . 

It is worth noting that the reliability of CDF estimation will have a significant influence 
on the performance of HEQ. Due to the finite number of speech features being considered, the 
CDFs of speech features are usually approximated by the cumulative histograms of speech 
features for practical implementation. The CDFs of speech features can be accurately and 
reliably approximated when there is a large amount of data available. On the contrary, such 
approximation will probably not be accurate enough when the (test) speech utterance becomes 
much shorter. Several studies have shown that the order-statistics based method tends to be 
more accurate than the cumulative-histogram based when the amount of speech data is 
insufficient for reliable approximation of CDFs [Segura et al. 2004; Torre et al. 2005]. 

2.2 Table-Based Histogram Equalization (THEQ) 
The table-based histogram equalization (THEQ) was first proposed by Dharanipragada and 
Padmanabhan [Dharanipragada and Padmanabhan 2000] and is a non-parametric method to let 
the distributions of the test speech match those of the training speech. THEQ uses a 
cumulative histogram to estimate the corresponding CDF value of each feature vector 
component y . During the training phase, the cumulative histogram of each feature vector 
component y  of the training data is constructed as follows. The range of values of each 
feature vector dimension over the entire training data is first determined by finding the feature 
vector components maxy  and miny  that have the maximum and minimum values, 
respectively. Let K  be the total number of histogram bins and the range min max,y y  is 
then divided into K  non-overlapped bins of equal size, 0 1 1, , KB B B . Next, the entire 
training data is scanned once and each individual feature vector component falls exactly into 
one bin. Thus, if we let N  be the total number of training feature vector components of one 
specific dimension and in  be the number of feature vector components of that dimension 
belonging to iB , the probability of feature vector components of that dimension being in iB  
is approximated by: 

.i
Train i

n
p B

N
              (4) 
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The mean 
iBy  of each bin i  is taken as one of the representative outputs of the 

transformation function F x  and the approximate CDF value TrainC y  of the feature 
vector component y  that belongs to iB  is calculated by: 

0 .i
Train Train jjC y p B             (5) 

Finally, a look-up table consisting of all possible distinct reference pairs ,
iTrain BC y y  is 

constructed, where TrainC y  is taken as the key and 
iBy  is the corresponding restored 

value. During the test phase, the CDF estimation of the test utterance can be done in the same 
way by using the cumulative histograms of itself. The restored value of each feature vector 
component x  of the test utterance is obtained by taken its approximate CDF value TestC x  
as the key to finding the corresponding transformed (restored) value in the look-up table. 

However, the normalization of the test data alone results in only a moderate gain of 
performance improvement. It has been suggested that one should normalize the training data 
in the same way to achieve good performance [Molau et al. 2003]. On the other hand, because 
a set of cumulative histograms of all speech feature vector dimensions of the training data has 
to be kept in memory for the table-lookup of restored feature values, THEQ needs large disk 
storage consumption and its associated table-lookup procedure is also time-consuming, which 
might make THEQ not very feasible for ASR systems that are built into devices with limited 
resources, such as PDAs, smart phones and embedded systems, etc. 

2.3 Quantile-Based Histogram Equalization (QHEQ) 
The quantile-based histogram equalization (QHEQ) is a parametric type of histogram 
equalization. QHEQ attempts to calibrate the CDF of each feature vector component of the 
test speech to that of the training speech in a quantile-corrective manner instead of a 
full-match of the cumulative histogram as done by THEQ, described earlier in Section 2.2. 
Normally, QHEQ only needs a small number of quantiles (usually the number is set to 4) for 
reliable estimation [Hilger and Ney 2001, 2006]. A transformation function H x  is 
calculated by minimizing the mismatch between the quantiles of the test utterance and those of 
the training data. The transformation function H x  is a power function applied to each 
feature vector component x , which attempts to make the CDF of the equalized feature vector 
component match that observed in training. Before the actual application of the transformation 
function H x , each feature vector component x  is first scaled down into the interval 
0,1ΓΓ by being divided by the maximum value KQ  over the entire utterance. Then, the 

transformation function H x  is applied to x  and the transformed (or restored) value of x  
is scaled back to the original value range [Hilger and Ney 2006]: 
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1 ,K
K K

x xH x Q
Q Q

           (6) 

where K  is the total number of quantiles; KQ  is the maximum value over the entire 
utterance; and  and  are the transformation parameters. For each feature vector 
dimension,  and  are chosen to minimize the squared distance between the quantiles 

kH Q  of the test utterance and the quantiles Train
kQ  of the training data by using the 

following equation: 

1 2

, 1
, arg min .

