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Abstract

Learning a shared dialog structure from a
set of task-oriented dialogs is an important
challenge in computational linguistics. The
learned dialog structure can shed light on how
to analyze human dialogs, and more impor-
tantly contribute to the design and evalua-
tion of dialog systems. We propose to ex-
tract dialog structures using a modified VRNN
model with discrete latent vectors. Different
from existing HMM-based models, our model
is based on variational-autoencoder (VAE).
Such model is able to capture more dynam-
ics in dialogs beyond the surface forms of
the language. We find that qualitatively, our
method extracts meaningful dialog structure,
and quantitatively, outperforms previous mod-
els on the ability to predict unseen data. We
further evaluate the model’s effectiveness in
a downstream task, the dialog system build-
ing task. Experiments show that, by integrat-
ing the learned dialog structure into the reward
function design, the model converges faster
and to a better outcome in a reinforcement
learning setting.

1 Introduction

Human dialogs are like well-structured buildings,
with words as the bricks, sentences as the floors,
and topic transitions as the stairs connecting the
whole building. Therefore, discovering dialog
structure is crucial for various areas in compu-
tational linguistics, such as dialog system build-
ing (Young, 2006), discourse analysis (Grosz and
Sidner, 1986), and dialog summarization (Murray
et al., 2005; Liu et al., 2010). In domain specific
tasks such as restaurant booking, it’s common for
people to follow a typical conversation flow. Cur-
rent dialog systems require human experts to de-
sign the dialog structure, which is time consuming
and sometimes insufficient to satisfy various cus-
tomer needs. Therefore, it’s of great importance to

automatically discover dialog structure from exist-
ing human-human conversations and incorporate it
into the dialog system design.

However, modeling human conversation is not
easy for machines. Some previous work rely on
human annotations to learn dialog structures in su-
pervised learning settings (Jurafsky, 1997). But
since human labeling is expensive and hard to ob-
tain, such method is constrained by the small size
of training examples, and by the limited number
of application domains (Zhai and Williams, 2014).
Moreover, structure annotations on human conver-
sation can be subjective, which makes it hard to
reach inter-rater agreements. Therefore, we pro-
pose an unsupervised method to infer the latent di-
alog structure since unsupervised methods do not
require annotated dialog corpus.

Limited previous work has studied unsuper-
vised methods to model the latent dialog struc-
ture. Most of the previous methods use the hidden
Markov model to capture the temporal dependency
within human dialogs (Chotimongkol, 2008; Rit-
ter et al., 2010; Zhai and Williams, 2014). We
propose to adopt a new type of models, the varia-
tional recurrent neural network (VRNN, a recur-
rent version of the VAE) (Chung et al., 2015), and
infer the latent dialog structure with variational in-
ference. VRNN is suitable for modeling sequen-
tial information. Compared to the simpler HMM
models, VRNN also has the flexibility to model
highly non-linear dynamics (Chung et al., 2015)
in human dialogs.

Our basic approach assumes that the dialog
structure is composed of a sequence of latent
states. Each conversational exchange (a pair of
user and system utterances at time t) belongs to
a latent state, which has causal effect on the fu-
ture latent states and the words the conversants
produce. Because discrete latent states are more
interpretable than continuous ones, we combine
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VRNN with Gumbel-Softmax (Jang et al., 2016)
to obtain discrete latent vectors to represent the la-
tent states. A common way to represent the dialog
structure both visually and numerically is to con-
struct a transition probability table among latent
states. The idea of transition table inspires us to
develop two model variants to model the depen-
dency between states indirectly and directly.

Once we obtain such a human-readable dialog
structure, we can use it to facilitate many down-
stream tasks, such as dialog system training. The
motivation is that the dialog structure contains im-
portant information on the flow of the conversa-
tion; if the automatic dialog system can mimic the
behaviour in human-human dialogs, it can inter-
act with users in a more natural and user-friendly
way. Therefore, we propose to integrate the dialog
structure information into the reward design of the
reinforcement learning (RL). Experiments show
that the model with the proposed reward functions
converges faster to a better success rate.

