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Abstract

Neural networks equipped with self-attention
have parallelizable computation, light-weight
structure, and the ability to capture both long-
range and local dependencies. Further, their
expressive power and performance can be
boosted by using a vector to measure pair-
wise dependency, but this requires to expand
the alignment matrix to a tensor, which results
in memory and computation bottlenecks. In
this paper, we propose a novel attention mech-
anism called “Multi-mask Tensorized Self-
Attention” (MTSA), which is as fast and as
memory-efficient as a CNN, but significantly
outperforms previous CNN-/RNN-/attention-
based models. MTSA 1) captures both pair-
wise (token2token) and global (source2token)
dependencies by a novel compatibility func-
tion composed of dot-product and additive
attentions, 2) uses a tensor to represent the
feature-wise alignment scores for better ex-
pressive power but only requires paralleliz-
able matrix multiplications, and 3) combines
multi-head with multi-dimensional attentions,
and applies a distinct positional mask to each
head (subspace), so the memory and compu-
tation can be distributed to multiple heads,
each with sequential information encoded in-
dependently. The experiments show that
a CNN/RNN-free model based on MTSA
achieves state-of-the-art or competitive perfor-
mance on nine NLP benchmarks with com-
pelling memory- and time-efficiency.

1 Introduction

Recurrent neural network (RNN) and convolu-
tional neural network (CNN) have been broadly
used as context fusion modules for natural
language processing (NLP) tasks. Recently,
RNN/CNN in conjunction with an attention mech-
anism has been proven to be effective for con-
textual feature modeling in a wide range of
NLP tasks, including sentiment classification (Li

et al., 2018), machine translation (Bahdanau et al.,
2015), reading comprehension (Seo et al., 2017;
Yu et al., 2018), etc. More recently, self-attention
mechanisms have been developed for context fu-
sion and syntactic dependency modeling with the
advantage of fewer parameters, more paralleliz-
able computation, and better empirical perfor-
mance (Hu et al., 2017; Vaswani et al., 2017; Shen
et al., 2018a). In addition, neural networks based
solely on self-attention mechanisms have achieved
state-of-the-art quality on many NLP tasks, e.g.,
machine translation (Vaswani et al., 2017), sen-
tence embedding (Shen et al., 2018a) and semantic
role labeling (Tan et al., 2017).

Self-attention mechanisms can be categorized
into two classes according to the type of depen-
dency each aims to model. The first category is to-
ken2token self-attention (Hu et al., 2017; Vaswani
et al., 2017; Shen et al., 2018a) that captures syn-
tactic dependency between every two tokens in
a sequence. An efficient dot-product compatibil-
ity function is usually deployed to measure this
pairwise dependency (Vaswani et al., 2017). In
contrast, additive compatibility function captures
the dependency by multi-layer perceptron (MLP),
and can usually achieve better performance (Britz
et al., 2017). Its expressive power can be fur-
ther improved if expanded to multiple dimensions
(Shen et al., 2018a). This multi-dim self-attention
empirically surpasses dot-product one, but suffers
from expensive computation and memory, which
grow linearly with the number of features and
quadratically with the sequence length. Hence, it
is not scalable to long sequences in practice.

The second category is source2token self-
attention (Liu et al., 2016; Lin et al., 2017; Shen
et al., 2018a) aiming to capture global dependency,
i.e., the importance of each token to the entire se-
quence for a specific task. Its time and space com-
plexities grow linearly, rather than quadratically,
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Figure 1: (a) Memory consumption and (b) time cost vs. sequence length on synthetic data; (c) memory load
(x-axis), inference time on dev set (y-axis) and test accuracy on the SNLI dataset.

with the sequence length. Hence, it is empiri-
cally efficient in terms of memory and computa-
tion even if expanded to multiple dimensions, i.e.,
using a vector of feature-wise scores instead of a
scalar for the global dependency. But, it is hard
to reach state-of-the-art performance on NLP tasks
due to the lack of pairwise and local dependencies.

In this paper, we propose a novel atten-
tion mechanism called multi-mask tensorized
self-attention (MTSA), for context fusion. In
MTSA, 1) the pairwise dependency is captured by
an efficient dot-product based token2token self-
attention, while the global dependency is modeled
by a feature-wise multi-dim source2token self-
attention, so they can work jointly to encode rich
contextual features; 2) self-attention alignment
scores are tensorized for more expressive power in
that each pair of tokens has one score for each fea-
ture, but no tensor computation is required other
than simple and efficient matrix multiplications
when implemented; 3) the tensors above are com-
puted in multiple subspaces (i.e., in a multi-head
fashion) rather than in the original input space, so
the required memory and computation can be dis-
tributed to multiple subspaces; and 4) a distinct
positional mask is applied to each head in order
to encode rich structural information such as the
sequential order and relative position of tokens.

