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Abstract

Contextual sequence mapping is one of the
fundamental problems in Natural Language
Processing. Instead of relying solely on the
information presented in a text, the learning
agents have access to a strong external signal
given to assist the learning process. In this pa-
per, we propose a novel family of Recurrent
Neural Network unit: the Context-dependent
Additive Recurrent Neural Network (CARNN)
that is designed specifically to leverage this ex-
ternal signal. The experimental results on pub-
lic datasets in the dialog problem (Babi dialog
Task 6 and Frame), contextual language model
(Switchboard and Penn Discourse Tree Bank)
and question answering (TrecQA) show that
our novel CARNN-based architectures outper-
form previous methods.

1 Introduction

Sequence mapping is one of the most prominent
class of problems in Natural Language Processing
(NLP). This is due to the fact that written language
is sequential in nature. In English, a word is a se-
quence of characters, a sentence is a sequence of
words, a paragraph is a sequence of sentences, and
so on. However, understanding a piece of text may
require far more than just extracting the informa-
tion from that piece itself. If the piece of text is
a paragraph of a document, the reader may have
to consider it together with other paragraphs in the
document and the topic of the document. To un-
derstand an utterance in a conversation, the utter-
ance has to be put into the context of the conver-
sation, which includes the goals of the participants
and the dialog history. Hence the notion of context
is an intrinsic component of language understand-
ing.

Inspired by recent works in dialog systems (Seo
et al., 2017; Liu and Perez, 2017), we formal-
ize the contextual sequence mapping problem as

a sequence mapping problem with a strong con-
trolling contextual element that regulates the flow
of information. The system has two sources of
signals: (i) the main text input, for example, the
history utterance sequence in dialog systems or
the sequence of words in language modelling; and
(ii) the context signal, e.g., the previous utterance
in a dialog system, the discourse information in
contextual language modelling or the question in
question answering.

Our contribution in this work is two-fold.
First, we propose a new family of recurrent unit,
the Context-dependent Additive Recurrent Neural
Network (CARNN), specifically constructed for
contextual sequence mapping. Second, we de-
sign novel neural network architectures based on
CARNN for dialog systems and contextual lan-
guage modelling, and enhance the state of the
art architecture (IWAN (Shen et al., 2017)) on
question answering. Our novel building block,
the CARNN, draws inspiration from the Recur-
rent Additive Network (Lee et al., 2017), which
showed that most of the non-linearity in the suc-
cessful Long Short Term Memory (LSTM) net-
work (Hochreiter and Schmidhuber, 1997) is not
necessary. In the same spirit, our CARNN unit
minimizes the use of non-linearity in the model to
facilitate the ease of gradient flow. We also seek
to keep the number of parameters to a minimum
to improve trainability.

We experiment with our models on a broad
range of problems: dialog systems, contextual lan-
guage modelling and question answering. Our
systems outperform previous methods on sev-
eral public datasets, which include the Babi Task
6 (Bordes and Weston, 2017) and the Frame
dataset (Asri et al., 2017) for dialog, the Switch-
board (Jurafsky et al., 1997) and Penn Dis-
course Tree Bank (Miltsakaki et al., 2004) for
contextual language modelling, and the TrecQA
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dataset (Wang et al., 2007) for question answer-
ing. We propose a different architecture for each
task, but all models share the basic building block,
the CARNN.

2 Background and Notation

Notation. As our paper describes several architec-
tures with vastly different setups and input types,
we introduce the following notation to maintain
consistency and improve readability. First, the m-
th input to the recurrent unit will be denoted em.
In language modelling, em is the embedding of the
m-th word; while in dialog, it is the embedding
of the m-th utterance (which is a combination of
the embedding of the words inside the utterance,
xm1 . . . xmMm

). All the gates are denoted by g, all
the hidden vectors (outputs of the RNN) are de-
noted by h. Ws and bs are the RNN’s parameters,
σ denotes the sigmoid activation function, and �
denotes the element-wise product.