2 Related Work

Variational Autoencoders (VAEs) (Kingma and
Welling, 2013; Doersch, 2016; Kingma et al.,
2014) have gained popularity in many computa-
tional linguistics tasks due to its interpretable gen-
erative model structure (Miao and Blunsom, 2016;
Miao et al., 2017). Zhao et al. (2018) applied
VAE to learn discrete sentence representations and
achieved good results. This is similar to our work,
but we focus more on modeling the dialog struc-
ture and using the learned structure to improve
the dialog system training. Serban et al. (2017)
presented a VHRED model which combines the
VRNN and encoder-decoder structure for direct
dialog response generation. While also similar,
our model uses discrete latent vectors instead of
continuous ones, and re-constructs the utterances
to recover the latent dialog structure, instead of
modeling the responses directly.

There are some previous studies on discovering
latent structure of conversations (Chotimongkol,
2008; Ritter et al., 2010; Zhai and Williams,
2014). But they are all based on Hidden Markov
Model (HMM). Ritter et al. (2010) extended the
HMM-based method in Chotimongkol (2008) by
adding additional word sources to social interac-
tion data on Twitter. Zhai and Williams (2014)
decoupled the number of topics and the number of
states to allow an additional layer of information

in task-oriented dialogs. Our work also focuses
on task-oriented dialogs but adopts the VRNN to
perform variational inference in the model. Ac-
cording to Chung et al. (2015), the VRNN retains
the flexibility to model highly non-linear dynam-
ics, compared to simpler Dynamic Bayesian Net-
work models such as HMM.

Gunasekara et al. (2017) described a Quantized-
Dialog Language Model (QDLM) for task-
oriented dialog systems, which performs cluster-
ing on utterances and models the dialog as a se-
quence of clusters to predict future responses.
The idea of dialog discretization is similar to our
method, but we choose VAE over simple cluster-
ing to allow more context-sensitivity and to cap-
ture more dynamics in the dialog beyond surface
forms of the conversation. Additionally, we pro-
pose to utilize the dialog structure information to
improve the dialog system training.

Traditional reward functions in RL dialog train-
ing use delayed reward to provide feedback to the
model. However, delayed reward suffers from po-
tential slow convergence rate problem, so some
studies integrated estimated per-turn immediate
reward. For example, Ferreira and Lefèvre (2013)
studied expert-based reward shaping in dialog
management. We use the KL-divergence between
the transition probabilities and the predicted prob-
abilities as the immediate per-turn reward. Dif-
ferent from the expert-based reward shaping, such
reward does not require any manual labels and is
generalizable to different tasks.

3 Models

Fig. 1 gives an overview of the Discrete-VRNN
(D-VRNN) model and the Direct-Discrete-VRNN
(DD-VRNN) model. In principal, the VRNN con-
tains a VAE at every timestep, and these VAEs
are connected by a state-level RNN. The hidden
state variable ht-1 in this RNN encodes the dialog
context up to time t. This connection helps the
VRNN to model the temporal structure of the di-
alog (Chung et al., 2015). The observed inputs xt
to the model is the constructed utterance embed-
dings. zt is the latent vector in the VRNN at time
t. Different from Chung et al. (2015), zt in our
model is a discrete one-hot vector of dimension
N , where N is the total number of latent states.

The major difference between D-VRNN and
DD-VRNN lies in the priors of zt. In D-VRNN,
we assume that zt depends on the entire dialog
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Figure 1: Discrete-VRNN (D-VRNN) and Direct-Discrete-VRNN (DD-VRNN) overview. D-VRNN and DD-
VRNN use different priors to model the transition between zt, shown in red solid lines. The regeneration of xt is
in blue dotted lines. The recurrence of the state-level RNN is in gray dash-dotted lines. The inference of zt is in
black dashed lines.