In the experiments, we build CNN/RNN-free
neural networks based on MTSA for sentence em-
bedding and sequence tagging tasks, including
natural language inference, semantic role label-
ing, sentiment analysis, question-type classifica-
tion, machine translation, etc. The results demon-
strate that MTSA achieves state-of-the-art or com-
petitive performance on nine benchmark datasets.
To summarize the comparison of MTSA with re-

cently popular models, we show the memory con-
sumption and time cost vs. sequence length re-
spectively in Figure 1(a) and 1(b) on synthetic data
(batch size of 64 and feature channels of 300). On
the SNLI (Bowman et al., 2015), a public dataset
for language inference, as shown in Figure 1(c),
MTSA achieves the best result but is as fast and as
memory-efficient as the CNNs (all baselines and
the benchmark are detailed in Section 4).

Notations: 1) lowercase denotes a vector; 2)
bold lowercase denotes a sequence of vectors
(stored as a matrix); and 3) uppercase denotes a
matrix or tensor.

2 Background

2.1 Attention Mechanism

Given an input sequence of token embeddings or
memory slots x = [x1, . . . , xn] ∈ Rde×n, and
a vector representation of a query q ∈ Rdq , at-
tention mechanism (Bahdanau et al., 2015; Lu-
ong et al., 2015) computes an alignment score be-
tween each token xi and q by a compatibility func-
tion f(xi, q), which aims to measure the depen-
dency/relevance between xi and q, or the attention
of q to xi, w.r.t. a given task. The scores are trans-
formed into probabilities through a softmax func-
tion. These probabilities are then used as weights
to sum all the tokens and generate a contextual em-
bedding for q, i.e.,

p(z|x, q) = softmax(a), a = [f(xi, q)]
n
i=1,

s =

n∑
i=1

p(z = i|x, q) · xi = Ei∼p(z|x,q)[xi], (1)

where a ∈ Rn denotes the vector of n alignment
scores, p(z|x, q) is the categorical distribution for
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attention probabilities, which is derived from ap-
plying softmax function to a. And, s ∈ Rde is the
output vector for the query q.

There are two major types of compatibility
functions, leading to the two most frequently used
attention mechanisms. The first one is dot-product
or multiplicative compatibility function (Eq.(2)),
which composes dot-product attention mecha-
nism (Luong et al., 2015) using cosine similarity
to model the dependencies. The other one is ad-
ditive or multi-layer perceptron (MLP) compati-
bility function (Eq.(3)) that results in additive at-
tention mechanism (Bahdanau et al., 2015) using
MLP to model the dependencies.

f(xi, q) = 〈W (d1)xi,W
(d2)q〉, (2)

f(xi, q) = wTσa(W
(a)[xi; q] + b(a)) + b, (3)

where W (d1) ∈ Rdi×de ,W (d2) ∈ Rdi×dq ,W (a) ∈
Rda×(de+dq), w ∈ Rda are learnable parameters,
〈·, ·〉 denotes inner-product. Empirically, networks
with additive attention usually outperform those
with dot-product attention, but require more com-
putation time and memory (Britz et al., 2017).

Multi-dim attention mechanism (Shen et al.,
2018a) expands the alignment score in previous
attention mechanisms to a vector for feature-wise
scores, each computed on a feature dimension. It
has greater capacity to model complex dependen-
cies, and can handle context variation and poly-
semy problems harassing many NLP tasks. In
particular, it replaces vector wT ∈ R1×da in
additive compatibility function (Eq.(3)) with a
matrix W ∈ Rde×da , and thus produces de
scores to describe the attention of q to xi.

2.2 Self-Attention Mechanism

Self-attention mechanism is a special case of at-
tention mechanisms, where the query q stems
from the input sequence itself. Self-attention
mechanisms can be classified into token2token or
source2token self-attention mechanism according
to the type of dependency each aims to model.

A) Token2token self-attention mechanism
(Vaswani et al., 2017; Shen et al., 2018a) aims
at producing a context-aware representation for
each token in light of its syntactic dependen-
cies on other tokens from the same sequence.
Two examples of token2token self-attention are
1) scaled dot-product self-attention which com-
poses the multi-head self-attention (Vaswani et al.,

2017), and 2) masked self-attention used in direc-
tional self-attention (Shen et al., 2018a).

