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Abstract

Interacting with relational databases through
natural language helps users of any back-
ground easily query and analyze a vast amount
of data. This requires a system that under-
stands users’ questions and converts them to
SQL queries automatically. In this paper we
present a novel approach, TYPESQL, which
views this problem as a slot filling task. Addi-
tionally, TYPESQL utilizes type information
to better understand rare entities and numbers
in natural language questions. We test this
idea on the WikiSQL dataset and outperform
the prior state-of-the-art by 5.5% in much less
time. We also show that accessing the con-
tent of databases can significantly improve the
performance when users’ queries are not well-
formed. TYPESQL gets 82.6% accuracy, a
17.5% absolute improvement compared to the
previous content-sensitive model.

1 Introduction

Building natural language interfaces to relational
databases is an important and challenging problem
(Li and Jagadish, 2014; Pasupat and Liang, 2015;
Yin et al., 2016; Zhong et al., 2017; Yaghmazadeh
et al., 2017; Xu et al., 2017; Wang et al., 2017a). It
requires a system that is able to understand natu-
ral language questions and generate corresponding
SQL queries. In this paper, we consider the Wik-
iSQL task proposed by Zhong et al. (2017), a large
scale benchmark dataset for the text-to-SQL prob-
lem. Given a natural language question for a table
and the table’s schema, the system needs to pro-
duce a SQL query corresponding to the question.

We introduce a knowledge-based type-aware
text-to-SQL generator, TYPESQL. Based on the
prior state-of-the-art SQLNet (Xu et al., 2017),
TYPESQL employs a sketch-based approach and
views the task as a slot filling problem (Fig-
ure 2). By grouping different slots in a reason-

able way and capturing relationships between at-
tributes, TYPESQL outperforms SQLNet by about
3.5% in half of the original training time.

Furthermore, natural language questions of-
ten contain rare entities and numbers specific to
the underlying database. Some previous work
(Agrawal and Srikant, 2003) already shows those
words are crucial to many downstream tasks, such
as infering column names and condition values in
the SQL query. However, most of such key words
lack accurate embeddings in popular pre-trained
word embedding models. In order to solve this
problem, TYPESQL assigns each word a type as
an entity from either the knowledge graph, a col-
umn or a number. For example, for the question in
Figure 1, we label “mort drucker” as PERSON ac-
cording to our knowledge graph; “spoofed title,”
“artist” and “issue” as COLUMN since they are col-
umn names; and “88.5” as FLOAT. Incorporating
this type information, TYPESQL further improves
the state-of-the-art performance by about another
2% on the WikiSQL dataset, resulting in a final
5.5% improvement in total.

Moreover, most previous work assumes that
user queries contain exact column names and en-
tries. However, it is unrealistic that users al-
ways formulate their questions with exact col-
umn names and string entries in the table. To
tackle this issue, when scaleability and privacy
are not of a concern, the system needs to search
databases to better understand what the user is
querying. Our content-sensitive model TYPESQL
+ TC gains roughly 9% improvement compared
to the content-insensitive model, and outperforms
the previous content-sensitive model by 17.5%.

2 Related Work

Semantic parsing maps natural language to mean-
ingful executable programs. The programs could
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Figure 1: TYPESQL consists of three slot-filling models on the right. We only show MODEL COL on the left for
brevity. MODEL AGG and MODEL OPVAL have the similar pipelines.

be a range of representations such as logic
forms (Zelle and Mooney, 1996; Zettlemoyer and
Collins, 2005; Wong and Mooney, 2007; Das
et al., 2010; Liang et al., 2011; Banarescu et al.,
2013; Artzi and Zettlemoyer, 2013; Reddy et al.,
2014; Berant and Liang, 2014; Pasupat and Liang,
2015). Another area close to our task is code gen-
eration. This task parses natural language descrip-
tions into a more general-purpose programming
language such as Python (Allamanis et al., 2015;
Ling et al., 2016; Rabinovich et al., 2017; Yin and
Neubig, 2017).