LSTM. The Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) is
arguably one of the most popular building blocks
for RNN. The main components of the LSTM are
three gates: an input gate gim to regulate the in-
formation flow from the input to the memory cell
cm, a forget gate gfm to regulate the information
flow from the previous time step’s memory cell
cm−1, and an output gate gom that regulates how
the model produces the outputs (hidden state hm)
from the memory cell ct. The computations of
LSTM are as follows:

c̃m = tanh(Wc
hhm−1 + Wc

xem + bc)

gim = σ(Wi
hhm−1 + Wi

xem + bi)

gfm = σ(Wf
hhm−1 + Wf

xem + bf )

gom = σ(Wo
hhm−1 + Wo

xem + bo)

cm = gim � c̃m + gfm � cm−1

hm = gom � tanh(cm)

(1)

RAN. The Recurrent Additive Neural Network
(RAN) (Lee et al., 2017) is an improvement over
the traditional LSTM. However, there are three
major differences between the two. First, RAN
simplifies the output computations by removing
the output gate. Second, RAN simplifies the mem-
ory cell computations by removing the direct de-
pendency between the candidate update memory
cell c̃m and the previous hidden vector hm−1. Fi-
nally, RAN removes the non-linearity from the

transition dynamic of RNN by removing the tanh
non-linearity from the c̃m. The equations for RAN
are as follows:

c̃m = Wc
xem

gim = σ(Wi
hhm−1 + Wi

xem + bi)

gfm = σ(Wf
hhm−1 + Wf

xem + bf )

cm = gim � c̃m + gfm � cm−1

hm = s(cm)

(2)

where s can be an identity function (identity RAN)
or the tanh activation function (tanh RAN).

As shown in (Lee et al., 2017), RAN’s mem-
ory cells cm can be decomposed into a weighted
sum of the inputs. Their experimental results show
that RAN performs as well as LSTM for language
modelling, while having significantly fewer pa-
rameters.

3 The Context-dependent Additive
Recurrent Neural Net (CARNN)

In this section, we describe our novel recurrent
units for the context-dependent sequence mapping
problem.

Our RNN units use a different gate arrangement
than that used by RAN. However, if we consider
a broader definition of identity RAN, i.e., an RNN
where hidden unit outputs can be decomposed into
a weighted sum of inputs, where the weights are
functions of the gates, then our first CARNN unit
(nCARNN) can be viewed as an extension of iden-
tity RAN with additional controlling context.

The next two CARNN units (iCARNN and
sCARNN) further simplify the nCARNN unit to
improve trainability.

3.1 Non-independent gate CARNN
(nCARNN)

The main components of our recurrent units are
the two gates (an update gate gu and a reset gate
gf ), which jointly regulate the information from
the input. The input vector, after being pushed
through an affine transformation, is added into the
previous hidden vector hm−1. The computations
of the unit are as follows:

gum = σ(Wc
uc + Wh

uhm−1 + We
uem + bu)

gfm = σ(Wc
fc + Wh

fhm−1 + We
fem + bf )

ēm = Wēem + bē

hm = gum � (gfm � ēm) + (1− gum)� hm−1

(3)
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Figure 1: Context Dependent Additive Recurrent Neu-
ral Network. Note that only nCARNN has the previous
hidden state hm−1 in its gate computation, iCARNN
and sCARNN do not.

where c is the representation of the global context.
Apart from the non-linearity in the gates, our

model is a linear function of the inputs. Hence,
the final hidden layer of our RNN, denoted as hM ,
is a weighted sum of the inputs and a bias term Bi

(Equation 4), where the weights are functions of
the gates and Wē is a dimension reduction matrix.

hM = guM � gfM � ēM + (1− guM )� hM−1

=
M∑

i=1

(gui � gfi �
M∏

j=i+1

(1− guj ))� ēi

=

M∑

i=1

[(gui � gfi �
M∏

j=i+1

(1− guj ))�Wēei + Bi]

(4)

From the decomposition in Equation 4, it seems
that the outputs of an RNN with the nCARNN unit
can be efficiently computed in parallel. That is, we
can compute the weight for each input in parallel,
and take their weighted sum to produce any de-
sired hidden vector output. However, there is one
obstacle: since the gates are functions of the pre-
vious hidden states, they still need to be computed
sequentially. But if we assume that the external
controlling context c is strong enough to regulate
the flow of information, we can remove the pre-
vious hidden state (local context hm−1) from the
gate computations, and make the RNN computa-
tions parallel. The next two variants of CARNN
implement this idea by removing the local context
from gate computations.