A.1) Scaled dot-product attention mechanism
(Vaswani et al., 2017) in general form has three
arguments: query tokens q ∈ Rdi×m, key to-
kens k ∈ Rdi×n and value tokens v ∈ Rdh×n

associated with the key tokens. It uses a scaled
dot-product function to model the relationship be-
tween each query and key, and finally outputs a
sequence s = [s1, . . . , sm] ∈ Rdh×m such that

s=sdpAttn(q,k,v) , v softmax(
qTk√
dq

)T (4)

A special case of this mechanism is that the three
input arguments are derived from the same source,
i.e., q/k/v = f q/k/v(x), which can be referred to
as a token2token self-attention, namely scaled dot-
product self-attention. As for multi-head atten-
tion mechanism, the input is projected into mul-
tiple subspaces, then parameter-untied scaled dot-
product attention is applied to the embeddings in
each subspace. The results for multiple subspaces
are concatenated to form the final output s, i.e.,

s =W (o)[H1; . . . ;Hh], (5)

where Hc = sdpAttn(W q
c q,W

k
c k,W

v
c v).

A.2) Masked self-attention mechanism (Shen
et al., 2018a) uses multi-dim compatibility func-
tion to model the dependency between every two
tokens in a sequence, and uses positional mask to
encode sequential information. It overcomes in-
herent problem appearing in self-attention com-
pared to RNNs on the lack of sequential informa-
tion. Its compatibility function is defined as

f(xi, xj)=c·tanh{(W (m)[xi;xj ]+b
(m))/c}+Mi,j

(6)
where c is a constant scalar, W (m) ∈ Rde×2de

is learnable weight matrix, and M is a positional
mask with each entry Mi,j ∈ {−∞, 0}. When
Mi,j = −∞, applying softmax function to the
alignment scores results in a zero attention prob-
ability, which cuts off the attention of xj to xi.
Hence, masked self-attention with an asymmetric
mask, where Mij 6= Mji, can encode sequential
or other structural information (Shen et al., 2018a;
Im and Cho, 2017). To this end, two positional
masks have been proposed to encode the forward
and backward order information respectively, i.e.,

Mfw
i,j =

{
0, i < j
−∞,otherwise

M bw
i,j=

{
0, i > j
−∞,otherwise
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Furthermore, directional self-attention (DiSA)
(Shen et al., 2018a) concatenates the features pro-
duced by masked self-attention mechanisms with
the forward and backward positional masks (i.e.,
Mfw,M bw), leading to context-ware representa-
tions with bi-directional information encoded.

B) Source2token self-attention mechanism
(Liu et al., 2016; Lin et al., 2017; Shen et al.,
2018a) is designed for sentence embedding or se-
quence compression, which is based on the im-
portance of each token xi to the entire source se-
quence x for a specific task. Specifically, it re-
moves the query q from the compatibility func-
tion f(xi, q) when computing the alignment score.
For example, the compatibility function of addi-
tive source2token self-attention mechanism is to
simply remove q from Eq.(3).

3 Proposed Models

In this section, we firstly elaborate on tensorized
self-attention (TSA) in Section 3.1, which cap-
tures both pairwise and global dependencies by
combining the two types of self-attention mech-
anisms introduced in Section 2.2. Then, we ex-
tend TSA to multi-mask tensorized self-attention
(MTSA) in Section 3.2 by applying different posi-
tional masks to TSA in multiple subspaces (multi-
head fashion). Lastly, in Section 3.3, we present
an efficient computation scheme for MTSA with-
out any high-rank tensor computation involved
even if tensorized alignment scores are used.

3.1 Tensorized Self-Attention (TSA)

Figure 2: Tensorized self-attention (TSA) Mechanism.

Tensorized self-attention (TSA), whose struc-
ture is illustrated in Figure 2, is a neural mech-
anism that can be trained to model both pair-
wise and global dependencies, while any previ-
ous self-attention mechanism only focuses on one
type of dependencies. TSA models both types
by combining the aforementioned token2token

and source2token self-attention mechanisms. This
generates an n×n×dh tensor containing the align-
ment scores between every two tokens on each
feature dimension. These scores are then nor-
malized and transformed into probability weights,
which are used to sum all dependent tokens and
then generate the contextual embedding for each
input token. We will demonstrate later in Section
3.3 that only matrix rather than tensor operation is
required when executing the procedures above.

To facilitate the elaboration of proposed mod-
els and keep the consistent notation with prior at-
tention mechanisms, TSA first projects the input
embeddings x into three spaces to represent the
query, key and value tokens, respectively.

q=W (t1)x, k=W (t2)x, and v=W (t3)x, (7)

where W (t1),W (t2) ∈ Rdi×de and W (t3) ∈
Rdh×de are learnable weights for projections.