K Train
k k

k
H Q Q          (7) 

In summary, QHEQ allows the estimation of the transformation function H x  to 
merely rely on a single test utterance (or extremely, a very short utterance), without the need 
of an additional set of adaptation data [Hilger and Ney 2006]. However, in order to find the 
optimum transformation parameters for each feature vector dimension, an exhaustive online 
grid search is required, which, in fact, is very time-consuming. 

3. IMPROVED APPROACHES 

3.1 Polynomial-Fit Histogram Equalization (PHEQ) 
In contrast to the above table-lookup or quantile based approaches, we propose a 
polynomial-fit histogram equalization (PHEQ) approach which explores the use of the data 
fitting scheme to efficiently approximate the inverse functions of the CDFs of the training 
speech for HEQ [Lin et al. 2006]. Data fitting is a mathematical optimization method which, 
when given a series of data points ,i iu v  with 1, ,i N , attempts to find a function 

iG u  whose output iv  closely approximates iv . That is, it minimizes the sum of the 
squares error (or the squares of the ordinate differences) between the points ,i iu v  and their 
corresponding points ,i iu v  in the data. The function iG u  to be estimated can be either 
linear or nonlinear in its coefficients. For example, if iG u  is a linear M -order polynomial 
function: 

2
0 1 2 ,M

i i i i M iG u v a a u a u a u                (8) 

where 0 1, , , Ma a a  are the coefficients, then its corresponding squares error can be defined 
by 

2
22

1 1 0
.

N N M m
i i i m i

i i m
E v v v a u                (9) 
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PHEQ makes use of such data fitting (or so-called least squares regression) scheme to 
estimate the inverse functions of the CDFs of the training speech. For each speech feature 
vector dimension of the training data, given the pair of the CDF value Train iC y  of the 
vector component iy  and iy  itself, the linear polynomial function Train iG C y  with 
output iy  can be expressed as: 

0
,

M m
Train i i m Train i

m
G C y y a C y         (10) 

where the coefficients ma  can be estimated by minimizing the squares error expressed in the 
following equation: 

2
22

1 1 0
' ,

N N M m
i i i m Train i

i i m
E y y y a C y        (11) 

where N  is the total number of training speech feature vectors. In implementation, we used 
the order-statistics based method instead of the cumulative-histogram based method to obtain 
the approximate CDF values. For the feature vector component sequence 

1, , , ,i NY y y y  of a specific dimension of a speech utterance, the corresponding CDF 
value of each feature component iy  can be approximated by the following two steps: 

 

Step1: The sequence 1, , , ,i NY y y y  is first sorted according to the values of the 
feature vector components in ascending order. 

Step2: The order-statistics based approximation of the CDF value of a feature vector 
component iy  is then given as: 

0.5pos i
i

S y
C y

N
          (12) 

where pos iS y  is a function that returns the rank of iy  in ascending order of the values of 
the feature vector components of the sequence 1, , , ,i NY y y y . Therefore, for each 
utterance, Equation (12) can be used to approximate the CDF values of the feature vector 
components of all dimensions. During the training phase, the polynomial functions of all 
dimensions are obtained by minimizing the squares error expressed in Equation (11). During 
the test phase, for each feature vector dimension, the feature vector components of the test 
utterance are simply sorted in ascending order of their values to obtain the approximate CDF 
values, which can be then taken as the inputs to the inverse function to obtain the 
corresponding restored component values. 

The reason we choose the polynomial function here as the inverse function is mainly 
because it has a simple form, without the need of a complicated computational procedure, and 
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has moderate flexibility in controlling the shape of the function. Though the polynomial 
function is efficient in delineating the transformation function, it is worth mentioning that the 
polynomial function to some extent has its inherent limitations. For example, high order 
polynomial functions might lead to over-fitting of the training data. Moreover, the polynomial 
function provides good fits for input data points that are located within the range of values of 
the training data, but would also probably have rapid deterioration when the input data points 
are located outside the range of values of the training data. 