context ht-1, shown in red in Fig. 1(a), which is
the same as in Chung et al. (2015); while in DD-
VRNN we assume that in the prior, zt directly de-
pends on zt-1 in order to model the direct transi-
tion between different latent states, shown in red
in Fig. 1(b). We use zt and ht-1 to regenerate
the current utterances xt instead of generating the
next utterances xt+1, shown in blue dotted lines in
Fig. 1. The idea of regeneration helps recover the
dialog structure. Next, the recurrence in the RNN
takes ht-1, xt and zt to update itself, and allows
the context to be passed down as the dialog pro-
ceeds, shown in gray dash-dotted lines. Finally in
the inference, we construct the posterior of zt with
the context ht−1 and xt, and infer zt by sampling
from the posterior, shown in black dashed lines in
Fig. 1. The mathematical details of each operation
are described below. ϕ(·)

τ are highly flexible fea-
ture extraction functions such as neural networks.
ϕx
τ , ϕz

τ , ϕprior
τ , ϕenc

τ , ϕdec
τ are feature extraction net-

works for the input x, the latent vector z, the prior,
the encoder and the decoder.

Sentence Embedding. ut = [w1,t,w2,t, ...wnw,t]
and st = [v1,t, v2,t, ...vnv,t] are the user utterance
and the system utterance at time t, where wi,j and
vi,j are individual words. The concatenation of ut-
terances from both parties, xt = [ut, st], is the ob-
served variable in the VAE. We use Mikolov et al.
(2013) to perform word embedding and the av-
erage of the word embedding vectors of ut and
st are ut and st. The concatenation of ut and
st is used as the feature extraction of xt, namely
ϕx
τ (xt) = [ut, st]. ϕx

τ (xt) is the model inputs.

Prior in D-VRNN. The prior quantifies our as-
sumption on zt before we observe the data. In the
D-VRNN, it’s reasonable to assume that the prior

of zt depends on the context ht-1 and follows the
distribution shown in Eq. (1), because conversa-
tion context is a critical factor that influences di-
alog transitions. Since zt is discrete, we use soft-
max to obtain the distribution.

zt ∼ softmax(ϕprior
τ (ht−1)) (1)

Prior in DD-VRNN. The dependency of zt on the
entire context ht-1 in Eq. (1) makes it difficult to
disentangle the relation between zt-1 and zt. But
this relation is crucial in decoding how conversa-
tions flow from one conversational exchange to the
next one. So in DD-VRNN, we directly model the
influence of zt-1 on zt in the prior, shown in Eq. (2)
and Fig. 1(b). To fit this prior distribution into the
variational inference framework, we approximate
p(zt|x<t, z<t) with p(zt|zt-1) in Eq. (3). Later, we
show that the designed new prior has benefits un-
der certain scenarios.

zt ∼ softmax(ϕprior
τ (zt-1)) (2)

p(x≤T , z≤T ) =
T∏
t=1

p(xt|z≤t, x≤t)p(zt|x<t, z<t)

≈
T∏
t=1

p(xt|z≤t, x≤t)p(zt|zt-1)

(3)

Generation. zt is a summarization of the current
conversational exchange under the context. We
use zt and ht-1 to reconstruct the current utterance
xt. This regeneration of xt allows us to recover the
dialog structure.

We use two RNN decoders, dec1 and dec2, pa-
rameterized by γ1 and γ2 to generate the original
ut and st respectively. ct and dt are the hidden
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states of dec1 and dec2. The context ht-1 and fea-
ture extraction vector ϕz

τ (zt) are concatenated to
form the initial hidden state hdec1

0 of dec1. c(nw,t)

is the last hidden state of dec1. Since vt is the
response of ut and will be affected by ut, we con-
catenate c(nw,t) to d0 to pass the information from
ut to vt. This concatenated vector is used as hdec2

0

of dec2. This process is shown in Eq. (4) and (5).

c0 = [ht−1, ϕz
τ (zt)],

w(i,t), c(i,t) = fγ1(w(i−1,t), c(i−1,t))
(4)

d0 = [ht−1, ϕz
τ (zt), c(nw,t)],

v(i,t), d(i,t) = fγ2(v(i−1,t), d(i−1,t))
(5)

Recurrence. The state-level RNN updates its
hidden state ht with ht-1 based on the following
Eq. (6). fθ is a RNN parameterized by θ.

ht = fθ(ϕ
z
τ (zt), ϕ

x
τ (xt),ht−1) (6)

