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Abstract

We present a novel deep learning archi-
tecture to address the natural language in-
ference (NLI) task. Existing approaches
mostly rely on simple reading mecha-
nisms for independent encoding of the
premise and hypothesis. Instead, we pro-
pose a novel dependent reading bidirec-
tional LSTM network (DR-BiLSTM) to
efficiently model the relationship between
a premise and a hypothesis during encod-
ing and inference. We also introduce a
sophisticated ensemble strategy to com-
bine our proposed models, which notice-
ably improves final predictions. Finally,
we demonstrate how the results can be
improved further with an additional pre-
processing step. Our evaluation shows
that DR-BiLSTM obtains the best single
model and ensemble model results achiev-
ing the new state-of-the-art scores on the
Stanford NLI dataset.

1 Introduction

Natural Language Inference (NLI; a.k.a. Recog-
nizing Textual Entailment, or RTE) is an important
and challenging task for natural language under-
standing (MacCartney and Manning, 2008). The
goal of NLI is to identify the logical relationship
(entailment, neutral, or contradiction) between a
premise and a corresponding hypothesis. Table 1
shows few example relationships from the Stan-
ford Natural Language Inference (SNLI) dataset
(Bowman et al., 2015).

Recently, NLI has received a lot of attention
from the researchers, especially due to the avail-
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A senior is waiting at the

Relationshipwindow of a restaurant
that serves sandwiches.

Hb

A person waits to be Entailmentserved his food.
A man is looking to order Neutrala grilled cheese sandwich.
A man is waiting in line Contradictionfor the bus.

aP, Premise.
bH, Hypothesis.

Table 1: Examples from the SNLI dataset.

ability of large annotated datasets like SNLI (Bow-
man et al., 2015). Various deep learning models
have been proposed that achieve successful results
for this task (Gong et al., 2017; Wang et al., 2017;
Chen et al., 2017; Yu and Munkhdalai, 2017a;
Parikh et al., 2016; Zhao et al., 2016; Sha et al.,
2016). Most of these existing NLI models use at-
tention mechanism to jointly interpret and align
the premise and hypothesis. Such models use sim-
ple reading mechanisms to encode the premise and
hypothesis independently. However, such a com-
plex task require explicit modeling of dependency
relationships between the premise and the hypoth-
esis during the encoding and inference processes
to prevent the network from the loss of relevant,
contextual information. In this paper, we refer to
such strategies as dependent reading.

There are some alternative reading mecha-
nisms available in the literature (Sha et al., 2016;
Rocktäschel et al., 2015) that consider dependency
aspects of the premise-hypothesis relationships.
However, these mechanisms have two major limi-
tations:

• So far, they have only explored dependency
aspects during the encoding stage, while ig-
noring its benefit during inference.

• Such models only consider encoding a hy-
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pothesis depending on the premise, disre-
garding the dependency aspects in the oppo-
site direction.

We propose a dependent reading bidirectional
LSTM (DR-BiLSTM) model to address these lim-
itations. Given a premise u and a hypothesis v, our
model first encodes them considering dependency
on each other (u|v and v|u). Next, the model em-
ploys a soft attention mechanism to extract rele-
vant information from these encodings. The aug-
mented sentence representations are then passed
to the inference stage, which uses a similar depen-
dent reading strategy in both directions, i.e. u→ v
and v → u. Finally, a decision is made through a
multi-layer perceptron (MLP) based on the aggre-
gated information.

Our experiments on the SNLI dataset show that
DR-BiLSTM achieves the best single model and
ensemble model performance obtaining improve-
ments of a considerable margin of 0.4% and 0.3%
over the previous state-of-the-art single and en-
semble models, respectively.

Furthermore, we demonstrate the importance
of a simple preprocessing step performed on the
SNLI dataset. Evaluation results show that such
preprocessing allows our single model to achieve
the same accuracy as the state-of-the-art ensemble
model and improves our ensemble model to out-
perform the state-of-the-art ensemble model by a
remarkable margin of 0.7%. Finally, we perform
an extensive analysis to clarify the strengths and
weaknesses of our models.