3.2 Temporal Average (TA) 

Though the above HEQ approaches are very effective in matching the global feature statistics 
of the test (or noisy) speech to that of the training (or reference) set, we found that some 
undesired sharp peaks or valleys of the feature vector component sequence caused by the 
non-stationary noises often occurring during the equalization process. This phenomenon is 
illustrated in the upper and middle parts of Figure 2. Therefore, we believe that a rigorous 
smoothing operation further performed on the time trajectory of the HEQ restored feature 
vector component sequence will be helpful for suppressing the extraordinary changes of 
component values. From the other perspective, temporal average can be treated as a low-pass 
filter. The basic idea of TA is quite similar to RelAtive SpecTrA (RASTA) [Hermansky and 
Morgan 1994] which aims to filter out the slow-varying or fast-varying artifacts (or noises) 
based on the evidence of human auditory perception. The main differences between TA and 
RASTA are the target (or feature domain) where the smoothing operation is performed and the 

 
Figure 2. The 2th cepstral feature component sequence of an utterance 
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design of the temporal filters. The smoothing (or temporal average) operation can be defined 
as one of the following forms [Chen and Bilmes 2007]: 

 Non-Causal Moving Average 
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where ty  denotes the HEQ restored feature vector component at speech frame t ; L  is the 
span order of temporal average operation; and ˆty  is the corresponding one after the temporal 
average operation. The feature vector component sequence obtained by Equation (13) is also 
shown in the lower part of Figure 2. 

4. EXPERIEMENTAL RESULTS 

4.1 Experimental Setup 
The speech recognition experiments were conducted under various noise conditions using the 
Aurora-2 database and task [Hirsch and Pearce 2002]. The Aurora-2 database is a subset of the 
TI-DIGITS, which contains a set of connected digit utterances spoken in English; while the 
task consists of the recognition of the connected digit utterances interfered with various noise 
sources at different signal-to-noise ratios (SNRs), in which Test Sets A and B are artificially 
contaminated with eight different types of real-world noises (e.g., subway noise, street noise, 
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babble noise, etc.) in a wide range of SNRs (-5 dB, 0 dB, 5 dB, 10 dB, 15 dB, 20 dB and 
Clean) and Test Set C additionally includes channel distortions. For the baseline system, the 
training and recognition tests used the HTK recognition toolkit [Young et al. 2005], following 
the original setup defined for the ETSI AURORA evaluations [Hirsch and Pearce 2002]. 

More specifically, each digit was modeled as a left-to-right continuous density hidden 
Markov model (CDHMM) with 16 states and three diagonal Gaussian mixtures per state. Two 
additional CDHMMs were defined for the silence. The first one had three states with six 
diagonal Gaussian mixtures per state for modeling the silence at the beginning and at the end 
of each utterance. The other one had one state with 6 diagonal Gaussian mixtures for modeling 
the inter-word short pause. In the front-end speech analysis, the frame length is 25 ms and the 
corresponding frame shift is 10 ms. Speech frames are pre-emphasized using a factor of 0.97, 
and the Hamming window is then applied. From a set of 23 Mel-scaled log filter banks outputs 
a 39-dimensional feature vector, consisting of 12 Mel-frequency cepstral coefficients 
(MFCCs), the 0-th cepstral coefficient, and the corresponding delta and acceleration 
coefficients, is extracted at each speech frame. The average word error rate (WER) results 
obtained by the MFCC-based baseline system are 45.44% and 14.65%, respectively, for clean- 
and multi-condition training, each of which is an average of the WER results of the test 
utterances respectively contaminated with eight types of noises under different SNR levels (0 
dB to 20 dB) for the three sets (Sets A, B and C). 