Inference. We infer zt from the context ht-1 and
current utterances xt, and construct the posterior
distribution of zt by another softmax, shown in
Eq. (7). Once we have the posterior distribution,
we apply Gumbel-Softmax to take samples of zt.
D-VRNN and DD-VRNN differ in their priors but
not in their inference, because we assume the di-
rect transitions between zt in the prior instead of
in the inference.

zt|xt ∼ softmax([ϕenc
τ (ht−1), ϕx

τ (xt)]) (7)

Loss function. The objective function of VRNN
is a timestep-wise variational lower bound, shown
in Eq. (8) (Chung et al., 2015). To mitigate the
vanishing latent variable problem in VAE, we in-
corporate bow-loss and Batch Prior Regulariza-
tion (BPR) (Zhao et al., 2017, 2018) with tun-
able weights, λ to the final loss function, shown
in Eq. (9).

LVRNN = Eq(z≤T |x≤T )[log p(xt | z≤t, x<t))+
T∑
t=1

-KL(q(zt | x≤t, z<t) ‖ p(zt | x<t, z<t))]

(8)

LD-VRNN = LVRNN-BPR + λ ∗ Lbow
(9)

3.1 Transition Probability Calculation

A good way to represent a dialog structure both
numerically and visually is to construct a transi-
tion probability table among latent states. Such
transition probability can also be used to design
reward function in the RL training process. We
calculate transition table differently for D-VRNN
and DD-VRNN due to their different priors.
D-VRNN. From Eq. (6), we know that ht is a
function of x≤t and z≤t. Combining Eq. (1) and
(6), we find that zt is a function of x≤t and z<t.
Therefore, z<t has an indirect influence on zt
through ht-1. This indirect influence reinforces our
assumption that the previous states z<t impacts fu-
ture state zt, but also makes it hard to recover a
clear structure and disentangle the direct impact
of zt-1 on zt.

In order to better visualize the dialog struc-
ture and compare with the HMM-based models,
we quantify the impact of zt-1 on zt by estimat-
ing a bi-gram transition probability table, where
pi,j =

#(statei,statej)
#(statei)

. The numerator is the total
number of the ordered tuples (statei, t-1, statej, t)
and the denominator is the total number of statei
in the dataset. We choose a bi-gram transition ta-
ble over a n-gram transition table with a bigger n,
as the most recent context is usually the most rel-
evant, but it should be noted that unlike the HMM
models, the degree of transition in our model is not
limited nor pre-determined, because zt captures all
the context. Depending on different applications,
different n may be selected.
DD-VRNN As stated before, the dependency of zt
on the entire context ht-1 creates difficulty in cal-
culating the transition table. This is our motivation
to derive the prior in DD-VRNN. The outputs from
the softmax in the prior (Eq. (2)) directly consti-
tute the transition table. So rather than estimating
the transition probabilities by frequency count as
in D-VRNN, we can optimize the loss function of
DD-VRNN and get the parameters in Eq. (2) that
directly form the transition table.

3.2 NE-D-VRNN

In task-oriented dialog systems, the presence of
certain named entities, such as food preference
plays a crucial role in determining the phase of the
dialog. To make sure the latent states capture such
useful information, we assign larger weights on
the named entities when calculating the loss func-
tion in Eq. (9). The weights encourage the recon-
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structed utterances to have more correct named en-
tities, therefore influencing the latent state to have
better representation. We refer this model as NE-
D-VRNN (Named Entitiy Discrete-VRNN).

4 Datasets

We test the proposed method on the CamRest676
corpus, which was released and collected by Wen
et al. (2016). The task is to help users find restau-
rants in Cambridge, UK. While this task is highly
similar to DSTC2, we choose this dataset instead
of DSTC2 because it is relatively clean and comes
with good entity extraction methods. There are a
total of 676 dialogs in this dataset with three infor-
mation slots (food, price range and area) and three
request table slots (address, phone and postcode).

We also evaluate our model on another dataset
of simulated conversations, proposed in Zhao and
Eskenazi (2018). The task is to help users get the
weather report in a certain place at a specific time.
The dialog system is controlled by a fixed structure
and hand-set probabilities. Therefore, learning the
dialog structure of this dataset might be easier.