2 Related Work

Early studies use small datasets while leverag-
ing lexical and syntactic features for NLI (Mac-
Cartney and Manning, 2008). The recent avail-
ability of large-scale annotated datasets (Bowman
et al., 2015; Williams et al., 2017) has enabled re-
searchers to develop various deep learning-based
architectures for NLI.

Parikh et al. (2016) propose an attention-based
model (Bahdanau et al., 2014) that decomposes
the NLI task into sub-problems to solve them in
parallel. They further show the benefit of adding
intra-sentence attention to input representations.
Chen et al. (2017) explore sequential inference
models based on chain LSTMs with attentional in-
put encoding and demonstrate the effectiveness of
syntactic information. We also use similar atten-
tion mechanisms. However, our model is distinct

from these models as they do not benefit from de-
pendent reading strategies.

Rocktäschel et al. (2015) use a word-by-word
neural attention mechanism while Sha et al. (2016)
propose re-read LSTM units by considering the
dependency of a hypothesis on the information
of its premise (v|u) to achieve promising results.
However, these models suffer from weak inferenc-
ing methods by disregarding the dependency as-
pects from the opposite direction (u|v). Intuitively,
when a human judges a premise-hypothesis rela-
tionship, s/he might consider back-and-forth read-
ing of both sentences before coming to a con-
clusion. Therefore, it is essential to encode
the premise-hypothesis dependency relations from
both directions to optimize the understanding of
their relationship.

Wang et al. (2017) propose a bilateral multi-
perspective matching (BiMPM) model, which re-
sembles the concept of matching a premise and
hypothesis from both directions. Their match-
ing strategy is essentially similar to our attention
mechanism that utilizes relevant information from
the other sentence for each word sequence. They
use similar methods as Chen et al. (2017) for en-
coding and inference, without any dependent read-
ing mechanism.

Although NLI is well studied in the literature,
the potential of dependent reading and interaction
between a premise and hypothesis is not rigor-
ously explored. In this paper, we address this gap
by proposing a novel deep learning model (DR-
BiLSTM). Experimental results demonstrate the
effectiveness of our model.

3 Model

Our proposed model (DR-BiLSTM) is composed
of the following major components: input encod-
ing, attention, inference, and classification. Fig-
ure 1 demonstrates a high-level view of our pro-
posed NLI framework.

Let u = [u1, · · · , un] and v = [v1, · · · , vm]
be the given premise with length n and hypothesis
with length m respectively, where ui, vj ∈ Rr is
an word embedding of r-dimensional vector. The
task is to predict a label y that indicates the logical
relationship between premise u and hypothesis v.

3.1 Input Encoding

RNNs are the natural solution for variable length
sequence modeling, consequently, we utilize a
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Figure 1: A high-level view of DR-BiLSTM. The
data (premise u and hypothesis v, depicted with
cyan and red tensors respectively) flows from bot-
tom to top. Relevant tensors are shown with the
same color and elements with the same colors
share parameters.

bidirectional LSTM (BiLSTM) (Hochreiter and
Schmidhuber, 1997) for encoding the given sen-
tences. For ease of presentation, we only describe
how we encode u depending on v. The same pro-
cedure is utilized for the reverse direction (v|u).

To dependently encode u, we first process v us-
ing the BiLSTM. Then we read u through the BiL-
STM that is initialized with previous reading final
states (memory cell and hidden state). Here we
represent a word (e.g. ui) and its context depend-
ing on the other sentence (e.g. v). Equations 1 and
2 formally represent this component.

v̄, sv = BiLSTM(v, 0)

û,− = BiLSTM(u, sv)
(1)

ū, su = BiLSTM(u, 0)

v̂,− = BiLSTM(v, su)
(2)

where {ū ∈ Rn×2d, û ∈ Rn×2d, su} and {v̄ ∈
Rm×2d, v̂ ∈ Rm×2d, sv} are the independent read-
ing sequences, dependent reading sequences, and
BiLSTM final state of independent reading of u
and v respectively. Note that, “−” in these equa-
tions means that we do not care about the associ-
ated variable and its value. BiLSTM inputs are the
word embedding sequences and initial state vec-
tors. û and v̂ are passed to the next layer as the
output of the input encoding component.

