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Abstract

One of the difficulties of neural machine trans-
lation (NMT) is the recall and appropriate
translation of low-frequency words or phrases.
In this paper, we propose a simple, fast, and
effective method for recalling previously seen
translation examples and incorporating them
into the NMT decoding process. Specifically,
for an input sentence, we use a search engine
to retrieve sentence pairs whose source sides
are similar with the input sentence, and then
collect n-grams that are both in the retrieved
target sentences and aligned with words that
match in the source sentences, which we call
“translation pieces”. We compute pseudo-
probabilities for each retrieved sentence based
on similarities between the input sentence and
the retrieved source sentences, and use these
to weight the retrieved translation pieces. Fi-
nally, an existing NMT model is used to trans-
late the input sentence, with an additional
bonus given to outputs that contain the col-
lected translation pieces. We show our method
improves NMT translation results up to 6
BLEU points on three narrow domain trans-
lation tasks where repetitiveness of the target
sentences is particularly salient. It also causes
little increase in the translation time, and com-
pares favorably to another alternative retrieval-
based method with respect to accuracy, speed,
and simplicity of implementation.

1 Introduction

Neural machine translation (NMT) (Bahdanau
et al., 2014; Sennrich et al., 2016a; Wang et al.,
2017b) is now the state-of-the-art in machine
translation, due to its ability to be trained end-to-
end on large parallel corpora and capture complex
parameterized functions that generalize across a
variety of syntactic and semantic phenomena.
However, it has also been noted that compared
to alternatives such as phrase-based translation

(Koehn et al., 2003), NMT has trouble with low-
frequency words or phrases (Arthur et al., 2016;
Kaiser et al., 2017), and also generalizing across
domains (Koehn and Knowles, 2017). A num-
ber of methods have been proposed to ameliorate
these problems, including methods that incorpo-
rate symbolic knowledge such as discrete trans-
lation lexicons (Arthur et al., 2016; He et al.,
2016; Chatterjee et al., 2017) and phrase tables
(Zhang et al., 2017; Tang et al., 2016; Dahlmann
et al., 2017), adjust model structures to be more
conducive to generalization (Nguyen and Chiang,
2017), or incorporate additional information about
domain (Wang et al., 2017a) or topic (Zhang et al.,
2016) in translation models.

In particular, one paradigm of interest is recent
work that augments NMT using retrieval-based
models, retrieving sentence pairs from the training
corpus that are most similar to the sentence that
we want to translate, and then using these to bias
the NMT model.1 These methods – reminiscent
of translation memory (Utiyama et al., 2011) or
example-based translation (Nagao, 1984; Grefen-
stette, 1999) – are effective because they augment
the parametric NMT model with a non-parametric
translation memory that allows for increased ca-
pacity to measure features of the target technical
terms or domain-specific words. Currently there
are two main approaches to doing so. Li et al.
(2016) and Farajian et al. (2017) use the retrieved
sentence pairs to fine tune the parameters of the
NMT model which is pre-trained on the whole
training corpus. Gu et al. (2017) uses the retrieved
sentence pairs as additional inputs to the NMT
model to help NMT in translating the input sen-

1Note that there are existing retrieval-based methods
for phrase-based and hierarchical phrase-based translation
(Lopez, 2007; Germann, 2015). However, these methods do
not improve translation quality but rather aim to improve the
efficiency of the translation models.
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Figure 1: A word-aligned sentence pair retrieved for an input sentence. Red words are unedited words obtained
by computing the edit distance between the input sentence and the retrieved source sentence. The blue part of the
retrieved target sentence is collected as translation pieces for the input sentence. The target word “Umschlagsan-
lagen” is split into “Um@@”, “schlags@@” and “anlagen” by byte pair encoding.

tence. While both of these paradigms have been
proven effective, they both add significant com-
plexity and computational/memory cost to the de-
coding process, and also to the training procedure.
The first requires the running of several training
iterations and rolling back of the model, which is
costly at test time, and the second requires entirely
changing the model structure which requires train-
ing the model separately, and also increases test-
time computational cost by adding additional en-
coders.