We assume each latent vector in the VAE emits
one conversational exchange, including one user
utterance and the corresponding system response
at time t, and each conversational exchange cor-
responds to one latent vector, following Zhai and
Williams (2014).

5 Experiments

We use LSTM (Hochreiter and Schmidhuber,
1997) with 200-400 units for the RNNs, and a
fully-connected network for all the ϕ

(·)
τ with a

dropout rate of 0.4. Additionally, we use train-
able 300-dimension word embeddings initialized
by Google word2vec (Mikolov et al., 2013). The
maximum utterance word length is 40 and the
maximum dialog length is 10. We set the λ for the
bow-loss to be 0.1. 80% of the entire dataset are
used for training, 10% for validation and 10% for
testing. Parameters mentioned are selected based
on the performance of the validation set.

The evaluation of unsupervised methods has al-
ways been a challenge. We first compare our mod-
els with a simple K-means clustering algorithm to
show its context sensitivity. Then we compare our
models with traditional HMM methods both qual-
itatively and quantitatively. Finally, we compare
the three proposed model variants. The qualita-
tive evaluation involves generating dialog struc-

tures with different models, and the quantitative
evaluations involves calculating the likelihood on
a held-out test set under a specific model, which
measures the model’s predictive power.

5.1 Comparison with K-means Clustering
We apply the model and obtain a latent state zt
for each conversational exchange. Since zt is a
discrete one-hot vector, we can group the conver-
sational exchanges with the same latent state to-
gether. This process is similar to clustering the
conversational exchanges. But we choose the VAE
over simple clustering methods because the VAE
introduces more flexible context-sensitive infor-
mation. A straightforward clustering method like
K-means usually groups sentences with similar
surface forms together, unless the previous context
is explicitly encoded along with the utterances. To
compare the grouping result of our model with
a traditional clustering method, we perform K-
means clustering on the dataset and calculate the
within-cluster cosine similarity between the bag-
of-word vectors of the utterances and the context.
This cosine similarity measures how similar the
utterances are on the word token level, higher the
value is, more words the utterances share in com-
mon. It turns out the average cosine similarity be-
tween the current utterance is 0.536 using the K-
means and 0.357 using the D-VRNN, while the
average cosine similarity between the context is
0.320 using the K-means and 0.351 using the D-
VRNN. This does show that in the D-VRNN re-
sult, the context are more similar to each other,
while in the K-means, the current utterances are
more similar on the surface textual level,which is
not ideal because the dialog system needs context
information. Table 1 shows an example where the
D-VRNN clustering result is different from the K-
means result. The conversational exchanges to
be clustered are in the last row. These two ex-
changes have the same surface form but differ-
ent contexts. D-VRNN identifies them as different
by incorporating context information, whereas K-
means places them into the same cluster ignoring
the context.

5.2 Comparison with HMM
HMM is similar to our model. Actually, if we
remove the ht layer from Fig. 1, it becomes an
HMM. But it is this additional layer of ht that en-
codes the dialog context into continuous informa-
tion and is crucial in the success of our model.
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From Utterance
SYS: Okay, you don’t care place, do you?
USR: That’s correct.
SYS: What date are you interested?
USR: Weather this morning.
SYS: I believe you said this morning.

(a) One example in State 2, “provide place and time”

From Utterance
USR: Weather tomorrow.
SYS: [api call]. your weather report is here

[report]. what else can I do?
USR: Weather this morning.
SYS: I believe you said this morning.

(b) One example in State 3, “additional time request”

Table 1: The utterances in bold in both tables have similar surface forms but different context. They are grouped
in different latent states using the Discrete-VRNN. In contrast, they are in the same cluster using the K-means.

Figure 2: Dialog structure of restaurant data by D-
VRNN. Transitions with P ≥ 0.2 are visualized.

Figure 3: Dialog structure of weather data by D-
VRNN. Transitions with P ≥ 0.2 are visualized.