The proposed encoding mechanism yields a
richer representation for both premise and hypoth-
esis by taking the history of each other into ac-
count. Using a max or average pooling over the
independent and dependent readings does not fur-
ther improve our model. This was expected since
dependent reading produces more promising and
relevant encodings.

3.2 Attention
We employ a soft alignment method to associate
the relevant sub-components between the given
premise and hypothesis. In deep learning models,
such purpose is often achieved with a soft atten-
tion mechanism. Here we compute the unnormal-
ized attention weights as the similarity of hidden
states of the premise and hypothesis with Equa-
tion 3 (energy function).

eij = ûiv̂
T
j , i ∈ [1, n], j ∈ [1,m] (3)

where ûi and v̂j are the dependent reading hidden
representations of u and v respectively which are
computed earlier in Equations 1 and 2. Next, for
each word in either premise or hypothesis, the rel-
evant semantics in the other sentence is extracted
and composed according to eij . Equations 4 and
5 provide formal and specific details of this proce-
dure.

ũi =
m∑

j=1

exp(eij)∑m
k=1 exp(eik)

v̂j , i ∈ [1, n] (4)

ṽj =

n∑

i=1

exp(eij)∑n
k=1 exp(ekj)

ûi, j ∈ [1,m] (5)

where ũi represents the extracted relevant infor-
mation of v̂ by attending to ûi while ṽj represents
the extracted relevant information of û by attend-
ing to v̂j .
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To further enrich the collected attentional infor-
mation, a trivial next step would be to pass the con-
catenation of the tuples (ûi, ũi) or (v̂j , ṽj) which
provides a linear relationship between them. How-
ever, the model would suffer from the absence of
similarity and closeness measures. Therefore, we
calculate the difference and element-wise product
for the tuples (ûi, ũi) and (v̂j , ṽj) that represent
the similarity and closeness information respec-
tively (Chen et al., 2017; Kumar et al., 2016).

The difference and element-wise product are
then concatenated with the computed vectors,
(ûi, ũi) or (v̂j , ṽj), respectively. Finally, a feed-
forward neural layer with ReLU activation func-
tion projects the concatenated vectors from 8d-
dimensional vector space into a d-dimensional
vector space (Equations 6 and 7). This helps the
model to capture deeper dependencies between the
sentences besides lowering the complexity of vec-
tor representations.

ai = [ûi, ũi, ûi − ũi, ûi � ũi]

pi = ReLU(Wpai + bp)
(6)

bj = [v̂j , ṽj , v̂j − ṽj , v̂j � ṽj ]

qj = ReLU(Wpbj + bp)
(7)

Here � stands for element-wise product while
Wp ∈ R8d×d and bp ∈ Rd are the trainable
weights and biases of the projector layer respec-
tively.

3.3 Inference

During this phase, we use another BiLSTM to ag-
gregate the two sequences of computed matching
vectors, p and q from the attention stage (Sec-
tion 3.2). This aggregation is performed in a se-
quential manner to avoid losing effect of latent
variables that might rely on the sequence of match-
ing vectors.