As a sub-task of semantic parsing, the text-to-
SQL problem has been studied for decades (War-
ren and Pereira, 1982; Popescu et al., 2003, 2004;
Li et al., 2006; Giordani and Moschitti, 2012;
Wang et al., 2017b). The methods of the Database
community (Li and Jagadish, 2014; Yaghmazadeh
et al., 2017) involve more hand feature engineer-
ing and user interactions with the systems. In this
work, we focus on recent neural network based ap-
proaches (Yin et al., 2016; Zhong et al., 2017; Xu
et al., 2017; Wang et al., 2017a; Iyer et al., 2017).
Dong and Lapata (2016) introduce a sequence-
to-sequence approach to converting text to logi-
cal forms. Most of previous work focus on spe-
cific table schemas, which means they use a sin-
gle database in both train and test. Thus, they
don’t generalize to new databases. Zhong et al.
(2017) publish the WikiSQL dataset and propose
a sequence-to-sequence model with reinforcement
learning to generate SQL queries. In the problem
definition of the WikiSQL task, the databases in
the test set do not appear in the train and develop-

SELECT $AGG $SELECT COL
WHERE $COND COL $OP $COND VAL
(AND $COND COL $OP $COND VAL)*

Figure 2: SQL Sketch. The tokens starting with “$” are
slots to fill. “*” indicates zero or more AND clauses.

ment sets. Also, the task needs to take different ta-
ble schemas into account. Xu et al. (2017) further
improve the results by using a SQL sketch based
approach employing a sequence-to-set model.

3 Methodology

Like SQLNet, we employ a sketch-based approach
and format the task as a slot filling problem. Fig-
ure 2 shows the SQL sketch. Our model needs to
predict all slots that begin with $ in Figure 2.

Figure 1 illustrates the architecture of TYPE-
SQL on the right and a detailed overview of one
of three main models MODEL COL on the left. We
first preprocess question inputs by type recogni-
tion (Section 3.1). Then we use two bi-directional
LSTMs to encode words in the question with their
types and the column names separately (Section
3.2). The output hidden states of LSTMs are then
used to predict the values for the slots in the SQL
sketch (Section 3.3).

3.1 Type Recognition for Input Preprocessing
In order to create one-to-one type input for each
question, we, first, tokenize each question into n-
grams of length 2 to 6, and use them to search over
the table schema and label any column name ap-
pears in the question as COLUMN. Then, we assign
numbers and dates in the question into four self-
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explanatory categories: INTEGER, FLOAT, DATE,
and YEAR. To identify named entities, we search
for five types of entities: PERSON, PLACE, COUN-
TRY, ORGANIZATION, and SPORT, on Freebase1

using grams as keyword queries. The five cate-
gories cover a majority of entities in the dataset.
Thus, we do not use other entity types provided by
Freebase. Domain-specific knowledge graphs can
be used for other applications.

In the case where the content of databases is
available, we match words in the question with
both the table schema and the content and labels
of the columns as COLUMN and match the entry
values as the corresponding column names. For
example, the type in the Figure 1 would be [none,
column, column, none, artist, artist, none, none,
column, none, column, issue, none] in this case.
Other parts in the Figure 1 keep the same as the
content-insensitive approach.

3.2 Input Encoder

As shown in the Figure 1, our input encoder con-
sists of two bi-directional LSTMs, BI-LSTMQT

and BI-LSTMCOL. To encode word and type
pairs of the question, we concatenate embeddings
of words and their corresponding types and in-
put them to BI-LSTMQT. Then the output hidden
states are HQT and HCOL, respectively.

For encoding column names, SQLNet runs a bi-
directional LSTM over each column name. We
first average the embeddings of words in the col-
umn name. Then, we run a single BI-LSTMCOL

between column names. This encoding method
improves the result by 1.5% and cuts the training
time by half. Even though the order of column
names does not matter, we attribute this improve-
ment to the fact that the LSTM can capture their
occurrences and relationships.