In Fig. 4 and 5, we compare our models quan-
titatively with the TM-HMM model with 10 top-
ics and 20 topics from Zhai and Williams (2014),
which performs the best on a similar task-oriented
dialog dataset, the DSTC1 . The y-axis shows the
negative log likelihood of reconstructing the test
set under a specific model. The lower the nega-
tive log likelihood, the better the model performs.
The x-axis shows different numbers of latent states
N used in the models. As we can see, all of the
VRNN-based models surpass the TM-HMM mod-
els by a large margin and are more invariant to the
change in N on both datasets. Especially when N
is small, the performance of HMM is not stable.

Qualitatively, we compare the dialog structures
generated by different models. Fig. 2 and 3
show the discovered dialog structures using the D-
VRNN model, and Fig. 7 in the Appendix shows
the dialog structures learned by HMM. Each circle
in these figures represents a latent state zt with ex-
pert interpreted meanings, and the directed-arrows
between the circles represent the transition proba-
bilities between states. Human experts interpret
each zt consistently by going through conversa-
tional exchanges assigned to the same zt. For a

better visualization effect, we only visualize the
transitions with a probability equal or greater than
0.2 in the figures.

We observe reasonable dialog structures in
Fig. 2 and 3. The D-VRNN captures the ma-
jor path looking for restaurant (anything else) →
get restaurant address and phone→ thank you in
the restaurant search task. It also captures what’s
the weather → place and time → api call in the
weather report task. However, we do not get a dia-
log structure with entities separated (such as food
type I like → area I prefer → price range I want
→ ...). Because users know the system’s capability
and tend to give as many entities as possible in a
single utterance, so these entities are all mingled in
one dialog exchange. But the model is able to dis-
tinguish the “presenting match result” state from
the “presenting no match result” state (on the top
of Fig. 2), which is important in making correct
predictions. But in Fig. 7(a) generated by HMM,
even if we set 10 states in the HMM, some states
are still collapsed by the model because they share
a similar surface form. And in Fig. 7(b) also by
HMM, the dialog flow skips the “what can I do”
state, and goes from the “start” directly to “pro-
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viding place and time”, which is not reasonable.
Another interesting phenomenon is that there

are two “thank you concentrated” states in Fig. 2.
This is because, users frequently say “thank you”
on two occasions, 1) after the dialog system
presents the restaurant information, most users
will say “thank you”; 2) then the system will ask
“is there anything else I can help you with”, af-
ter which users typically respond with “thank you,
that’s all”. This interesting structure is a reflection
of the original rules in the dialog system. More-
over, in Fig. 3, we see 1) transitions from both di-
rections between states “place and time” and “api
call”, and 2) transitions from “api call” to itself,
as there are simulated speech recognition errors in
the data and the system needs to confirm the entity
values and update the API query.

Figure 4: Negative log likelihood on restaurant data.

Figure 5: Negative log likelihood on weather data.

5.3 VRNN Model Variants Comparison

Even though the three proposed VRNN-based
models have similar structures, they perform dif-
ferently and are able to compensate each other.

For example, in Fig. 8(b) in the Appendix, DD-
VRNN is able to recognize a new state “not done
yet, what’s the weather”, when users start a new
query. This can complement D-VRNN’s result.

Quantitatively, the three model variants also
perform differently. On the restaurant test set
shown in Fig. 4, DD-VRNN has the best overall
performance compared with other models. Espe-
cially when the number of states N is small (e.g.
5 or 7 states), the advantage of the direct transi-
tion is more obvious. We think the reason behind
is that it’s easier and more accurate to model the
direct transitions between a smaller set of states;
as we increase N , the direct transitions between
states become less and less obvious and therefore,
help less on the predictive power. To our surprise,
putting more weights on the named entities has a
negative impact on the performance on the restau-
rant dataset. The underlying reason might be that
the emphasis on the named entities shifts the focus
of the model from abstract latent representation to
a more concrete word token level. However, on the
simulated weather dataset shown in Fig. 5, NE-D-
VRNN performs relatively well. It might be be-
cause the weather dataset is completely simulated,
which makes it easier to recognize the named en-
tities. With a more accurate named entity recog-
nition, NE-D-VRNN is able to help the perfor-
mance. Overall, D-VRNN is the most stable one
across datasets, so we will use D-VRNN in the fol-
lowing experiments.