Instead of aggregating the sequences of match-
ing vectors individually, we propose a similar de-
pendent reading approach for the inference stage.
We employ a BiLSTM reading process (Equa-
tions 8 and 9) similar to the input encoding step
discussed in Section 3.1. But rather than passing
just the dependent reading information to the next
step, we feed both independent reading (p̄ and q̄)
and dependent reading (p̂ and q̂) to a max pool-
ing layer, which selects maximum values from

each sequence of independent and dependent read-
ings (p̄i and p̂i) as shown in Equations 10 and 11.
The main intuition behind this architecture is to
maximize the inferencing ability of the model by
considering both independent and dependent read-
ings.

q̄, sq = BiLSTM(q, 0)

p̂,− = BiLSTM(p, sq)
(8)

p̄, sp = BiLSTM(p, 0)

q̂,− = BiLSTM(q, sp)
(9)

p̃ = MaxPooling(p̄, p̂) (10)

q̃ = MaxPooling(q̄, q̂) (11)

Here {p̄ ∈ Rn×2d, p̂ ∈ Rn×2d, sp} and {q̄ ∈
Rm×2d, q̂ ∈ Rm×2d, sq} are the independent read-
ing sequences, dependent reading sequences, and
BiLSTM final state of independent reading of p
and q respectively. BiLSTM inputs are the word
embedding sequences and initial state vectors.

Finally, we convert p̃ ∈ Rn×2d and q̃ ∈ Rm×2d

to fixed-length vectors with pooling, U ∈ R4d and
V ∈ R4d. As shown in Equations 12 and 13,
we employ both max and average pooling and de-
scribe the overall inference relationship with con-
catenation of their outputs.

U = [MaxPooling(p̃),AvgPooling(p̃)] (12)

V = [MaxPooling(q̃),AvgPooling(q̃)] (13)

3.4 Classification

Here, we feed the concatenation of U and V
([U, V ]) into a multilayer perceptron (MLP) clas-
sifier that includes a hidden layer with tanh activa-
tion and softmax output layer. The model is trained
in an end-to-end manner.

Output = MLP([U, V ]) (14)
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4 Experiments and Evaluation

4.1 Dataset
The Stanford Natural Language Inference (SNLI)
dataset contains 570K human annotated sen-
tence pairs. The premises are drawn from the
Flickr30k (Plummer et al., 2015) corpus, and then
the hypotheses are manually composed for each
relationship class (entailment, neutral, contradic-
tion, and -). The “-” class indicates that there
is no consensus decision among the annotators,
consequently, we remove them during the train-
ing and evaluation following the literature. We
use the same data split as provided in Bowman
et al. (2015) to report comparable results with
other models.

4.2 Experimental Setup
We use pre-trained 300-D Glove 840B vectors
(Pennington et al., 2014) to initialize our word em-
bedding vectors. All hidden states of BiLSTMs
during input encoding and inference have 450 di-
mensions (r = 300 and d = 450). The weights are
learned by minimizing the log-loss on the train-
ing data via the Adam optimizer (Kingma and Ba,
2014). The initial learning rate is 0.0004. To
avoid overfitting, we use dropout (Srivastava et al.,
2014) with the rate of 0.4 for regularization, which
is applied to all feedforward connections. During
training, the word embeddings are updated to learn
effective representations for the NLI task. We use
a fairly small batch size of 32 to provide more ex-
ploration power to the model. Our observation in-
dicates that using larger batch sizes hurts the per-
formance of our model.

4.3 Ensemble Strategy
Ensemble methods use multiple models to obtain
better predictive performance. Previous works
typically utilize trivial ensemble strategies by ei-
ther using majority votes or averaging the proba-
bility distributions over the same model with dif-
ferent initialization seeds (Wang et al., 2017; Gong
et al., 2017).

By contrast, we use weighted averaging of the
probability distributions where the weight of each
model is learned through its performance on the
SNLI development set. Furthermore, the differ-
ences between our models in the ensemble origi-
nate from: 1) variations in the number of depen-
dent readings (i.e. 1 and 3 rounds of dependent
reading), 2) projection layer activation (tanh and
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Figure 2: Performance of n ensemble models re-
ported for training (red, top), development (blue,
middle), and test (green, bottom) sets of SNLI.
For n number of models, the best performance on
the development set is used as the criteria to de-
termine the final ensemble. The best performance
on development set (89.22%) is observed using 6
models and is henceforth considered as our final
DR-BiLSTM (Ensemble) model.