4.2 Experiments on HEQ Approached 
Table 1. Average WER results (%) of THEQ for clean-condition training, with respect 

to different numbers of histogram bins and different sizes of table. 
Table Size 

 
10 50 100 500 1000 5000 10000 50000 

100 41.32 45.65 46.39 44.59 44.55 44.65 44.67 44.65 
500 33.21 28.60 25.44 22.42 22.42 22.41 22.45 22.41 

1000 29.63 24.19 22.12 19.19 19.04 19.46 19.88 19.87 
5000 28.13 23.72 20.68 18.22 18.02 18.18 18.19 18.10 

10000 27.64 23.50 20.50 18.33 18.10 18.13 18.30 18.32 
50000 27.46 23.30 20.29 18.58 18.41 18.46 18.47 18.45 

H
is
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Order-Statistics 27.26 23.30 20.65 18.62 18.32 18.51 18.53 18.58 
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Table 2. Average WER results (%) of THEQ for multi-condition training, with respect 
to different numbers of histogram bins and different sizes of table. 

Table Size 
 

10 50 100 500 1000 5000 10000 50000 

100 19.46 22.27 23.81 23.85 23.96 24.05 24.06 24.07 
500 18.54 20.71 19.06 14.94 14.58 14.57 14.52 14.59 
1000 18.94 19.46 17.04 13.63 13.30 13.36 13.35 13.33 
5000 19.24 18.98 15.91 12.52 12.30 12.31 12.29 12.27 

10000 19.27 18.79 15.75 12.26 12.26 12.23 12.22 12.23 
50000 19.42 18.79 15.69 12.76 12.14 12.16 12.15 12.16 

H
is

to
gr

am
 B

in
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um
be

r 

Order-Statistics 19.43 18.91 15.73 12.79 12.18 12.17 12.17 12.17 

In the first set of experiments, we compare the recognition performance when different 
numbers of the histogram bins and different sizes of the look-up table are applied for THEQ. 
Notice that the equalization was conducted on all dimensions of the feature vectors for the 
training and test data, and the approximation of the CDFs of the test speech was conducted in 
an utterance-by-utterance manner. The results are summarized in Tables 1 and 2 for clean- and 
multi-condition training, respectively. As can been seen, the recognition performance is very 
sensitive to the number of the histogram bins and the size of the look-up table. The WER is 
improved when either the number of the histogram bins or the size of the look-up table is 
increased. As compared to the MFCC-based baseline system, the best results of HEQ yield 
about 60% and 16% relative WER improvements for clean- and multi-condition training, 
respectively. These results suggest that a larger histogram bin number or table size can 
improve the recognition performance, however, at the cost of huge consumption of the 
memory storage. Moreover, THEQ is also time-consuming, because a huge set of cumulative 
histograms of all speech feature vector dimensions of the training data have to be kept in 
memory for the table-lookup of restored feature values. Furthermore, the CDF value of a 
feature vector component approximated by the cumulative-histogram based method is 
equivalent to that done by the order-statistics based method when the number of histogram 
bins is taken to be infinite. 

In the next set of experiments, we investigate the use of different quantile numbers for 
QHEQ to see if the quantile number has any apparent effect on the recognition performance. 
The corresponding average WER results are shown in Table 3. As indicated by the results, it 
can be found the recognition performance is closely dependent on the quantile number. The 
transformation function H x  would tend to be too coarse to model the relationship between 
the test utterance and the training data when only few quantiles are being considered. On the 
contrary, the use of too many quantiles for the estimation of the transformation function 
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H x  might instead degrade the recognition performance [Hilger and Ney 2001]. However, 
the optimum number of quantiles is found to be four for the Aurora 2 task studied here, and 
the corresponding relative WER improvements over the MFCC-based baseline system are 
50% and 30% for clean- and multi-condition training, respectively. 

In the third set of experiments, we evaluate the performance of PHEQ with respect to 
different polynomial orders and the associated results are presented in Table 4. Due to the end 
behavior property of polynomial functions, even order polynomials are either “up” on both 
ends or “down” on both ends which is not appropriate to characterize the behavior of a 
cumulative distribution [Lial et al. 2006]. Therefore, only odd-order polynomials are utilized 
in this paper for PHEQ. As evidenced by the results shown in Table 4, the average WER 
results of PHEQ are slightly improved when the order of the polynomial function becomes 
higher. However, as the order increases, the polynomial function might sometimes tend to 
over-fit of the training data. The improvement of PHEQ seems to saturate when the order is 
set to seven. As is indicated, PHEQ yields about a relative WER improvement of 65% for 
clean-condition training, and 35% for multi-conditions training, as compared to the 
MFCC-based baseline system. 