6 Application on RL

The ultimate goal of such a structure discov-
ery model is to utilize the structure to facilitate
downstream tasks, such as dialog system training.
Therefore, we propose to incorporate the dialog
structure information into the reward function of
the RL training. We believe that the transition ta-
ble learned from the original dataset will guide the
policy to make better decisions and converge faster
by encouraging the policy to follow the real-data
distribution. Similar to other RL models, we build
a user simulator to perform the RL training. Please
refer to the Appendix for the training details.

6.1 Reward Function Design

We use policy gradient method (Williams, 1992)
to train the dialog policy. Traditional reward func-
tions give a positive reward (e.g. 20) after the suc-
cessful completion of the task, 0 or a negative re-
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ward to penalize a failed task and -1 at each ex-
tra turn to encourage the system to finish the task
sooner rather than later (Williams et al., 2017).
But this type of delayed reward functions doesn’t
have immediate rewards at each turn, which makes
the model converge slowly. Therefore, we propose
to incorporate the learned conversational exchange
transition information as an immediate reward.
The intuition is that in order to complete a task
sooner, most users will follow a certain pattern
when interacting with the system, for example, a
typical flow is that users first give the entities in-
formation such as location, then ask for the restau-
rant information and finally, end the conversation.
If we can provide the RL model with the informa-
tion on what action is more likely to follow another
action, the model can learn to follow real-data dis-
tributions and make better predictions. We encode
the transition information through KL-divergence,
a measurement of the distance between two distri-
butions, in the reward function.

We design four types of reward functions and
describe each of them in Algorithm 1 and Eq. 10
in the Appendix. The traditional delayed reward
is the baseline. The second reward function, Rep-
reward, uses constant penalty for repeated ques-
tions, as penalizing repetition yields better results,
according to Shi and Yu (2018). The third re-
ward function, KL-reward, incorporates the tran-
sition table information. From the RL model, we
get the predicted probability ppred for different ac-
tions; from the D-VRNN model, we get the transi-
tion probability ptrans between states and each state
is translated to an action. We calculate the nega-
tion of the KL-divergence between ptrans and ppred
and use it as the immediate reward for every turn.
This immediate reward links the predicted distri-
bution with the real-data distribution by calculat-
ing the distance between them. The fourth reward
function (KL+Rep) gives an additional -2 repeti-
tion penalty to the KL-reward to test the combina-
tion effect of the two types of penalties.

6.2 Result Analysis

We evaluate the RL performance by the average
success rate, shown in Fig. 6. We observe that all
the experimental reward functions greatly improve
the performance of the baseline. We also observe
that the baseline has a higher variance, which is
due to the inefficient delayed rewards. Moreover,
both the KL-reward and the KL-Rep reward reach

Figure 6: Average success rate of RL models with dif-
ferent reward functions.

a higher success rate at around 10,000 iterations
than the Rep-reward and converges faster. These
two reward functions also achieve a better conver-
gent success rate after 10,000 iterations. This sug-
gests that adding KL-divergence of ptrans and ppred
into the reward helps develop a better policy faster.

The good performance comes from the tran-
sition probability ptrans learned by the discrete-
VRNN. ptrans summarizes the communication pat-
tern of most users in the real world and the KL-
divergence measures the distance between the pre-
dicted distribution ppred and ptrans from the real
dataset. The RL model processes this KL-reward
signal and learns to minimize the gap between
ptrans and ppred. As a result, ppred will follow closer
to the real data distribution, leading the model to
converge faster to a better task success rate. In
this way, we successfully incorporate the dialog
structure information from the real data into the
RL system training.

We observe that the use of KL reward improves
the performance significantly in terms of both con-
vergence rate and the final task success rate. Fur-
ther, the combination of KL and repetition reward
makes the model more stable and achieves a better
task success rate, compared with the model with
only KL-reward or Rep-reward. This indicates
that the KL-reward can be combined with other
type of rewards to achieve a better performance.