3.2 Independent gate CARNN (iCARNN)
The Gated Recurrent Unit (GRU) (Chung et al.,
2014) and LSTM networks use a local context (the
previous hidden state hm−1) and the current input
to regulate the flow of information. In contrast,
our model, relies on the global controlling context
c at every step, and thus, might not need the local
context hm−1 at all. Removing the local context
can reduce the computational complexity of the
model, but it may result in a loss of local sequen-
tial information. To test the effectiveness of this
trade-off, we propose another variant of our unit,
the independent gate CARNN (iCARNN), where
the gate computations are simplified, and the gates
are functions of the controlling context and the in-
puts. This formulation of CARNN is formally de-
fined as follows.

gum = σ(Wc
uc + We

uem + bu)

gfm = σ(Wc
fc + We

fem + bf )

ēm = Wēem + bē

hm = gum � (gfm � ēm) + (1− gum)� hm−1

(5)

Compared to the traditional RNN, iCARNN’s
gates computations do not take into account the
sequence context, i.e., the previous hidden vector
computations, and the gates at all time steps can be
computed in parallel. However, iCARNN, unlike
memory network models (Sukhbaatar et al., 2015;
Liu and Perez, 2017), still retains the sequential
nature of RNN. This is because even though the
gates at different time steps do not depend on each
other, the hidden vector output at the m-th time
step hm depends on the previous gate (gum−1), and
hence on the previous input.

3.3 Simplified candidate CARNN (sCARNN)
The standard GRU and the LSTM employ a linear
transformation on the input representation before
it is incorporated into the hidden representation.
We have followed this convention with the previ-
ous variants of our unit. Although this transfor-
mation improves dimensional flexibility of the in-
put/output vector, and adds representational power
to the model with additional parameters, it also in-
creases computational complexity. Fixing the out-
put dimension to be the same as the input dimen-
sion makes it possible to reduce the computational
complexity of the model. This leads us to propose
another variant of the CARNN where the candi-
date update ēm is the original embedding of the
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current input (Equation 6). We call this variation
the simplified candidate CARNN (sCARNN). The
combination of lower gate computational com-
plexity and the parallel-ability allow the paralleled
sCARNN version to be 30% faster (30% lower
training time for each epoch) than nCARNN in the
question answering and dialog experiments, and
15% faster in the language model experiment. The
sCARNN is formally defined as follows.

gum = σ(Wc
uc + We

uem + bu)

gfm = σ(Wc
fc + We

fem + bf )

hm = gum � (gfm � em) + (1− gum)� hm−1

(6)

sCARNN can still be decomposed into a
weighted sum of the sequence of input elements,
and retains the parallel computation capability of
the iCARNN.

hM = guM � gfM � em + (1− guM )� hM−1

=
M∑

i=1

(gui � gfi �
M∏

j=i+1

(1− guj ))� ei

(7)

4 CARNN-based models for NLP
problems

In this section, we explain the details of our
CARNN-based architectures for end-to-end dia-
log, language modelling and question answering.
In each of these applications, one of the main de-
sign concerns is the choice of contextual informa-
tion. As we will demonstrate in this section, the
controlling context c can be derived from various
sources: a sequence of words (dialog and question
answering), a class variable (language modelling).
Virtually any sources of strong information that
can be encoded into vectors can be used as con-
trolling context.

4.1 End-to-end dialog

To produce a response, we first encode the whole
dialog history into a real vector representation
hhis. To this effect, we perform two steps: first, we
encode each utterance (sequence of words) into a
real vector, and next, we encode this sequence of
real vector representations into hhis. We employ
the Position Encoder (Bordes and Weston, 2017)
for the first step, and CARNNs for the second step.