ReLU in Equations 6 and 7), and 3) different ini-
tialization seeds.

The main intuition behind this design is that
the effectiveness of a model may depend on the
complexity of a premise-hypothesis instance. For
a simple instance, a simple model could perform
better than a complex one, while a complex in-
stance may need further consideration toward dis-
ambiguation. Consequently, using models with
different rounds of dependent readings in the en-
coding stage should be beneficial.

Figure 2 demonstrates the observed perfor-
mance of our ensemble method with different
number of models. The performance of the mod-
els are reported based on the best obtained accu-
racy on the development set. We also study the
effectiveness of other ensemble strategies e.g. ma-
jority voting, and averaging the probability distri-
butions. But, our ensemble strategy performs the
best among them (see Section 1 in the supplemen-
tary material for additional details).

4.4 Preprocessing

We perform a trivial preprocessing step on SNLI
to recover some out-of-vocabulary words found in
the development set and test set. Note that our
vocabulary contains all words that are seen in the
training set, so there is no out-of-vocabulary word
in it. The SNLI dataset is not immune to human
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errors, specifically, misspelled words. We noticed
that misspelling is the main reason for some of the
observed out-of-vocabulary words. Consequently,
we simply fix the unseen misspelled words us-
ing Microsoft spell-checker (other approaches like
edit distance can also be used). Moreover, while
dealing with an unseen word during evaluation, we
try to: 1) replace it with its lower case, or 2) split
the word when it contains a “-” (e.g. “marsh-like”)
or starts with “un” (e.g. “unloading”). If we still
could not find the word in our vocabulary, we con-
sider it as an unknown word. In the next subsec-
tion, we demonstrate the importance and impact
of such trivial preprocessing (see Section 2 in the
supplementary material for additional details).

4.5 Results

Table 2 shows the accuracy of the models on train-
ing and test sets of SNLI. The first row repre-
sents a baseline classifier presented by Bowman
et al. (2015) that utilizes handcrafted features. All
other listed models are deep-learning based. The
gap between the traditional model and deep learn-
ing models demonstrates the effectiveness of deep
learning methods for this task. We also report
the estimated human performance on the SNLI
dataset, which is the average accuracy of five an-
notators in comparison to the gold labels (Gong
et al., 2017). It is noteworthy that recent deep
learning models surpass the human performance
in the NLI task.

As shown in Table 2, previous deep learning
models (rows 2-19) can be divided into three cat-
egories: 1) sentence encoding based models (rows
2-7), 2) single inter-sentence attention-based mod-
els (rows 8-16), and 3) ensemble inter-sentence
attention-based models (rows 17-19). We can
see that inter-sentence attention-based models per-
form better than sentence encoding based mod-
els, which supports our intuition. Natural lan-
guage inference requires a deep interaction be-
tween the premise and hypothesis. Inter-sentence
attention-based approaches can provide such inter-
action while sentence encoding based models fail
to do so.

To further enhance the modeling of interaction
between the premise and hypothesis for efficient
disambiguation of their relationship, we introduce
the dependent reading strategy in our proposed
DR-BiLSTM model. The results demonstrate the
effectiveness of our model. DR-BiLSTM (Single)