7 Conclusion and Future Work

A key challenge for discourse analysis and dia-
log system building is to extract the latent dia-
log structure. We adopted the VRNN with dis-
crete latent variables to learn the latent states of
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each conversational exchange and the transitions
between these states in an unsupervised fashion.
We applied the algorithm on a restaurant search
task and a simulated weather report task, and eval-
uated the model quantitatively and qualitatively.
We also proposed a way to incorporate the learned
dialog structure information into a downstream di-
alog system building task. We involved the dialog
structure in the RL reward design, which made the
model converge faster to a better task success rate.

The performance of the Discrete-VRNN model
has a major impact on the performance of the pol-
icy training. We plan to further improve the dia-
log structure learning process. Currently, we try to
capture the status of the named entities by increas-
ing the weights on the entities, which focus on the
concrete word token level. In the future, we may
use more sophisticated ways to encode the entity
information into the latent states.
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A Appendices

A.1 Reward Functions in RL

Algorithm 1 Reward function
if success then
R = 20

else if failure then
R = −10

else if repeated question then
R = freward(ptrans, ppred)

else if each proceeding turn then
R = −1

end if

freward(ptrans, ppred) =
−1 Baseline
−5 Rep-reward
−KL(ptrans, ppred) KL-reward
−KL(ptrans, ppred)− 2 KL+Rep

(10)

A.2 RL Simulation Setting
The main purpose of the user simulator is to pro-
vide named entities. Therefore, it is built by sam-
pling utterances from the real dataset according to
the current status of named entities. Table 2 shows
one simulated dialog in the reinforcement learn-
ing. We design seven system template actions in
the simulated setting which fall under four cate-
gories, ask for entity, present results, give restau-
rant information and closing statement. But there
are n latent states learned from the real data, and n
is not necessarily equal to four. To solve this mis-
match in dimensions between ppred and ptran, hu-
man experts further collapse similar latent states
and reduce the number of latent states to four,
which represents the four main categories in the
actions, ask for entity, present results, give restau-
rant information and closing statement. For ex-
ample, the two “thank you concentrated” states in
Fig. 2 will be combined to the closing statement
category. The probability of each category is the
sum of the original probabilities whose actions are
now under the same category.

From Utterance
USR: Could you please help me find

an [value price] restaurant in the
[value area] [slot area]?

SYS: Do you have a [slot food] prefer-
ence?

USR: Let’s try [value food], please
SYS: [value name] is a good restaurant

matching your request. Is there
anything else I can help you with?

USR: What other options are there?
SYS: [value name] is a good restaurant

matching your request. Is there
anything else I can help you with?

USR: Great. what is their [slot phone]?
SYS: Here is the info...

Table 2: A simulated dialog.

A.3 RL Training Details
A simple action mask is used to prevent impos-
sible actions, such as presenting results without
making a query to the DB. The input to the model
is a list of common contextual features, such as the
presence of each entity and the last action taken.
The output of the model is the system action tem-
plate.
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(a) HMM, restaurant data, 5 states (b) HMM, weather data, 10 states

Figure 7: Dialog structures generated by HMM on different datasets. Transitions with P ≥ 0.2 are visualized.

(a) DD-VRNN, restaurant data, 5 states (b) DD-VRNN, weather data, 10 states

Figure 8: Dialog structures generated by DD-VRNN on different datasets. Transitions with P ≥ 0.2 are visualized.

Four different reward functions are used. A dis-
count factor of 0.9 is applied to all the experi-
ments and the maximum number of turns is 10.
An LSTM with 32 hidden units is used and the
RL policy is updated after each dialog. We also
apply ε-greedy exploration strategy (Tokic, 2010).
Because the RL training can sometimes be unsta-
ble, we initialize all the model parameters using
supervised learning on a simulated dataset, which
consists of 500 dialogs between the user simulator
and a rule-based agent simulator. The method is
evaluated by freezing the policy after every 1000
updates and running 200 simulated dialogs to cal-
culate the task success rate. We repeat the entire
process 10 times and report the average success
rate in Fig. 6.

A.4 Dialog Structures by Different Models
Fig. 7 and 8 show the dialog structures generated
by HMM and DD-VRNN.