3.3 Slot-Filling Model

Next, we predict values for the slots in the
SQL sketch. For the slots in Figure 2, SQL-
Net has a separate model for each of them
which do not share their trainable parameters.
This creates five models for the five slots and
one model for $COND# (12 BI-LSTMs in to-
tal). However, since the predict procedures
of $SELECT COL, $COND COL, and $COND#
are similar, we combine them into a single
model. Additionally, $COND COL depends on

1https://developers.google.com/freebase/

the output of $SELECT COL, which reduces er-
rors of predicting the same column in these two
slots $COND COL Moreover, we group $OP and
$COND VAL together because both depend on the
outputs of $COND COL. Furthermore, we use one
model for $AGG because we notice that the $AGG
model converges much faster and suffers from
overfitting when combined with other models. Fi-
nally, TYPESQL consists of three models (Figure
1 right):

• MODEL COL for $SELECT COL, $COND#
and $COND COL

• MODEL AGG for $AGG

• MODEL OPVAL for $OP and $COND VAL

where the parameters of BI-LSTMQT and BI-
LSTMCOL are shared in each model (6 BI-
LSTMs in total).

Since all three models use the same way to com-
pute the weighted question and type representa-
tion HQT/COL using the column attention mecha-
nism proposed in SQLNet, we first introduce the
following step in all three models:

αQT/COL = softmax(HCOLWctH
>
QT)

HQT/COL = αQT/COLHQT

where softmax applies the softmax operator over
each row of the input matrix, αQT/COL is a matrix
of attention scores, and HQT/COL is the weighted
question and type representation. In our equations,
we use W and V to represent all trainable param-
eter matrices and vectors, respectively.

MODEL COL-$SELECT COL HQT/COL is used
to predict the column name in the $SELECT COL:

s = Vseltanh(Wsel
c H>

COL +Wsel
qt H

>
QT/COL)

Psel col = softmax(s)

MODEL COL-$COND# Unlike SQLNet, we
compute number of conditions in the WHERE in a
simpler way:

Pnum = softmax
(
Vnumtanh(Wnum

qt

∑
iH

>
QT/COLi

)
)

We set the maximum number of conditions to 4.
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Dev Test
Acclf Accqm Accex Acclf Accqm Accex

Content Insensitive
Dong and Lapata (2016) 23.3% - 37.0% 23.4% - 35.9%
Augmented Pointer Network (Zhong et al., 2017) 44.1% - 53.8% 42.8% - 52.8%
Seq2SQL (Zhong et al., 2017) 49.5% - 60.8% 48.3% - 59.4%
SQLNet (Xu et al., 2017) - 63.2% 69.8% - 61.3% 68.0%
TypeSQL w/o type-awareness (ours) - 66.5% 72.8% - 64.9% 71.7%
TypeSQL (ours) - 68.0% 74.5% - 66.7% 73.5%

Content Sensitive
Wang et al. (2017a) 59.6% - 65.2% 59.5% - 65.1%
TypeSQL+TC (ours) - 79.2% 85.5% - 75.4% 82.6%

Table 1: Overall results on WikiSQL. Acclf, Accqm, and Accex denote the accuracies of exact string, canonical
representation, and execute result matches between the synthesized SQL with the ground truth respectively. The
top six results are content-insensitive, which means only the question and table schema are used as inputs. The
bottom two are content-sensitive, where the models use the question, the table schema, and the content of databases.

Dev Test
Accagg Accsel Accwhere Accagg Accsel Accwhere

Seq2SQL (Zhong et al., 2017) 90.0% 89.6% 62.1% 90.1% 88.9% 60.2%
SQLNet (Xu et al., 2017) 90.1% 91.5% 74.1% 90.3% 90.9% 71.9%
TypeSQL (ours) 90.3% 93.1% 78.5% 90.5% 92.2% 77.8%
TypeSQL+TC (ours) 90.3% 93.5% 92.8% 90.5% 92.1% 87.9%

Table 2: Breakdown results on WikiSQL. Accagg, Accsel, and Accwhere are the accuracies of canonical represen-
tation matches on AGGREGATOR, SELECT COLUMN, and WHERE clauses between the synthesized SQL and the
ground truth respectively.