To go a step further, the average WER results under different SNR levels for the MFCC 
baseline, THEQ, QHEQ and PHEQ are shown in Tables 5 and 6, for clean- and 
multi-condition training, respectively. In the case of clean-condition training, these three HEQ 
approaches all yield significant improvement over the MFCC-based baseline, especially when 
the SNR level becomes much lower (e.g., 10 dB, 5 dB or 0 dB). The average WERs for 

Table 3. Average WER results (%) of QHEQ, with respect to different quantile 
numbers. 

Quantile Number 
 

2 3 4 5 8 16 32 

Clean-Condition 
Training 24.02 23.67 22.86 23.00 24.93 24.83 24.95 

Multi-Condition Training 11.63 11.25 10.23 10.24 12.36 12.32 12.36 

Table 4. Average WER results (%) of PHEQ, with respect to different orders of the 
polynomial transformation functions. 

Polynomial Order 
 

1-th 3-th 5-th 7-th 9-th 11-th 13-th 

Clean-Condition 
Training 18.54 17.1 16.05 15.71 15.72 15.72 16.68 

Multi-Condition Training 12.17 9.44 9.26 9.50 9.45 9.46 11.45 
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clean-condition training are 18.02%, 15.71% and 22.86% for THEQ, PHEQ and QHEQ, 
respectively. In the case of multi-condition training, the average WER results for these three 
HEQ approaches are slightly better than that of the MFCC-based baseline system (average 
WERs of 12.30%, 9.5% and 10.23% for THEQ, PHEQ and QHEQ, respectively) which might 
mainly be due to the fact that with multi-condition training, the mismatch between the training 
and test conditions can be reduced to a great extent. 

On the other hand, Table 7 shows the average WER results obtained by combining 
PHEQ with different temporal average (TA) operations of different span orders. When the 
span order is set to 0, it denotes that only PHEQ was applied to the feature vector components. 
The results in Table 7 demonstrate that combining PHEQ with anyone of the TA operations 
can further provide an additional relative WER reduction of about 5% to 8%. In a word, the 
TA operations conducted after HEQ indeed provide a good compensation for non-stationary 
noises. Nevertheless, TA operations with much higher span orders may instead result in the 
degradation of the recognition performance. 

 

 

 

Table 5. Average WER results (%) of the MFCC-based baseline system, THEQ, QHEQ   
and PHEQ for clean-condition training, with respect to different SNR levels. 

SNR Level 
 

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB 

MFCC 0.89ʳ 7.55ʳ 20.41ʳ 43.17ʳ 70.80ʳ 90.21ʳ 96.37ʳ

THEQ 1.73ʳ 3.61ʳ 5.69ʳ 10.22ʳ 21.66ʳ 47.41ʳ 77.91ʳ

QHEQ 0.82ʳ 2.05ʳ 4.14ʳ 10.84ʳ 30.90ʳ 66.11ʳ 86.72ʳ

PHEQ 0.92ʳ 1.83ʳ 3.45ʳ 7.52ʳ 18.84ʳ 45.78ʳ 76.77ʳ

Table 6. Average WER results (%) of the MFCC-based baseline system, THEQ, QHEQ   
and PHEQ for multi-condition training, with respect to different SNR levels. 

SNR Level 
 

Clean 20 dB 15 dB 10 dB 5 dB 0 dB -5 dB 

MFCC 1.15ʳ 2.16ʳ 3.22ʳ 5.97ʳ 15.45ʳ 44.06ʳ 79.24ʳ

THEQ 1.10ʳ 2.24ʳ 3.53ʳ 6.52ʳ 15.63ʳ 40.60ʳ 73.39ʳ

QHEQ 2.15ʳ 2.02ʳ 2.74ʳ 5.10ʳ 10.32ʳ 29.46ʳ 57.96ʳ

PHEQ 1.34ʳ 1.65ʳ 2.43ʳ 4.19ʳ 10.14ʳ 27.96ʳ 62.13ʳ
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4.3 Comparison with Other Normalization Approaches 