TSA then integrates two kinds of compatibil-
ity functions from two self-attention mechanisms
respectively. Firstly, the scaled dot-product self-
attention is used to capture dependency between
every two tokens. Dot-product operations are fast,
and sufficient to model the pairwise dependency
in most tasks. Its compatibility function is

f t(ki, qj) = 〈ki, qj〉/
√
di, ∀i, j ∈ [n], (8)

where 〈·, ·〉 is inner-product operation. Then, a
multi-dim source2token self-attention mechanism
is used to estimate the contribution of each to-
ken to the given task on each feature dimension.
It aims at capturing the importance of each to-
ken to the entire input sequence w.r.t. the task,
i.e., the global dependency. The multi-dim ex-
tension only linearly increases the memory and
computation of source2token self-attention by a
multiplicative factor dh, but is essentially helpful
to improve expressive capability in line with prior
works (Shen et al., 2018a). Its compatibility func-
tion is

fs(ki) =W (s2)σm(W (s1)ki+ b
(s1))+ b(s2), (9)

where ∀i ∈ [n], W (s1) ∈ Rda×di ,W (s2) ∈
Rdh×da are the learnable weights, and σm(·) is
an activation function. The compatibility func-
tion used in TSA broadcasts the scalar alignment
score f t(ki, qj) ∈ R computed by the token2token
self-attention to all dh feature dimensions, and
then adds them to the feature-wise score vector
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fs(ki) ∈ Rdh computed by the source2token self-
attention. In addition, the positional masks from
masked self-attention (in Section 2.2) are also in-
tegrated to encode sequential and structural infor-
mation. These yield following compatibility func-
tion of TSA.[

f tsa(ki, qj)
]
l
= (10)

σt
(
f t(ki, qj)

)
+ σs([f

s(ki)]l) +Mi,j ,

where ∀i, j ∈ [n], ∀l ∈ [dh]. σt(·) and σt(·) are
two scale functions. They control the way to com-
bine two kinds of scores and their weights.

For each query token qj , a softmax function
is applied to the alignment scores [f tsa(ki, qj)]ni=1

on each feature dimension, resulting in a categori-
cal distribution over all value tokens [vi]ni=1 based
on corresponding key tokens [ki]

n
i=1. The proba-

bility of token qj attending to vi on the lth feature
dimension (i.e., zl = i) is

p(zl= i|k,qj), [pji ]l ,
e[f

tsa(ki,qj)]l∑n
g=1 e

[f tsa(kg ,qj)]l
, (11)

where, ∀i, j ∈ [n], ∀l ∈ [dh]. TSA outputs a
contextual embedding for each input token on ev-
ery feature dimension as the weighted sum of all
the value token embeddings on that dimension,
where the weights are provided by the probabili-
ties in Eq.(11). It is the expectation of sampling
a value token embeddings on each feature dimen-
sion according to the feature-wise probability dis-
tribution, i.e.,

s , [sj ]
n
j=1, where (12)

sj ,
[
Ei∼p(zl|k,qj)([vi]l)

]dh
l=1

=
∑n

i=1
pji · vi

3.2 Multi-Mask Tensorized Self-Attention
(MTSA) Mechanism

Rather than computing attention in the original
input space, multi-head attention (Vaswani et al.,
2017) projects the input sequence to multiple sub-
spaces, applies attention to the projected embed-
ding in each subspace, and concatenates their
outputs at last. The computations associated
with multiple heads can be completed in paral-
lel. By using adequate heads, each with a low-
dimensional subspace (i.e., the representation di-
mension for each head is updated by dh← dh/h
where h is the number of head), it reduces param-
eters and memory/computation cost and increases

diversity of the attention. In addition, to encode
different kinds of sequential or structural informa-
tion, multiple different positional masks (e.g., for-
ward, backward and multi-length window) can be
further applied to the multiple heads.

The memory-/time-efficiency and expressive
power of TSA can be improved by using the com-
bination of the multi-head and multi-mask tech-
niques introduced above. By writing TSA mech-
anism as a function TSA(x,M) with input se-
quence x ∈ Rde×n and a positional mask M ∈
Rn×n, and the output given by Eq.(12), multi-
mask tensorized self-attention (MTSA) produces

s =W (o)[H1; . . . ;Hh], (13)

where Hc = TSAc(x,M c),

where W (o) ∈ Rh·dh×h·dh , h is the num-
ber of heads, TSAc denotes the cth parameter-
independent TSA block that produces a dh-dim
representation in the cth subspace, M c represents
the positional mask applied to attention in the cth

subspace, [·; . . . ; ·] denotes a vertical concatena-
tion operation, and s ∈ Rh·dh×n is the output
of MTSA. In our experiments, we apply forward
mask to half of the heads and apply backward
mask to the other half to encode bi-directional or-
der information of the input sequence.