MODEL COL-$COND COL We find that SQL-
Net often selects the same column name in the
$COND COL as $SELECT COL, which is incor-
rect in most cases. To avoid this problem, we
pass the weighted sum of question and type hid-
den states conditioned on the column chosen in
$SELECT COL HQT/SCOL (expended as the same
shape of HQT/COL) to the prediction:

c = Vcoltanh(Wcol
c H>

COL +Wcol
qt H

>
QT/COL +Wscol

qt H>
QT/SCOL)

Pcond col = softmax(c)

MODEL AGG-$AGG Given the weighted sum of
question and type hidden states conditioned on
the column chosen in $SELECT COL HQT/SCOL,
$AGG is chosen from {NULL, MAX, MIN, COUNT,
SUM, AVG} in the same way as SQLNet:

Pagg = softmax
(
Vaggtanh(Wagg

qt H>
QT/SCOL)

)

MODEL OPVAL-$OP For each predicted condi-
tion column, we choose a $OP from {=, >,<} by:

Pop = softmax
(
Wop

t tanh(Wop
c H>

COL +Wop
qtH

>
QT/COL)

)

MODEL OPVAL-$COND VAL Then, we need to
generate a substring from the question for each

predicted column. As in SQLNet, a bi-directional
LSTM is used for the encoder. It employs a pointer
network (Vinyals et al., 2015) to compute the dis-
tribution of the next token in the decoder. In par-
ticular, the probability of selecting the i-th token
wi in the natural language question as the next to-
ken in the substring is computed as:

v = Vval
t tanh(Wval

qt Hi
QT +Wval

c HCOL +Wval
h h)

Pcond val = softmax(v)

where h is the hidden state of the previously gen-
erated token. The generation process continues
until the 〈END〉 token is the most probable next
token of the substring.

4 Experiments

Dataset We use the WikiSQL dataset (Zhong
et al., 2017), a collection of 87,673 examples of
questions, queries, and database tables built from
26,521 tables. It provides train/dev/test splits such
that each table is only in one split. This requires
model to generalize to not only new questions but
new table schemas as well.

Implementation Details We implement our
model based on SQLNet (Xu et al., 2017) in Py-
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Torch (Paszke et al., 2017). We concatenate pre-
trained Glove (Pennington et al., 2014) and para-
phrase (Wieting and Gimpel, 2017) embeddings.
The dimensions and dropout rates of all hidden
layers are set to 120 and 0.3 respectively. We
use Adam (Kingma and Ba, 2015) with the de-
fault hyperparameters for optimization. The batch
size is set to 64. The same loss functions in (Xu
et al., 2017) are used. Our code is available at
https://github.com/taoyds/typesql.

Results and Discussion Table 1 shows the main
results on the WikiSQL task. We compare our
work with previous results using the three eval-
uation metrics used in (Xu et al., 2017). Table
2 provides the breakdown results on AGGREGA-
TION, SELECTION, and WHERE clauses.

Without looking at the content of databases,
our model outperforms the previous best work by
5.5% on execute accuracy. According to Table 2,
TYPESQL improves the accuracy of SELECT by
1.3% and WHERE clause by 5.9%. By encoding
column names and grouping model components in
a simpler but reasonable way, TYPESQL achieves
a much higher result on the most challenging sub-
task WHERE clause. Also, the further improve-
ment of integrating word types shows that TYPE-
SQL could encode the rare entities and numbers
in a better way.

Also, if complete access to the database is al-
lowed, TYPESQL can achieve 82.6% on execute
accuracy, and improves the performance of the
previous content-aware system by 17.5%. Al-
though (Zhong et al., 2017) enforced some limita-
tions when creating the WikiSQL dataset, there are
still many questions that do not have any column
name and entity indicator. This makes generat-
ing the right SQLs without searching the database
content in such cases impossible. This is not a crit-
ical problem for WikiSQL but is so for most real-
world tasks.

5 Conclusion and Future Work

We propose TYPESQL for text-to-SQL which
views the problem as a slot filling task and uses
type information to better understand rare enti-
ties and numbers in the input. TYPESQL can use
the database content to better understand the user
query if it is not well-formed. TYPESQL signifi-
cantly improves upon the previous state-of-the-art
on the WikiSQL dataset.

Although, unlike most of the previous work, the

WikiSQL task requires model to generalize to new
databases, the dataset does not cover some impor-
tant SQL operators such as JOIN and GROUP BY.
This limits the generalization of the task to other
SQL components. In the future, we plan to ad-
vance this work by exploring other more complex
datasets under the database-split setting. In this
way, we can study the performance of a general-
ized model on a more realistic text-to-SQL task
which includes many complex SQL and different
databases.
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