Model Accuracy
Train Test

(Bowman et al., 2015) (Feature) 99.7% 78.2%
(Bowman et al., 2015) 83.9% 80.6%
(Vendrov et al., 2015) 98.8% 81.4%
(Mou et al., 2016) 83.3% 82.1%
(Bowman et al., 2016) 89.2% 83.2%
(Liu et al., 2016b) 84.5% 84.2%
(Yu and Munkhdalai, 2017a) 86.2% 84.6%
(Rocktäschel et al., 2015) 85.3% 83.5%
(Wang and Jiang, 2016) 92.0% 86.1%
(Liu et al., 2016a) 88.5% 86.3%
(Parikh et al., 2016) 90.5% 86.8%
(Yu and Munkhdalai, 2017b) 88.5% 87.3%
(Sha et al., 2016) 90.7% 87.5%
(Wang et al., 2017) (Single) 90.9% 87.5%
(Chen et al., 2017) (Single) 92.6% 88.0%
(Gong et al., 2017) (Single) 91.2% 88.0%
(Chen et al., 2017) (Ensemble) 93.5% 88.6%
(Wang et al., 2017) (Ensemble) 93.2% 88.8%
(Gong et al., 2017) (Ensemble) 92.3% 88.9%
Human Performance (Estimated) 97.2% 87.7%
DR-BiLSTM (Single) 94.1% 88.5%
DR-BiLSTM (Single)+Process 94.1% 88.9%
DR-BiLSTM (Ensemble) 94.8% 89.3%
DR-BiLSTM (Ensem.)+Process 94.8% 89.6%

Table 2: Accuracies of the models on the training
set and test set of SNLI. DR-BiLSTM (Ensemble)
achieves the accuracy of 89.3%, the best result ob-
served on SNLI, while DR-BiLSTM (Single) ob-
tains the accuracy of 88.5%, which considerably
outperforms the previous non-ensemble models.
Also, utilizing a trivial preprocessing step yields to
further improvements of 0.4% and 0.3% for single
and ensemble DR-BiLSTM models respectively.

achieves 88.5% accuracy on the test set which is
noticeably the best reported result among the ex-
isting single models for this task. Note that the
difference between DR-BiLSTM and Chen et al.
(2017) is statistically significant with a p-value of
< 0.001 over the Chi-square test1.

To further improve the performance of NLI
systems, researchers have built ensemble models.
Previously, ensemble systems obtained the best
performance on SNLI with a huge margin. Table 2
shows that our proposed single model achieves
competitive results compared to these reported en-
semble models. Our ensemble model considerably
outperforms the current state-of-the-art by obtain-
ing 89.3% accuracy.

Up until this point, we discussed the perfor-
mance of our models where we have not con-

1Chi-square test (χ2 test) is used to determine if there is a
significant difference between two categorical variables (i.e.
models’ outputs).
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sidered preprocessing for recovering the out-of-
vocabulary words. In Table 2, “DR-BiLSTM (Sin-
gle) + Process”, and “DR-BiLSTM (Ensem.) +
Process” represent the performance of our mod-
els on the preprocessed dataset. We can see that
our preprocessing mechanism leads to further im-
provements of 0.4% and 0.3% on the SNLI test
set for our single and ensemble models respec-
tively. In fact, our single model (“DR-BiLSTM
(Single) + Process”) obtains the state-of-the-art
performance over both reported single and ensem-
ble models by performing a simple preprocessing
step. Furthermore, “DR-BiLSTM (Ensem.) +
Process” outperforms the existing state-of-the-art
remarkably (0.7% improvement). For more com-
parison and analyses, we use “DR-BiLSTM (Sin-
gle)” and “DR-BiLSTM (Ensemble)” as our single
and ensemble models in the rest of the paper.

4.6 Ablation and Configuration Study

We conducted an ablation study on our model to
examine the importance and effect of each major
component. Then, we study the impact of BiL-
STM dimensionality on the performance of the
development set and training set of SNLI. We in-
vestigate all settings on the development set of the
SNLI dataset.

Model Dev Acca p-value
DR-BiLSTM 88.69% -
DR-BiLSTM - hidden MLP 88.45% <0.001
DR-BiLSTM - average pooling 88.50% <0.001
DR-BiLSTM - max pooling 88.39% <0.001
DR-BiLSTM - elem. prdb 88.51% <0.001
DR-BiLSTM - difference 88.24% <0.001
DR-BiLSTM - diffc & elem. prd 87.96% <0.001
DR-BiLSTM - inference pooling 88.46% <0.001
DR-BiLSTM - dep. inferd 88.43% <0.001
DR-BiLSTM - dep. ence 88.26% <0.001
DR-BiLSTM - dep. enc & infer 88.20% <0.001
aDev Acc, Development Accuracy.
belem. prd, element-wise product.
cdiff, difference.
ddep. infer, dependent reading inference.
edep. enc, dependent reading encoding.