In this paper, we propose a simple and effi-
cient model for using retrieved sentence pairs to
guide an existing NMT model at test time. Specif-
ically, the model collects n-grams occurring in the
retrieved target sentences that also match words
that overlap between the input and retrieved source
sentences, which we will refer to as “translation
pieces” (e.g., in Figure 1, the blue part of the re-
trieved target sentence is collected as translation
pieces for the input sentence). The method then
calculates a pseudo-probability score for each of
the retrieved example sentence pairs and weights
the translation pieces according to this value. Fi-
nally, we up-weight NMT outputs that contain the
collected translation pieces. Unlike the previous
methods, this requires no change of the underlying
NMT model and no updating of the NMT param-
eters, making it both simple and efficient to apply
at test time.

We show our method improved NMT transla-
tion results up to 6 BLEU points on three trans-
lation tasks and caused little increase in the trans-
lation time. Further, we find that accuracies are
comparable with the model of Gu et al. (2017), de-
spite being significantly simpler to implement and
faster at test time.

2 Attentional NMT

Our baseline NMT model is similar to the atten-
tional model of Bahdanau et al. (2014), which
includes an encoder, a decoder and an atten-
tion (alignment) model. Given a source sentence
X = {x1, ..., xL}, the encoder learns an annota-

tion hi =
[
~hi;

←
hi

]
for xi using a bi-directional

recurrent neural network.
The decoder generates the target translation

from left to right. The probability of generating
next word yt is,2

PNMT

(
yt|yt−11 , X

)
= softmax (g (yt−1, zt, ct))

(1)
where zt is a decoding state for time step t, com-
puted by,

zt = f (zt−1, yt−1, ct) (2)

ct is a source representation for time t, calculated
as,

ct =
L∑

i=1

αt,i · hi (3)

where αt,i scores how well the inputs around posi-
tion i and the output at position tmatch, computed
as,

αt,i =
exp (a (zt−1, hi))
L∑
j=1

exp (a (zt−1, hj))

(4)

The standard decoding algorithm for NMT is
beam search. That is, at each time step t, we keep
n-best hypotheses. The probability of a complete

2g, f and a in Equation 1, 2 and 4 are nonlinear, poten-
tially multi-layered, functions.
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hypothesis is computed as,

logPNMT (Y |X) =

|Y |∑

t=1

logPNMT

(
yt|yt−11 , X

)

(5)
Finally, the translation score is normalized by sen-
tence length to avoid too short outputs.

logSNMT (Y |X) =
logPNMT (Y |X)

|Y | (6)

3 Guiding NMT with Translation Pieces

This section describes our approach, which mainly
consists of two parts:

1. retrieving candidate translation pieces from a
parallel corpus for the new source sentence
that we want to translate, and then

2. using the collected translation pieces to guide
an existing NMT model while translating this
new sentence.

At training time, we first prepare the parallel cor-
pus that will form our database used in the retrieval
of the translation pieces. Conceivably, it could
be possible to use a different corpus for trans-
lation piece retrieval and NMT training, for ex-
ample when using a separate corpus for domain
adaptation, but for simplicity in this work we use
the same corpus that was used in NMT training.
As pre-processing, we use an off-the-shelf word
aligner to learn word alignments for the parallel
training corpus.

3.1 Retrieving Translation Pieces
At test time we are given an input sentence X .
For this X , we first use the off-the-shelf search
engine Lucene to search the word-aligned parallel
training corpus and retrieve M source sentences
{Xm : 1 ≤ m ≤M} that are similar to X . Y m

indicates the target sentence that corresponds to
source sentence Xm and Am is word alignments
between Xm and Y m.

For each retrieved source sentence Xm, we
compute its edit distance with X as d (X,Xm)
using dynamic programming. We record the
unedited words in Xm as Wm, and also note the
words in the target sentence Y m that correspond
to source words in Wm, which we can presume
are words that will be more likely to appear in
the translated sentence for X . According to Algo-
rithm 1, we collect n-grams (up to 4-grams) from

n-grams GmX
Vorschriften für die Eignung Yes
die Eignung von Yes
von Um@@ schlags@@ anlagen No
Um@@ schlags@@ anlagen No

Table 1: Examples of the collected translation pieces.

the retrieved target sentence Y m as possible trans-
lation pieces GmX for X , using word-level align-
ments to select n-grams that are related to X and
discard n-grams that are not related to X . The fi-
nal translation piecesGX collected forX are com-
puted as,3