Summarizing individual utterances. Let’s de-
note the sequence of word-embeddings in the m-
th utterance xm1 , . . . xmNm

. These word embeddings
are jointly trained with the model. Following
previous work in end-to-end dialog systems, we
opt to use the Position Encoder (Liu and Perez,
2017; Bordes and Weston, 2017) for encoding ut-
terances.

The Position Encoder is an improvement over
the average embedding of bag of words, as it
takes into account the position of the words in
a sequence. This encoder has been empirically
shown to perform well on the Babi dialog task (Liu
and Perez, 2017; Bordes and Weston, 2017);
more details about the Position Encoder can be
found in (Sukhbaatar et al., 2015). Let’s denote
the the embeddings of a sequence of utterances
e1, . . . eM−1.

Summarizing the dialog history. The CARNN
models take the embeddings of the sequence of ut-
terances and produce the final representation hhis.
We further enhance the output of the CARNN by
adding the residual connection to the input (He
et al., 2016; Tran et al., 2017), and the attention
mechanism (Bahdanau et al., 2015) over the his-
tory.

h1, ..hM−1 = CARNN(e1, ..eM−1, c)

∀m ∈ [1..M − 1] : h̃m = hm + em

α1..αM−1 = softmax(h̃T
1 c, .., h̃T

M−1c)

hhis =
M−1∑

m=1

αmh̃m

(8)

where α are the attention weights, hm is the m-th
output of the base CARNN, em is the embedding
of the m-th input utterance, and c = eM is the
context embedding.

Our model chooses the response from a set of
pre-determined system answers (a task setup fol-
lowing Bordes and Weston (2017); Liu and Perez
(2017); Seo et al. (2017)). However, in the dia-
log case, the answers themselves are sequences of
words, and treating them as distinct classes may
not be the best approach. In fact, previous work
in memory networks (Liu and Perez, 2017; Bor-
des and Weston, 2017) employs a feature function
Φ to extract features from the candidate responses.
In our work, we do not use any feature extraction,
and simply use the Position Encoder to encode the
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Figure 2: CARNN for dialog.

responses as shown in Figure 2, which depicts our
architecture of CARNN for dialog.

∀l ∈ [1..L] : el = Position Encoder(ycl ) (9)

We then put a distribution over the candidate
responses conditioned on the summarized dialog
history hhis (Equation 10).

P(y) = softmax(hT
hisey1, ...,h

T
hiseyL) (10)

4.2 Contextual language model
Typically, language models operate at the sentence
level, i.e., the sentences are treated independently.
Several researchers have explored inter-sentence
and inter-document level contextual information
for language modelling (Ji et al., 2016a,b; Tran
et al., 2016; Lau et al., 2017).

Following Ji et al. (2016a,b), we investigate two
types of contextual information: (i) the previous
sentence context; and (ii) a latent variable captur-
ing the connection information between sentences,
such as discourse relation in the Penn Discourse
Tree Bank dataset or Dialog Acts in the Switch-
board dataset.

Previous sentence context. The previous sen-
tence (time-step t − 1) contextual information is
encoded by a simplified version of the nCARNN,
where the global context is absent. The final hid-
den vector of this sequence is then fed into the
current recurrent computation (time-step t) as the
context for that sequence. Equation 11 shows this
procedure.

ct−1 ←−nCARNN(et−1
1 , ..et−1

Mt−1)

ht
1, ..h

t
Mt−1 = CARNN(et1, ..e

t
Mt , ct−1)

wt
m+1 ∼ softmax(W(l)ht

m + b(l))

(11)

Latent variable context. Ji et al. (2016b) pro-
posed to embed the predicted latent variables us-
ing an embedding matrix, and use this real vector
as the contextual information. In our work, we de-
sign a multi-task learning scenario where the pre-
vious sentence context encoder has additional su-
pervised information obtained from the annotated
latent variable (Lt−1). This additional information
from the latent variable is only used to train the
previous sentence encoder, and enhance the con-
text ct−1 (Equation 12). During test time, the lan-
guage model uses the same computation steps as
the previous sentence context version.