Table 3: Ablation study results. Performance of
different configurations of the proposed model on
the development set of SNLI along with their p-
values in comparison to DR-BiLSTM (Single).

Table 3 shows the ablation study results on the
development set of SNLI along with the statisti-
cal significance test results in comparison to the
proposed model, DR-BiLSTM. We can see that all
modifications lead to a new model and their differ-

ences are statistically significant with a p-value of
< 0.001 over Chi square test.

Table 3 shows that removing any part from our
model hurts the development set accuracy which
indicates the effectiveness of these components.
Among all components, three of them have no-
ticeable influences: max pooling, difference in the
attention stage, and dependent reading.

Most importantly, the last four study cases in
Table 3 (rows 8-11) verify the main intuitions
behind our proposed model. They illustrate the
importance of our proposed dependent reading
strategy which leads to significant improvement,
specifically in the encoding stage. We are con-
vinced that the importance of dependent reading in
the encoding stage originates from its ability to fo-
cus on more important and relevant aspects of the
sentences due to its prior knowledge of the other
sentence during the encoding procedure.
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Figure 3: Impact of BiLSTM dimensionality in the
proposed model on the training set (red, top) and
development set (blue, bottom) accuracies of the
SNLI dataset.

Figure 3 shows the behavior of the proposed
model accuracy on the training set and develop-
ment set of SNLI. Since the models are selected
based on the best observed development set accu-
racy during the training procedure, the training ac-
curacy curve (red, top) is not strictly increasing.
Figure 3 demonstrates that we achieve the best
performance with 450-dimensional BiLSTMs. In
other words, using BiLSTMs with lower dimen-
sionality causes the model to suffer from the lack
of space for capturing proper information and de-
pendencies. On the other hand, using higher di-
mensionality leads to overfitting which hurts the
performance on the development set. Hence, we
use 450-dimensional BiLSTM in our proposed
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model.

4.7 Analysis
We first investigate the performance of our models
categorically. Then, we show a visualization of the
energy function in the attention stage (Equation 3)
for an instance from the SNLI test set.

To qualitatively evaluate the performance of our
models, we design a set of annotation tags that can
be extracted automatically. This design is inspired
by the reported annotation tags in Williams et al.
(2017). The specifications of our annotation tags
are as follows:

• High Overlap: premise and hypothesis sen-
tences share more than 70% tokens.

• Regular Overlap: sentences share between
30% and 70% tokens.

• Low Overlap: sentences share less than 30%
tokens.

• Long Sentence: either sentence is longer
than 20 tokens.

• Regular Sentence: premise or hypothesis
length is between 5 and 20 tokens.

• Short Sentence: either sentence is shorter
than 5 tokens.

• Negation: negation is present in a sentence.

• Quantifier: either of the sentences con-
tains one of the following quantifiers: much,
enough, more, most, less, least, no, none,
some, any, many, few, several, almost, nearly.

• Belief: either of the sentences contains one
of the following belief verbs: know, believe,
understand, doubt, think, suppose, recognize,
forget, remember, imagine, mean, agree, dis-
agree, deny, promise.