GX =
M⋃

m=1

GmX (7)

Table 1 shows a few n-gram examples con-
tained in the retrieved target sentence in Figure 1
and whether they are included in GmX or not. Be-
cause the retrieved source sentence in Figure 1 is
highly similar with the input sentence, the transla-
tion pieces collected from its target side are highly
likely to be correct translation pieces of the input
sentence. However, when a retrieved source sen-
tence is not very similar with the input sentence
(e.g. only one or two words match), the transla-
tion pieces collected from its target side will be
less likely to be correct translation pieces for the
input sentence.

We compute a score for each u ∈ GX to mea-
sure how likely it is a correct translation piece for
X based on sentence similarity between the re-
trieved source sentences and the input sentence as
following,

S

(
u,X,

M⋃

m=1

{(Xm, GmX)}
)

= max
1≤m≤M∧u∈Gm

X

simi (X,Xm)

(8)

where simi (X,Xm) is the sentence similarity
computed as following (Gu et al., 2017),

simi (X,Xm) = 1− d (X,Xm)

max (|X| , |Xm|) (9)

3Note that the extracted translation pieces are target
phrases, but the target words contained in one extracted trans-
lation piece may be aligned to discontiguous source words,
which is different from how phrase-based translation extracts
phrase-based translation rules.
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Algorithm 1 Collecting Translation Pieces

Require: X = xL1 , Xm = kL
′

1 , Y m = vL
′′

1 , Am,
Wm

Ensure: GmX
GmX = ∅
for i = 1 to L′′ do

for j = i to L′′ do
if j − i = 4 then

break
if ∃p : (p, j) ∈ Am ∧ p /∈ Wm then

break
add vji into GmX

𝑦1, . . . , 𝑦𝑡−1

𝑣𝑁

𝑣1

𝑣2

𝑣3

...

Output layer of NMT
Matched translation pieces

𝑦𝑡−1, 𝑣3

𝑦𝑡−2, 𝑦𝑡−1, 𝑣3

𝑣2

𝑣3

RewardPredict the next word

Target vocabulary

Figure 2: A simple demonstration of adding rewards
for matched translation pieces into the NMT output
layer.

3.2 Guiding NMT with Retrieved Translation
Pieces

In the next phase, we use our NMT system to
translate the input sentence. Inspired by Stahlberg
et al. (2017) which rewards n-grams from syn-
tactic translation lattices during NMT decoding,
we add an additional reward for n-grams that oc-
cur in the collected translation pieces. That is, as
shown in Figure 2, at each time step t, we up-
date the probabilities over the output vocabulary
and increase the probabilities of those that result
in matched n-grams according to

logSNMT updated

(
yt|yt−11 , X

)

= logPNMT

(
yt|yt−11 , X

)
+

λ
4∑

n=1

δ

(
ytt−n+1, X,

M⋃

m=1

{(Xm, GmX)}
)
,

(10)

where λ can be tuned on the development set and
δ (·) is computed as Equation 8 if ytt−n+1 ∈ GX ,
otherwise δ (·) = 0.

To implement our method, we use a dictionary

Algorithm 2 Guiding NMT by Translation Pieces

Require: Output layer logPNMT

(
yt|yt−11 , X

)
,

LX , DX
Ensure: Updated output layer

for u in LX do
logPNMT

(
u|yt−11 , X

)
+ = λDX (u)

for i = 1 to 3 do
if t− i < 1 then

break
if yt−1t−i , u /∈ DX then

break
logPNMT

(
u|yt−11 , X

)
+=λDX

(
yt−1t−i , u

)

DX to store translation piecesGX and their scores
for each input sentence X . At each time step t, we
update the output layer probabilities by checking
DX . However, it is inefficient to traverse all target
words in the vocabulary and check whether they
belong to GX or not, because the vocabulary size
is large. Instead, we only traverse target words that
belong toGX and update the corresponding output
probabilities as shown in Algorithm 2. Here, LX
is a list that stores 1-grams contained in GX .4

As we can see, our method only up-weights
NMT outputs that match the retrieved translation
pieces in the NMT output layer. In contrast, Li
et al. (2016) and Farajian et al. (2017) use the
retrieved sentence pairs to run additional train-
ing iterations and fine tune the NMT parameters
for each input sentence; Gu et al. (2017) runs the
NMT model for each retrieved sentence pair to ob-
tain the NMT encoding and decoding information
of the retrieved sentences as key-value memory to
guide NMT for translating the new input sentence.
Compared to their methods, our method adds little
computational/memory cost and is simple to im-
plement.