P(Lt−1) = softmax(W(c)ct−1 + b(c))

Lt−1
l ∼ P(Lt−1)

(12)

During training, the total loss function (Lt
l,w)

is the linear combination of the average log-loss
from the current sentence’s words (Lt

w) and the
log-loss from the previous latent variable (Lt−1

l ).

Lt
l,w = αLt

w + (1− α)Lt−1
l (13)

where α is a linear mixing parameter. In our ex-
periments, tuning α does not yield significant im-
provements, hence we set α = 0.5.

4.3 Question answering

Answer selection is an important component of a
typical question answering system. This task can
be briefly described as follows: Given a question q
and a candidate set of sentences c1, c2, . . . cn, the
goal is to identify positive sentences that contain
the answer. Many researchers have investigated
employing neural networks for this task (Rao
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Figure 3: CARNN for context-dependent language model.

et al., 2016; Wang et al., 2017; Bian et al., 2017;
Shen et al., 2017; Tay et al., 2017; He et al., 2015).
Below is an example from the answer selection
TrecQA corpus:

Question: Who established the Nobel prize
awards?
Positive answer: The Nobel Prize was estab-
lished in the will of Alfred Nobel, a Swede who
invented dynamite and died in 1896.
Negative answer: The awards aren’t given in
specific categories.

The IWAN model proposed in (Shen et al.,
2017) achieves state-of-the-art performance on the
Clean version TrecQA dataset (Wang et al., 2007)
for answer selection. In general, given two sen-
tences, the model aims to calculate a score to mea-
sure their similarity. For each sentence, the model
first uses a bidirectional LSTM to obtain a context-
aware representation for each position in the sen-
tence. The representations will later be utilized by
the model to compute similarity score of the two
sentences according to the degree of their align-
ment (Shen et al., 2017).

The original IWAN model employed LSTM to
encode the sentence pair into sequences of real
vector representations. However, these sequences
are independent, and do not take into account
the information from the other sentence. In or-
der to overcome this limitation, we enhance the
IWAN model with a “cross context CARNN-based
sentence encoder” that replaces the bidirectional
LSTM. When the cross context CARNN sentence
encoder processes a sentence, it takes the encod-
ing of the other sentence, encoded by a Position
Encoder, as the controlling context (Figure 4).

5 Experiments

5.1 End-to-end dialog

Datasets. For the dialog experiments, we fo-
cus on two popular datasets for dialog: the Babi
dataset (Bordes and Weston, 2017) and the Mal-
luba Frame dataset (Asri et al., 2017).1

In our main set of experiments for dialog, we
use the original Babi task 6 dataset, and test on the
end-to-end dialog setting (the same setting used by
Seo et al. (2017); Bordes and Weston (2017); Liu
and Perez (2017)). That is, the systems have to
produce complete responses and learn the dialog
behaviour solely from the ground truth responses
without help from manual features, rules or tem-
plates. Apart from this main set of experiments,
we apply our end-to-end systems as dialog man-
agers and test on a slightly different setting in the
next two sets of experiments.

In the second set of experiments, we use our
end-to-end systems as “dialog managers”. The
only difference compared to the end-to-end dialog
setting is that the systems produce templatized re-
sponses instead of complete responses. Our moti-
vation for this dialog manager setting is that in our
preliminary experiments with the Babi dataset, we
found out that many of the classification errors are
due to very closely related responses, all of which
fit the corresponding context. We argue that if we
treat the systems as dialog managers, then we can
delexicalize and group similar responses. Thus
following Williams et al. (2017), we construct a
templatized set of responses. For example, all the

1Among the Babi tasks, we focus mainly on task 6, which
is based on real human-machine interactions. The other five
Babi datasets comprise synthetically generated data.
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Figure 4: CARNN for Question Answering.