Table 4 shows the frequency of aforementioned
annotation tags in the SNLI test set along with
the performance (accuracy) of ESIM (Chen et al.,
2017), DR-BiLSTM (Single), and DR-BiLSTM
(Ensemble). Table 4 can be divided into four ma-
jor categories: 1) gold label data, 2) word overlap,
3) sentence length, and 4) occurrence of special
words. We can see that DR-BiLSTM (Ensemble)
performs the best in all categories which matches
our expectation. Moreover, DR-BiLSTM (Single)

Annotation Tag Freqa ESIM DR(S)b DR(E)c

Entailment 34.3% 90.0% 89.8% 90.9%
Neutral 32.8% 83.7% 85.1% 85.6%
Contradiction 32.9% 90.0% 90.5% 91.4%
High Overlap 24.3% 91.2% 90.7% 92.1%
Reg. Overlap 33.7% 87.1% 87.9% 88.8%
Low Overlap 45.4% 87.0% 87.8% 88.4%
Long Sentence 6.4% 92.2% 91.3% 91.9%
Reg. Sentence 74.9% 87.8% 88.4% 89.2%
Short Sentence 19.9% 87.6% 88.1% 89.3%
Negation 2.1% 82.2% 85.7% 87.1%
Quantifier 8.7% 85.5% 87.4% 87.6%
Belief 0.2% 78.6% 78.6% 78.6%
aFreq, Frequency.
bDR(S), DR-BiLSTM (Single).
cDR(E), DR-BiLSTM (Ensemble).

Table 4: Categorical performance analyses (accu-
racy) of ESIM (Chen et al., 2017), DR-BiLSTM
(DR(S)) and Ensemble DR-BiLSTM (DR(E)) on
the SNLI test set.

performs noticeably better than ESIM in most of
the categories except “Entailment”, “High Over-
lap”, and “Long Sentence”, for which our model
is not far behind (gaps of 0.2%, 0.5%, and 0.9%,
respectively). It is noteworthy that DR-BiLSTM
(Single) performs better than ESIM in more fre-
quent categories. Specifically, the performance of
our model in “Neutral”, “Negation”, and “Quan-
tifier” categories (improvements of 1.4%, 3.5%,
and 1.9%, respectively) indicates the superiority
of our model in understanding and disambiguat-
ing complex samples. Our investigations indicate
that ESIM generates somewhat uniform attention
for most of the word pairs while our model could
effectively attend to specific parts of the given sen-
tences and provide more meaningful attention. In
other words, the dependent reading strategy en-
ables our model to achieve meaningful represen-
tations, which leads to better attention to obtain
further gains on such categories like Negation and
Quantifier sentences (see Section 3 in the supple-
mentary material for additional details).

Finally, we show a visualization of the nor-
malized attention weights (energy function, Equa-
tion 3) of our model in Figure 4. We show a
sentence pair, where the premise is “Male in a
blue jacket decides to lay the grass.”, and the hy-
pothesis is “The guy in yellow is rolling on the
grass.”, and its logical relationship is contradic-
tion. Figure 4 indicates the model’s ability in
attending to critical pairs of words like <Male,
guy>, <decides, rolling>, and <lay, rolling>.
Finally, high attention between {decides, lay} and
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Figure 4: Normalized attention weights for a sam-
ple from the SNLI test set. Darker color illustrates
higher attention.

{rolling}, and {Male} and {guy} leads the model
to correctly classify the sentence pair as contra-
diction (for more samples with attention visual-
izations, see Section 4 in the supplementary ma-
terial).

5 Conclusion

We propose a novel natural language inference
model (DR-BiLSTM) that benefits from a depen-
dent reading strategy and achieves the state-of-the-
art results on the SNLI dataset. We also introduce
a sophisticated ensemble strategy and illustrate its
effectiveness through experimentation. Moreover,
we demonstrate the importance of a simple pre-
processing step on the performance of our pro-
posed models. Evaluation results show that the
preprocessing step allows our DR-BiLSTM (sin-
gle) model to outperform all previous single and
ensemble methods. Similar superior performance
is also observed for our DR-BiLSTM (ensemble)
model. We show that our ensemble model outper-
forms the existing state-of-the-art by a consider-
able margin of 0.7%. Finally, we perform an ex-
tensive analysis to demonstrate the strength and
weakness of the proposed model, which would
pave the way for further improvements in this do-
main.
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