4 Experiment

4.1 Settings

Following Gu et al. (2017), we use version 3.0 of
the JRC-Acquis corpus for our translation experi-
ments. The JRC-Acquis corpus contains the total
body of European Union (EU) law applicable in
the EU Member States. It can be used as a narrow
domain to test the effectiveness of our proposed
method. We did translation experiments on three

4Note that our method does not introduce new states dur-
ing decoding, because the output layer probabilities are sim-
ply updated based on history words and the next word.
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en-de en-fr en-es
BLEU METEOR BLEU METEOR BLEU METEOR

dev NMT 44.08 36.69 57.26 43.51 55.76 42.53
Ours 50.81 39.50 62.60 45.83 60.51 44.58

test NMT 43.76 36.57 57.67 43.66 55.78 42.55
Ours 50.15 39.18 63.27 46.24 60.54 44.64

Table 2: Translation results.

en-de en-fr en-es
TRAIN 674K 665K 663K
DEV 1,636 1,733 1,662
TEST 1,689 1,710 1,696
Average Length 31 29 29

Table 3: Data sets. The last line is the average length
of English sentences.

directions: English-to-German (en-de), English-
to-French (en-fr) and English-to-Spanish (en-es).

We cleaned the data by removing repeated sen-
tences and used the train-truecaser.perl
script from Moses (Koehn et al., 2007) to truecase
the corpus. Then we selected 2000 sentence pairs
as development and test sets, respectively. The rest
was used as the training set. We removed sen-
tences longer than 80 and 100 from the training
and development/test sets respectively. The final
numbers of sentence pairs contained in the train-
ing, development and test sets are shown in Ta-
ble 3.5 We applied byte pair encoding (Sennrich
et al., 2016b) and set the vocabulary size to be
20K.

For translation piece collection, we use
GIZA++ (Och and Ney, 2003) and the
grow-diag-final-and heuristic (Koehn
et al., 2003) to obtain symmetric word alignments
for the training set.

We trained an attentional NMT model as our
baseline system. The settings for NMT are shown
in Table 4. We also compared our method with the
search engine guided NMT model (SGNMT, Gu
et al. (2017)) in Section 4.5.

Word embedding 512
GRU dimension 1024
Optimizer adam
Initial learning rate 0.0001
Beam size 5

Table 4: NMT settings.

5We put the datasets used in our experiments on Github
https://github.com/jingyiz/Data-sampled-preprocessed

en-de en-fr en-es
dev NMT 1.000 0.990 0.997

Ours 1.005 0.991 1.001
test NMT 0.995 0.990 0.990

Ours 1.004 0.989 0.993

Table 5: Ratio of translation length to reference length.

For each input sentence, we retrieved 100 sen-
tence pairs from the training set using Lucene as
our preliminary setting. We analyze the influence
of the retrieval size in Section 4.4. The weights of
translation pieces used in Equation 10 are tuned on
the development set for different language pairs,
resulting in weights of 1.5 for en-de and en-fr, and
a weight of 1 for en-es.

4.2 Results
Table 2 shows the main experimental results. We
can see that our method outperformed the base-
line NMT system up to 6 BLEU points. As large
BLEU gains in neural MT can also often be at-
tributed to changes in output length, we examined
the length (Table 5) and found that it did not influ-
ence the translation length significantly.

In addition, it is of interest whether how well the
retrieved sentences match the input influences the
search results. We measure the similarity between
a test sentence X and the training corpus Dtrain

by computing the sentence similarities between X
and the retrieved source sentences as

simi (X,Dtrain) = max
1≤m≤M

simi (X,Xm) .