3.3 Computation-Optimized MTSA

Algorithm 1 Multi-Mask Tensorized Self-Attention

Input: input sequence x ∈ Rde×n, head number h,
subspace dimension dh, positional masks {Mc}hc=1, and
weights/biases:
{W (t1)

c ,W
(t2)
c ∈ Rdi×de ,W

(t3)
c ∈ Rdh×de ,W

(s1)
c ∈

Rda×di ,W
(s2)
c ∈ Rdh×da , and b(s1)c , b

(s2)
c }hc=1, and W (o)

Output: contextual embeddings s=[s1,. . ., sn]∈Rh·dh×n

1: for all c = 1, . . . , h do . Computing h-head in parallel
2: qc, kc, vc ←W

(t1)
c x, W

(t2)
c x, W

(t3)
c x

3: Rc←
(kc)Tqc√

dh
. n×n token2token attention scores

4: Sc ←W
(s2)
c σm(W

(s1)
c kc+b

(s1)
c )+b

(s2)
c

. dh × n scores of source2token attention
5: ER

c ← exp(σt(Rc))·exp(Mc)
. Applying mask Mc to token2token weights

6: ES
c ← exp(σs(Sc)); E

X
c ← vc ·ES

c

. Applying source2token weights ES
c to vc

7: Hc ← EX
c E

R
c /E

S
c E

R
c . Applying masked

token2token weights ER
c and normalizing

8: end for
9: Return s←W (o)[H1; . . . ;Hh]

. Vertical concatenation of the outputs from all h heads

As shown in Eq.(10) and Eq.(11), TSA or each
head of MTSA needs to compute the attention
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scores and probabilities as n × n × dh tensors.
In accordance with multi-dim self-attention (Shen
et al., 2018a), this makes TSA more expressively
powerful and improves the final performance for
sequence modeling, but terribly leads to memory
explosion and computational bottleneck on long
sequences with large n and dh. Fortunately, in
MTSA, it is possible to significantly reduce the de-
mand on computations to matrix-only operations
by exploring the computational structure.

A memory-optimized and highly-parallelizable
computation scheme for MTSA is given in Al-
gorithm 1. For each head, the score matrices of
token2token and source2token are computed in
steps 3 and 4 respectively. Then, we combine to-
ken2token scores with the positional mask to form
a new mask in step 5, and compute the dh × n
output embedding with the weighs from the multi-
dim source2token self-attention in step 6. Finally,
in step 7, we apply the new mask from step 5 to
the weighted embedding from step 6 and complete
the normalization. This procedure generates the
exactly same output as Eq.(13)but no any tensor
operation is incurred.

4 Experiments

We compare MTSA with commonly-used context
fusion baselines on several NLP tasks1. When ad-
dressing a sentence embedding problem, a multi-
dim source2token self-attention is applied on the
top of context fusion module to produce the se-
quence embedding. Codes are implemented in
Python with Tensorflow and executed on a single
NVIDIA GTX 1080Ti graphics card. In addition,
data for both time cost and memory consumption
are collected under Tensorflow-1.7 with CUDA9
and cuDNN7.

The context fusion baselines include 1) Bi-
LSTM (Graves et al., 2013): 600D bi-directional
LSTM consisting of 300D forward plus 300D
backward LSTMs, 2) Bi-GRU (Chung et al.,
2014): 600D bi-directional GRU, 3) Multi-CNN
(Kim, 2014): three CNNs with 200D kernels to
model 3/4/5-grams respectively, 4) Hrchy-CNN
(Gehring et al., 2017): 3-layer 300D stacked CNN
with kernel size 5, gated linear units (Dauphin
et al., 2016) and residual connections (He et al.,
2016), 5) Multi-head (Vaswani et al., 2017):
600D multi-head self-attention with 8 heads (75-

1Codes for Experiments are released at https://
github.com/taoshen58/mtsa.

dim subspace per head) and positional embed-
ding used by Vaswani et al. (2017), 6) DiSA
(Shen et al., 2018a): 600D directional self-
attention mechanism consisting of 300D forward
and 300D backward masked self-attentions, and
7) Bi-BloSA (Shen et al., 2018c): 600D bi-
directional block self-attention with intra-/inter-
block self-attention, aiming to reduce the time and
space complexities of multi-dim self-attention by
using hierarchical structure.

4.1 Natural Language Inference

Natural language inference (NLI) aims at specu-
lating on the relationship between a premise and a
corresponding hypothesis, where the relationship
could be entailment, neutral or contradiction. In
experiments, we first compare MTSA with other
baselines on the Stanford Natural Language Infer-
ence (Bowman et al., 2015) (SNLI) dataset.