responses similar to “india house is in the west
part of town” will be grouped into “ name is in
the loc part of town”. The set of responses is re-
duced to 75 templatized responses. We call this
new dataset “Babi reduced”.2

The third set of experiments is conducted on the
Frame dataset. The general theme in this dataset
is similar to that of the Babi task 6, but the re-
sponses in the Frame dataset are generally in free
form, rather than being sourced from a limited set.
Thus, we define a dialog task on the Frame data set
similar to the Babi reduced dialog task by simpli-
fying and grouping the responses.3 The final set of
responses consists of 129 response classes. For the
experiments on the Frame dataset, we randomly
choose 80% of the conversations as the training
set, and 10% each for testing and development.

Baselines. In the dialog experiments, we focus
on the existing published results with end-to-end
settings, namely the Memory Network (MN) (Bor-
des and Weston, 2017), the Gated Memory Net-
work (GMN) (Liu and Perez, 2017) and the Query
Reduction Network (QRN) (Seo et al., 2017).4 For
the Frame and Babi reduced datasets, we use the
publicly available implementation of the QRN,5

and our implementation of the GMN with hyper
parameters similar to those reported by Liu and

2We do not have access to Williams et al. (2017)’s tem-
plate set, thus the results in Babi reduced are not comparable
to those obtained by Williams et al. (2017).

3We use only one of the annotated “Dialog acts” and its
first slot key as a template for the response.

4Williams et al. (2017) and Liu and Lane (2017) reported
very strong performances (55.6% and 52.8% respectively) for
the Babi dataset. However, these systems do not learn dia-
log behaviour solely from Babi’s ground truth responses, and
thus do not have end-to-end dialog setups. As stated in their
papers, Williams et al.use hand-coded rules and task-specific
templates, while Liu et al.employ the external users’ goal an-
notations that are outside the Babi dataset.

5https://github.com/uwnlp/qrn

Model Babi Babi reduced Frame
nCARNN 51.3%* 55.8%* 27.4%*
iCARNN 52.0%* 55.2%* 28.5%*
sCARNN 50.9%* 55.9%* 25.7%*
CARNN voting 53.2%* 56.9%* 29.1%*
QRN (2017) 46.8% 54.7% 24.0%
GMN (2017) 47.4% 54.1% 23.6%
MN (2017) 41.1% – –

Table 1: Dialog accuracy on Babi and Frame among
end-to-end systems. * indicates statistical significance
with p < 0.1 compared to QRN.

Perez (2017); Seo et al. (2017). Note that the orig-
inal results presented by Seo et al. (2017), take into
account partial matches (matching only a portion
of the ground truth response), and hence cannot be
directly translated into the standard response accu-
racy reported by other researchers (we have con-
firmed this with Seo et al.). For a direct compari-
son with the QRN, we use the evaluation settings
employed in other papers (Liu and Perez, 2017;
Sukhbaatar et al., 2015).

Results and discussion. Table 1 shows the re-
sults of the end-to-end models for the dialog task.
All the CARNN-based systems are implemented
in Tensorflow (Abadi et al., 2015) with a hidden
vector size of 1024. As seen in Table 1, our mod-
els achieve the best results, and within the vari-
ants of our models, the iCARNN either performs
the best, or very close to the best on all datasets.
Majority voting provides a significant boost to the
performance of the CARNN models. Upon com-
parison with the baseline systems, CARNN mod-
els tend to perform better on instances which re-
quire the system to remember specific information
through a long dialog history. In Figure 5, the
user already mentioned that he/she wants to find a
“cheap” restaurant, but the GMN and QRN seem
to “forget” this information. We speculate that due
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U: im looking for a cheap restaurant
S: ... What type of food do you want??
...5 dialog turns...
S: Could you please repeat that?
U: vietnamese food

CARNN action: api call vietnamese R location cheap
QRN action: api call vietnamese R location R price
GMN action: api call vietnamese R location R price

Figure 5: Sample dialog from our system compared to
the baselines. Only CARNN’s predicted action takes
into account the original cheap restaurant request and
matches the ground truth action (in the systems’ api
calls, “R price” denotes “any price”).

to the ease of training, CARNN models summa-
rize the dialog history better, and allow for longer
information dependency.