(11)
The similarity between the test set Dtest and the
training corpus Dtrain is measured as,

simi (Dtest, Dtrain) =

∑
X∈Dtest

simi (X,Dtrain)

|Dtest|
(12)

Our analysis demonstrated that, expectedly, the
performance of our method is highly influenced by
the similarity between the test set and the training
set. We divided sentences in the test set into two
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whole half-H half-L
en-de 0.56 0.80 0.32
en-fr 0.57 0.81 0.33
en-es 0.57 0.81 0.32

Table 6: Similarities between the training set and the
whole/divided test sets.

whole half-H half-L
en-de NMT 43.76 60.93 32.25

Ours 50.15 73.26 34.28
en-fr NMT 57.67 72.64 47.38

Ours 63.27 82.76 49.81
en-es NMT 55.78 69.32 46.26

Ours 60.54 78.37 47.93

Table 7: Translation results (BLEU) for the
whole/divided test sets.

parts: half has higher similarities with the train-
ing corpus (half-H) and half has lower similarities
with the training corpus (half-L). Table 6 shows
the similarity between the training corpus and the
whole/divided test sets. Table 7 shows translation
results for the whole/divided test sets. As we can
see, NMT generally achieved better BLEU scores
for half-H and our method improved BLEU scores
for half-H much more significantly than for half-
L, which shows our method can be quite useful
for narrow domains where similar sentences can
be found.

We also tried our method on WMT 2017
English-to-German News translation task. How-
ever, we did not achieve significant improvements
over the baseline attentional NMT model, likely
because the test set and the training set for the
WMT task have a relatively low similarity as
shown in Table 8 and hence few useful transla-
tion pieces can be retrieved for our method. In
contrast, the JRC-Acquis corpus provides test sen-
tences that have much higher similarities with the
training set, i.e., much more and longer translation
pieces exist.

To demonstrate how the retrieved translation
pieces help NMT to generate appropriate outputs,
Figure 3 shows an input sentence with reference,
the retrieved sentence pair with the highest sen-
tence similarity and outputs by different systems
for this input sentence with detailed scores: log
NMT probabilities for each target word in T1 and
T2; scores for matched translation pieces con-
tained in T1 and T2. As we can see, NMT as-

WMT JRC-Acquis
Similarity Sent Percent Sent Percent
[0, 0.1) 0 0% 4 0.2%
[0.1, 0.2) 415 13.8% 141 8.3%
[0.2, 0.3) 1399 46.5% 238 14.0%
[0.3, 0.4) 740 24.6% 194 11.4%
[0.4, 0.5) 281 9.3% 154 9.1%
[0.5, 0.6) 113 3.7% 156 9.2%
[0.6, 0.7) 29 0.9% 157 9.2%
[0.7, 0.8) 10 0.3% 156 9.2%
[0.8, 0.9) 10 0.3% 252 14.9%
[0.9, 1) 0 0% 237 14.0%
1 7 0.2% 0 0%

Table 8: Statistics for similarities between each test
sentence and the training set as computed by Equa-
tion 11 for the WMT 2017 en-de task (3004 sentences)
and our JRC-Acquis en-de task (1689 sentences).

en-de en-fr en-es
dev NMT 44.08 57.26 55.76

Ours 50.81 62.60 60.51
1/0 reward 47.70 61.15 58.92

test NMT 43.76 57.67 55.78
Ours 50.15 63.27 60.54
1/0 reward 47.13 62.14 58.66

Table 9: Translation results (BLEU) of 1/0 reward.

signs higher probabilities to the incorrect transla-
tion T1, even though the retrieved sentence pair
whose source side is very similar with the input
sentence was used for NMT training.

However, T2 contains more and longer trans-
lation pieces with higher scores. The five trans-
lation pieces contained only in T2 are collected
from the retrieved sentence pair shown in Figure 3,
which has high sentence similarity with the input
sentence. The three translation pieces contained
only in T1 are also translation pieces collected for
the input sentence, but have lower scores, because
they are collected from sentence pairs with lower
similarities with the input sentence. This shows
that computing scores for translation pieces based
on sentence similarities is important for the perfor-
mance of our method. If we assign score 1 to all
translation pieces contained in GX , i.e., use 1/0
reward for translation pieces and non-translation
pieces, then the performance of our method de-
creased significantly as shown in Table 9, but still
outperformed the NMT baseline significantly.
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T1 (NMT)