Following the method of applying sentence-
encoding model to NLI given by Bowman
et al. (2016), two parameter-tied sentence-
encoding models are used to generate embeddings
for premise and hypothesis, resulting in sp and sh

respectively. The concatenation of sp, sh, sp − sh
and sp� sh representing the relationship is passed
into a 3-way neural classifier for final prediction.

The experimental results of the models from
the official leaderboard, baselines, and MTSA are
shown in Table 1. MTSA achieves state-of-the-
art performance with less time and memory cost.
Compared to the methods from the leaderboard,
MTSA outperforms RNN-based encoders (e.g.,
Residual stacked enc.), RNN+attention encoders
(e.g., Deep Gated Attn.) and even parsing trees
based encoders (e.g., Gumbel TreeLSTM enc.) by
a large margin. Compared to the two competitive
self-attention networks with complicated and ex-
pensive training computations, MTSA trained in
end-to-end manner achieves the same state-of-the-
art performance by using much fewer parameters
and less computational time.

Compared to baselines, MTSA is 4∼ 5× faster
than RNN-based models and outperforms CNN-
based models given a similar number of param-
eters and computation time. Moreover, com-
pared to the dot-product self-attention (Multi-
head), MTSA costs similar time and memory
but performs more expressively powerful self-
attention, and thus achieves better performance.
Furthermore, compared to the multi-dim self-
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Model |θ| Time/Epoch Inf. Time Memory Train Acc. Test Acc.

300D SPINN-PI encoders (Bowman et al., 2016) 3.7m 89.2 83.2
600D Bi-LSTM encoders (Liu et al., 2016) 2.0m 86.4 83.3
600D Bi-LSTM enc.+intra-attn (Liu et al., 2016) 2.8m 84.5 84.2
600D Deep Gated Attn. (Chen et al., 2017) 11.6m 90.5 85.5
600D Gumbel TreeLSTM enc. (Choi et al., 2018) 10.0m 93.1 86.0
600D Residual stacked enc. (Nie and Bansal, 2017) 29.0m 91.0 86.0
300D Reinforced SAN (Shen et al., 2018b) 3.1m 404s 92.6 86.3
Distance-based SAN (Im and Cho, 2017) 4.7m 416s 89.6 86.3

Bi-LSTM (Graves et al., 2013) 2.9m 854s 9.1s 942MB 90.4 85.0
Bi-GRU (Chung et al., 2014) 2.5m 850s 9.4s 810MB 91.9 84.9
Multi-CNN (Kim, 2014) 1.4m 137s 1.4s 208MB 89.3 83.2
Hrchy-CNN (Gehring et al., 2017) 3.4m 195s 1.8s 309MB 91.3 83.9
Multi-head (Vaswani et al., 2017) 2.0m 179s 1.5s 466MB 89.6 84.2
DiSA (Shen et al., 2018a) 2.3m 390s 5.2s 6682MB 91.1 85.6
Bi-BloSA (Shen et al., 2018c) 4.1m 303s 3.2s 1600MB 91.6 85.8

MTSA 2.9m 180s 1.6s 558MB 91.8 86.3

Table 1: Experimental results for different methods with comparative parameter number on SNLI. |θ|: the number
of parameters (excluding word embedding part); Time/Epoch: averaged training time per epoch with batch size
128; Inf. Time: averaged dev inference time with batch size 128; Memory: memory load on synthetic data of
sequence length 64 and batch size 64 with back-propagation considered; Train Acc. and Test Acc.: the accuracies
on training/test sets. All state-of-the-art methods in leaderboard are listed in Table 1&2 up to Sep. 2018.

Model SNLI MultiNLI

Dev Test Match Mismatch

BiLSTM w/ Shortcuta – 86.0 74.6 73.6
BiLSTM w/ Gen-Poolingb – 86.6 73.8 74.0
HBMPc – 86.6 73.7 73.0

Transfer + Multi-Head 86.9 86.6 76.3 75.7
Transfer + MTSA 87.2 86.9 76.7 76.4

Table 2: Experimental results on sentence-encoding
based SNLI and MultiNLI benchmark tasks. “Trans-
fer” denotes pretrained language model on large cor-
pus for transfer learning, which detailed by Radford
et al. (2018). References: a(Nie and Bansal, 2017),
b(Chen et al., 2018), c(Talman et al., 2018).

attention (DiSA and Bi-BloSA), MTSA uses much
less memory and time but even produces much
better prediction quality.