Finally, we compare the above HEQ approaches with the conventional normalization 
approaches. The average WER results for the MFCC-based baseline system, as well as for 
CMS and CMVN, for both clean- and multi-condition training, are shown in Table 8 and 
presented graphically in Figures 3 and 4, respectively. Notice that the results for THEQ, 
PHEQ and PHEQ-TA were obtained with the best settings from the above experiments. 
GHEQ is the recognition results obtained using a Gaussian probability distribution with zero 
mean and unity variance as the reference distribution rather than using the probability 
distributions of the entire training data as the reference distributions [Torre et al. 2005]. In 
other words, each feature space dimension is normalized to a standard normal distribution. It 
can be found that all the HEQ approaches provide significant performance boosts over the 
MFCC-based baseline system, and they are also better than CMS and CMVN for both clean- 
and multi-condition training. If TA is further applied after CMVN (i.e., MVA) or PHEQ (i.e., 
PHEQ-TA), the recognition results of MVA or PHEQ-TA will be considerably better than 
those obtained by using CMVN or PHEQ alone. 

The experimental results shown in this and the previous sections suggest the following 
observations: 

 The estimation of CDF can have a significant influence on the performance of HEQ. 
The cumulative-histogram method can give a reliable estimation if there is a large 
amount of speech feature vectors available; otherwise, the order-statistics based 
method is recommended. 

Table 7. Average WER results (%) obtained by combining PHEQ with different TA 
operations of different span orders. 

Span Order     
0 1 2 3 4 5 

Non-Causal MA 15.71 14.57 14.53 15.78 16.61 16.87 
Causal MA 15.71 15.20 14.88 14.66 14.61 15.06 
Non-Causal ARMA 15.71 14.55 14.41 14.94 15.11 15.21 

Clean- 
Condition 
Training 

Causal ARMA 15.71 14.52 14.49 14.86 15.00 16.72 

Non-Causal MA 9.5 8.96 8.98 9.66 10.18 10.75 
Causal MA 9.5 9.35 9.22 8.98 8.95 9.08 
Non-Causal ARMA 9.5 8.92 8.86 9.04 9.13 9.18 

Multi- 
Condition 
Training 

Causal ARMA 9.5 9.22 8.87 8.87 9.25 9.34 
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 The full cumulative distribution function matching approach, such as THEQ, GHEQ, 
or PHEQ, gives better recognition performance than the quantile-corrective 
approach, such as QHEQ. 

 In contrast, assuming that the probability distributions of speech feature vectors will 
follow Gaussian distributions (e.g., GHEQ), the transformation functions used in 
PHEQ are directly learned from the observed distributions of speech feature vectors. 
As the results show in Table 8, PHEQ outperforms all the other equalization 
approaches in most cases for clean-condition training. 

 The performance of GHEQ appears slightly better than PHEQ for multi-condition 
training. This result is probably explained by the fact that multi-condition training 
can substantially reduce environmental mismatch. Consequently, normalizing the 
speech feature vectors into a standard normal distribution or normalizing a 
distribution learned from the training speech seems to make no significant difference 
in multi-condition training. 

 Performing TA after HEQ is necessary, because TA can alleviate the influence of 
sharp peaks and valleys that were caused by some non-stationary noises or occurred 
during the equalization process. 

 

     Table 8. Comparison of the average WER results (%) obtained by the MFCC-based  
baseline system and various normalization approaches for clean- and 
multi-condition training. 

Clean-Condition Training Multi-Condition Training 
 

Test A Test B Test C Average Test A Test B Test C Average 

MFCC 47.37 48.42 40.55 45.45 13.56 13.34 17.06 14.65 

CMS 26.17 22.06 27.72 25.32 13.27 12.99 13.77 13.34 

CMVN 20.21 19.84 21.13 20.39 12.18 11.23 13.21 12.21 

MVA 16.63 14.92 17.90 16.48 8.86 8.82 9.69 9.12 

THEQ 18.13 16.41 19.51 18.02 11.97 11.47 13.44 12.30 

GHEQ 17.69 15.59 18.70 17.32 9.00 8.73 9.60 9.11 

PHEQ 15.91 14.43 16.80 15.71 9.23 8.89 10.38 9.50 

QHEQ 23.74 21.73 23.11 22.86 8.91 10.03 11.75 10.23 

PHEQ-TA 14.29 13.75 15.20 14.41 8.72 8.64 9.21 8.86 
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Figure 3. Average WER results (%) obtained by the MFCC-based baseline 
system and various normalization approaches for clean-condition 
training. 