Reference
Source

T2 (Ours)

operationalrelation theto suitabilityinrequirements of bulk carriers

relation thetoinrequirements suitability of terminals

Vorschriften die betriebliche Eignung Massen@@von gut@@ schiffenfür

Vorschriften diefür Eignung von Um@@ schlags@@ anlagen

Vorschriften
-2.71

die
-0.10

betriebliche
-0.91

Eignung
-0.13

Massen@@
-0.33

von
-0.12

gut@@
-0.12

schiffen
-0.69

für
-0.72

Anforderungen
-0.81

die
-0.02

betriebliche
-0.69

Eignung
-0.13

Massen@@
-0.33

von
-0.12

gut@@
-0.13

schiffen
-0.71

an
-0.34

</s>
-0.01

</s>
-0.02

0.70.7 0.17 0.70.210.16 0.35
0.7

0.350.35
0.21 0.35

0.35
0.35
0.35

0.35
0.35

0.350.350.35

0.35
0.35

0.7 0.7

0.7

0.70.170.70.7
0.7

0.7
0.7

0.35

0.35

0.35

0.35

Our scores
NMT scores

Our scores
NMT scores

Reference
Source

Translation

Retrieved

Green

Yellow

Figure 3: Translation examples. Red scores are log NMT probabilities. Green, yellow and blue scores are scores
of matched translation pieces contained only in T1, contained only in T2, contained in both T1 and T2, respectively.

γ 0 1 2 5 10 20 50 100
en-de NMT 5834 3193 1988 1196 717 370 157 75

Ours 5843 5433 3153 1690 933 458 193 86
Ratio (Ours/NMT) 1.00 1.70 1.58 1.41 1.30 1.23 1.22 1.14

en-fr NMT 6983 3743 2637 1563 812 493 210 118
Ours 7058 5443 3584 1919 968 581 214 134
Ratio (Ours/NMT) 1.01 1.45 1.35 1.22 1.19 1.17 1.01 1.13

en-es NMT 6500 3430 2292 1346 772 437 182 95
Ours 6516 4589 2970 1652 895 500 196 97
Ratio (Ours/NMT) 1.00 1.33 1.29 1.22 1.15 1.14 1.07 1.02

Table 10: Countγ

4.3 Infrequent n-grams

The basic idea of our method is rewarding n-
grams that occur in the training set during NMT
decoding. We found our method is especially use-
ful to help the translation for infrequent n-grams.
First, we count how many times a target n-gram u
occurs in the training set Dtrain as,

Occur (u) = |{Y : 〈X,Y 〉 ∈ Dtrain ∧ u ∈ uniq (Y )}|
(13)

where uniq (Y ) is the set of uniq n-grams (up to
4-grams) contained in Y .

Given system outputs
{
Zk : 1 ≤ k ≤ K

}
for

the test set
{
Xk : 1 ≤ k ≤ K

}
with reference{

Y k : 1 ≤ k ≤ K
}

, we count the number of cor-

rectly translated n-grams that occur γ times in the
training set as,

Countγ =
K∑

k=1

∣∣∣ψ
(
γ, Zk, Y k

)∣∣∣ (14)

where

ψ
(
γ, Zk, Y k

)
=

{
u : u ∈

(
uniq

(
Zk
)
∩ uniq

(
Y k
))

∧Occur (u) = γ
}

(15)

Table 10 shows Countγ for different system
outputs. As we can see, our method helped lit-
tle for the translation of n-grams that do not occur
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en-de en-fr en-es
Base NMT decoding 0.215 0.224 0.227
Search engine retrieval 0.016 0.017 0.016
TP collection 0.521 0.522 0.520
Our NMT decoding 0.306 0.287 0.289

Table 11: Translation time (seconds).

0

0.15

0.3

0.45

0.6

1 2 5 10 20 50 100

Figure 4: Translation piece collection time (seconds)
with different search engine retrieval sizes.

in the training set, which is reasonable because we
only reward n-grams that occur in the training set.
However, our method helped significantly for the
translation of n-grams that do occur in the train-
ing set but are infrequent (occur less than 5 times).
As the frequency of n-grams increases, the im-
provement caused by our method decreased. We
analyze that the reason why our method is espe-
cially helpful for infrequent n-grams is that NMT
is trained on the whole training corpus for max-
imum likelihood and tends to generate more fre-
quent n-grams while our method computes scores
for the collected translation pieces based on sen-
tence similarities and does not prefer more fre-
quent n-grams.