In addition, to further improve the state-of-
the-art performance, in contrast to training from
scratch, a language model built on the Transformer
(Vaswani et al., 2017) unsupervisedly pretrained
on large English corpus (detailed by Radford
et al. (2018)) is transfered for the baseline and pro-
posed models for sentence-encoding based NLI
tasks. As shown in Table 2, MTSA integrated with
pretrained language model can achieve new state-
of-the-art accuracy on both SNLI and Multi-Genre
Natural Language Inference (MultiNLI) (Williams
et al., 2017)2 among all sentence-encoding mod-

2All test results are Evaluated on Kaggle official

Model |θ| Inf. Time Test Acc.

MTSA 2.9m 1.6 86.3
MTSA w/o fw&bw masks 2.9m 1.6 85.3 (-1.0)
MTSA w/o token2token 2.5m 1.5 85.8 (-0.5)
MTSA w/o source2token 2.5m 1.4 84.9 (-1.4)
MTSA w/o proposed modules 1.8m 1.1 84.3 (-2.0)

Table 3: An ablation study of MTSA on SNLI.

els.
An ablation study of MTSA is shown in Table 3

to verify the capability of its each part in context
fusion. The results show that token2token (model-
ing pairwise dependency), source2token (model-
ing global dependency), and positional masks (en-
coding sequential information) all contribute im-
portant information to sequence modeling, and the
contributions are complementary.

4.2 Semantic Role Labeling
To verify the capability of MTSA in generating
context-aware representation of each token, we
compare it with baselines on semantic role la-
beling (SRL) task, which aims to tag each token
from an input sequence with a label for its seman-
tic role. Particularly, given a sentence, the goal
of SRL is to identify the arguments of each tar-
get verb into semantic roles, which can benefit
many downstream NLP tasks. SRL has two steps:

websites: https://www.kaggle.com/c/multinli-matched-
open-evaluation and https://www.kaggle.com/c/multinli-
mismatched-open-evaluation
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Models Training Development WSJ Test Brown Test

Time P R F1 Comp. P R F1 Comp. P R F1 Comp.

Täckström et al. (2015) 81.2 76.2 78.6 54.4 82.3 77.6 79.9 56.0 74.3 68.6 71.3 39.8
Zhou and Xu (2015) 79.7 79.4 79.6 - 82.9 82.8 82.8 - 70.7 68.2 69.4 -
He et al. (2017) 81.6 81.6 81.6 62.3 83.1 83.0 83.1 64.3 72.8 71.4 72.1 44.8
He et al. (2018) - - - - - - 83.9 - - - 73.7 -
Strubell et al. (2018) - - - - 84.7 84.2 84.5 - 73.9 72.4 73.1 -

Bi-LSTM (Graves et al., 2013) 72h 81.8 83.4 82.6 63.3 83.0 84.0 83.5 64.6 72.3 72.8 72.5 46.8
Multi-CNN (Kim, 2014) 19h 75.2 79.6 77.3 53.6 77.3 80.9 79.0 55.5 68.3 70.3 69.3 41.9
Multi-head∗ (Tan et al., 2017) 20h 82.6 83.6 83.1 65.2 84.5 85.2 84.8 66.4 73.5 74.6 74.1 48.4

MTSA 20h 82.8 84.4 83.6 65.4 84.2 85.3 84.8 67.0 74.3 74.6 74.5 49.1

Table 4: Experimental Results of SRL for single models on CoNLL-05 with gold predicates. ∗Multi-head baseline
is equivalent to the model in Tan et al. (2017). For fair comparisons, first, we use the hyper-parameters provided
by Tan et al. (2017) instead of tuning them; second, all listed models are independent of external linguistics
information, e.g., PoS, dependency parsing.

Model CR MPQA SUBJ TREC SST-5

cBoWa 79.9 86.4 91.3 87.3 /
Skip-thoughtb 81.3 87.5 93.6 92.2 /
DCNNc / / / 93.0 48.5
SRUd 84.8(1.3)89.7(1.1)93.4(0.8)93.9(0.6) /
CNNsd 82.2(.2) 88.8(1.2)92.9(0.7)93.2(0.5) /

Bi-LSTM 84.6(1.6)90.2(0.9)94.7(0.7)94.4(0.3)49.9(0.8)
Multi-head 82.6(1.9)89.8(1.2)94.0(0.8)93.4(0.4)48.2(0.6)
DiSA 84.8(2.0)90.1(0.4)94.2(0.6)94.2(0.1)51.0(0.7)
Bi-BloSA 84.8(0.9)90.4(0.8)94.5(0.5)94.8(0.2)50.6(0.5)

MTSA 84.9(2.4)90.5(0.6)94.5(0.6)95.3(0.3)51.3(0.7)

Table 5: Experimental results on five sentence clas-
sification benchmarks. References: a(Mikolov et al.,
2013), b(Kiros et al., 2015), c(Kalchbrenner et al.,
2014), d(Lei and Zhang, 2017).