Figure 4. Average WER results (%) obtained by the MFCC-based baseline system 
and various normalization approaches for multi-condition training. 
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4.4 Storage Requirement and Computational Complexity 

As mentioned in the previous sections, the HEQ approaches have some drawbacks for 
practical implementation issues, such as requiring large storage consumption and high 
computational cost, which might make them infeasible when being applied to ASR systems 
with limited storage and computation resources. Therefore, in this subsection, we analyze 
these HEQ approaches from two perspectives: the storage requirement and the computational 
complexity. 

In general, the number of reference pairs ,
iTrain BC y y  kept in the look-up table for 

THEQ cannot be too small. As indicated in Table 1, the recognition performance for the 
Aurora 2 task will not saturate until the table size is large than 1,000. If 1,000 reference pairs 
are kept with double precision for THEQ, it requires a memory space of about 1M bytes to 
store the transformation table for the equalization of all dimensions of the feature vectors. 
However, for other complicated recognition tasks, such as large vocabulary continuous speech 
recognition (LVCSR) of broadcast news, it normally requires a much larger size of look-up 
table to keep the feature transformation/equalization information for better recognition 
performance, which also implies the need of much larger storage consumption. However, for 
QHEQ, a small number of quantiles (usually the number is set to 4) is enough for the efficient 
transformation of speech feature vectors. The storage requirement of QHEQ is very small 
when compared to THEQ. Similarly, the storage requirement of PHEQ depends mainly on the 
order of the polynomial functions. In the case of using the polynomial functions with the order 
set to seven, it roughly requires a memory space of 2.5K bytes to store the coefficients of the 
polynomial functions. 

On the other hand, the computational complexity of THEQ is mainly determined by the 
size of the look-up table. As the reference pairs ,

iTrain BC y y  stored in the look-up table 
increase, the complexity for searching the corresponding restored value 

iBy  for the input 

TrainC y  would become much higher even though the table-lookup procedure can be 
implemented with the hash table or other efficient data structures. When QHEQ is being used 

Table 9. A summary of storage requirement and computational complexity with  
respect to different HEQ approaches. 

Method Storage Requirement Computational Complexity 

THEQ Large - depending on the number of 
reference pairs kept in the look-up table 

Medium - depending on the look-up table size 
for searching the corresponding restored value 

QHEQ Small - depending on the number of 
quantiles for quantile-correction 

High - depending on the value ranges and 
resolutions of parameters for online grid search. 

PHEQ Small - depending on the order of the 
polynomial functions 

Low - depending on the order of the polynomial 
function 
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in the test phase, its computational complexity is the highest when compared to the other two 
HEQ approaches (THEQ and PHEQ), which is due to the fact that an exhaustive online grid 
search is required for finding the optimum transformation parameters  and . The search 
process is completely dominated by the value ranges of  and , and the resolutions, i.e., 
the step sizes for updating the values, of  and . In contrast to the above two approaches, 
the computational complexity of PHEQ is almost negligible. It requires only a few 
mathematical operations, which will result in a tremendous saving in the computational cost. 
A summary of storage requirement and computational complexity is shown in Table 9. 

5. CONCLUSIONS 

In this paper, we have given a detailed review of various histogram equalization (HEQ) 
approaches for improving ASR robustness. Three approaches, namely, the table-based 
histogram equalization (THEQ), the quantile-based histogram equalization (QHEQ) and the 
polynomial-fit histogram equalization (PHEQ), were extensively compared and analyzed, in 
terms of the recognition performance, storage requirement and computational complexity. 
Moreover, the usage of temporal average (TA) operations also has been investigated for 
alleviating the influence of sharp peaks and valleys caused by some non-stationary noises or 
noises occurring during equalization. It has been found that PHEQ outperforms the other 
equalization approaches and it only requires a small amount of storage consumption and 
computational cost. The best results were obtained by combing PHEQ with TA that was in the 
form of non-causal auto-regression moving average. Relative word error rate reductions of 
68% and 40% over the MFCC-based baseline system have been obtained for clean- and 
multi-condition training, respectively. 
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