4.4 Computational Considerations

Our method only collects translation pieces to help
NMT for translating a new sentence and does not
influence the training process of NMT. Therefore,
our method does not increase the NMT training
time. Table 11 shows the average time needed for
translating one input sentence in the development
set in our experiments. The search engine retrieval
and translation piece (TP) collection time is com-
puted on a 3.47GHz Intel Xeon X5690 machine
using one CPU. The NMT decoding time is com-
puted using one GPU GeForce GTX 1080.

As we can see, the search engine retrieval time
is negligible and the increase of NMT decoding
time caused by our method is also small. However,
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Figure 5: NMT decoding time (seconds) with different
search engine retrieval sizes.
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Figure 6: Translation results (BLEU) with different
search engine retrieval sizes.

collecting translation pieces needed considerable
time, although our implementation was in Python
and could potentially be significantly faster in a
more efficient programming language. The trans-
lation piece collection step mainly consists of two
parts: computing the edit distances between the
input sentence and the retrieved source sentences
using dynamic programming with time complex-
ity O

(
n2
)
; collecting translation pieces using Al-

gorithm 1 with time complexity O (4n).

We changed the size of sentence pairs re-
trieved by the search engine and analyze its in-
fluence on translation performance and time. Fig-
ure 4, 5 and 6 show the translation piece collec-
tion time, the NMT decoding time and transla-
tion BLEU scores with different search engine re-
trieval sizes for the en-fr task. As we can see,
as the number of retrieved sentences decreased,
the time needed by translation piece collection de-
creased significantly, the translation performance
decreased much less significantly and the NMT
decoding time is further reduced. In our experi-
ments, 10 is a good setting for the retrieval size,
which gave significant BLEU score improvements
and caused little increase in the total translation
time compared to the NMT baseline.
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en-de en-fr en-es
dev NMTreported 44.94 58.95 50.54

SGNMTreported 49.26 64.16 57.62
NMT 45.18 59.08 50.71
Ours 50.61 65.03 57.49

test NMTreported 43.98 59.42 50.48
SGNMTreported 48.80 64.60 57.27
NMT 44.21 59.43 50.61
Ours 50.36 65.69 57.11

Table 12: Comparison with SGNMT.

4.5 Comparison with SGNMT

We compared our method with the search en-
gine guided NMT (SGNMT) model (Gu et al.,
2017). We got their preprocessed datasets and
tested our method on their datasets, in order to
fairly compare our method with their reported
BLEU scores.6 Table 12 shows the results of their
method and our method with the same settings for
the baseline NMT system. As we can see, our
method generally outperformed their method on
the three translation tasks.

Considering the computational complexity,
their method also performs search engine retrieval
for each input sentence and computes the edit dis-
tance between the input sentence and the retrieved
source sentences as our method. In addition, their
method runs the NMT model for each retrieved
sentence pair to obtain the NMT encoding and de-
coding information of the retrieved sentences as
key-value memory to guide the NMT model for
translating the real input sentence, which changes
the NMT model structure and increases both the
training-time and test-time computational cost.
Specifically, at test time, running the NMT model
for one retrieved sentence pair costs the same time
as translating the retrieved source sentence with
beam size 1. Therefore, as the number of the re-
trieved sentence pairs increases to the beam size
of the baseline NMT model, their method doubles
the translation time.

5 Conclusion

This paper presents a simple and effective method
that retrieves translation pieces to guide NMT for
narrow domains. We first exploit a search engine
to retrieve sentence pairs whose source sides are
similar with the input sentence, from which we

6Only BLEU scores are reported in their paper.

collect and weight translation pieces for the in-
put sentence based on word-level alignments and
sentence similarities. Then we use an existing
NMT model to translate this input sentence and
give an additional bonus to outputs that contain
the collected translation pieces. We show our
method improved NMT translation results up to
6 BLEU points on three narrow domain transla-
tion tasks, caused little increase in the translation
time, and compared favorably to another alterna-
tive retrieval-based method with respect to accu-
racy, speed, and simplicity of implementation.
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