1) assigning either a semantic argument or non-
argument to a given predicate and 2) labeling a
specific semantic role for the identified argument.

We follow the experimental setup in Tan
et al. (2017), where the SRL task is treated as a
BIO tagging problem. Tan et al. (2017) designed
a deep attentive neural net by stacking multi-head
self-attention, named as deepatt, to perform con-
text fusion, whose output is then passed to a neu-
ral classifier to make the final decision. The re-
sults achieved by previous methods, baselines, and
MTSA are shown in Table 4, which demonstrates
that MTSA achieves new state-of-the-art perfor-
mance on the CoNLL-05 dataset by costing sim-
ilar training time as CNN and multi-head self-
attention baselines.

4.3 Sentence Classifications

The goal of sentence classification is to predict the
correct label for a sentence in various scenarios.

We evaluate the models on five sentence classifi-
cation benchmarks for different NLP tasks, which
include 1) CR (Hu and Liu, 2004): customer re-
views of various products to predict whether the
review is positive or negative, 2) MPQA (Wiebe
et al., 2005): an opinion polarity detection sub-
task of the MPQA dataset, 3) SUBJ (Pang and
Lee, 2004): subjectivity dataset where a label in-
dicates whether a sentence is subjective or objec-
tive, 4) TREC (Li and Roth, 2002): question-type
classification dataset which classifies the question
sentences into six classes, 5) SST-5 (Socher et al.,
2013): the Stanford Sentiment Treebank dataset
with five sentiment labels. The reported accuracies
for CR, MPQA, and SUBJ are the mean of 10-fold
cross validation. The accuracies for TREC are the
mean of five runs on the dev set, and the accuracies
for SST-5 are the mean of five runs on the test set.
All standard deviations are shown in parentheses.

The prediction accuracies achieved on these
five benchmarks are shown in Table 5. MTSA
achieves the best prediction accuracy on CR,
MPQA, TREC and SST-5 benchmarks with better
time efficiency and a lower memory load.

4.4 Machine Translation
We also evaluate proposed model on WMT 2014
English-German translation task for exhaustive
comparisons with multi-head attention. We re-
place multi-head self-attention modules in the en-
coder of official Transformer implementation with
MTSA module and do not tune the hyperparame-
ters. Although our computation resources is lim-
ited, we use two training setups and also intro-
duce t-test to ensure that MTSA consistently out-
performs multi-head self-attention in Transformer.
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Model Multi-head (Transformer) MTSA

Param# 61.38M 61.58M

Setup1 23.64 24.09

p-value: 0.001 (6 runs)

Setup2 26.98 27.21

p-value: 0.080 (3 runs)

Table 6: Results for the Transformer with either multi-
head self-attention or proposed MTSA. The reported
BLEU values for Setup 1 and 2 are the mean of 5 and
3 runs respectively.

For Setup1, we use default hyperparameter set
of transformer base single gpu provided by offi-
cial implementation with 1 × P100 , batch size of
2048 and training step of 250K, and report BLEU
value for the last checkpoint. For Setup2, we
use the hyperparameter set of transformer base
with the modification of 1) using 4× instead of
8 × P100, 2) increasing batch size from 4096 to
6144 per GPU, and 3) using training step of 133K.

As shown in Table 6, with small p-value for both
training setup 1 and 2, the encoder with MTSA
significantly outperforms that with multi-head
self-attention, which demonstrates that multi-dim
based MTSA modeling both pairwise and global
dependencies is more expressive than dot-product
based multi-head self-attention. Although the re-
sults do not improve state-of-the-art BLEU value
of machine translation task, the purpose of this
experiment to verify the effectiveness of MTSA
in contrast to dot-product based multi-head self-
attention is accomplished.

5 Conclusion

In conclusion, MTSA is highly parallelizable with
more expressive power since it efficiently cap-
tures the pairwise dependency at token level, but
delicately models the global dependency at fea-
ture level, and distributes computations to mul-
tiple heads, each equipped with a distinct posi-
tional mask. These lead to a sweet spot of the
trade-off between performance and efficiency, and
make MTSA as memory-efficient as CNN and
scalable to long sequences but outperform pre-
vious (and even multi-dim) self-attention mecha-
nisms in terms of prediction quality. The exper-
iments conducted on nine NLP tasks verify that
the MTSA can reach state-of-the-art performance
with appealing efficiency.
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