The CARNN units are originally designed in
the dialog context. During model calibration, we
also tested in the dialog experiments two other
CARNN versions with both higher and lower
complexity. The lower complexity CARNN ver-
sion resembles sCARNN without the forget gate,
and the higher complexity CARNN version resem-
bles the LSTM unit with all three gates (forget,
update and output), with the gates being modified
from the original LSTM gates to be functions of
the external contextual information. Both of these
versions do not perform as well as the three main
CARNN versions (48.7% and 48.6% for the high-
and low-complexity versions respectively in the
Babi task).

5.2 Contextual language model

Datasets. We employ two datasets for the exper-
iments with the contextual language model: the
Switchboard Dialog Act corpus and the Penn Dis-
course Tree Bank corpus. There are 1155 tele-
phone conversations in the Switchboard corpus,
where each conversation has an average of 176 ut-
terances. There were originally 226 Dialog Act
(DA) labels in the corpus, but they are usually
clustered into 42 labels. The Penn Tree Bank
corpus provides discourse relation annotation be-
tween the spans of text. We used the preprocessed
data by Ji et al. (2016b), where the explicit dis-
course relations are mapped into a dummy rela-
tion. Our data splits are the same as those de-
scribed in the baselines (Ji et al., 2016a,b).

Baselines. We compare our system with the Re-
current Neural Net (RNNLM) with LSTM unit (Ji
et al., 2016a), the Document Contextual Lan-

Model Penn Discourse Switchboard
Tree Bank

nCARNN (w/o latent) 96.95 30.17
iCARNN (w/o latent) 94.72 32.49
sCARNN (w/o latent) 87.39 31.50
nCARNN (with latent) 96.64 29.72
iCARNN (with latent) 94.16 32.16
sCARNN (with latent) 86.68 31.49
RNNLM (2016b) 117.8 56.0
DCLM (2016a) 112.2 45.3
DRLM (2016b) 108.3 39.6

Table 2: Perplexity on Switchboard and Penn Dis-
course Tree Bank.

Model MAP MRR
IWAN (our implementation) + nCARNN* 0.827 0.889
IWAN (our implementation) + iCARNN* 0.826 0.907
IWAN (our implementation) + sCARNN* 0.829 0.875
IWAN (our implementation) 0.794 0.879
IWAN (2017) 0.822 0.889
Compare-Aggregate (2017) 0.821 0.899
BiMPM (2017) 0.802 0.875
NCE-CNN (2016) 0.801 0.877
HyperQA (2017) 0.784 0.865

Table 3: MAP and MRR for question answering. *
indicates statistical significance with α < 0.05 in t-test
compared to IWAN (our implementation).

guage Model (DCLM) (Ji et al., 2016a) and the
Discourse Relation Language Model (DRLM) (Ji
et al., 2016b). The RNNLM’s architecture is the
same as that described in (Mikolov et al., 2013)
with sigmoid non-linearity replaced by LSTM.
The DCLM exploits the inter-sentences context
by concatenating the representation of the pre-
vious sentence with the input vector (context-to-
context) or the hidden vector (context-to-output).
The DRLM introduces the latent variable contex-
tual models using a generative architecture that
treats Dialog Acts or discourse relations as latent
variables.

Results and discussion. Table 2 shows the test
set perplexities across the systems for the Penn
Tree Bank and Switchboard datasets. Interest-
ingly, in these experiments, the system with the
least computational complexity, the sCARNN,
performs best on Penn Discourse Tree Bank, and
second best on Switchboard. Generally, we found
out that adding the Dialog Act/Discourse super-
vised signal in a multi-task learning scheme pro-
vides a boost to performance, but this improve-
ment is small.
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5.3 Question answering

Datasets. The TrecQA dataset (Wang et al.,
2007) is a widely-used benchmark for answer
selection. There are two versions of TrecQA:
original and clean. The original TrecQA con-
sists of 1,229 training questions, 82 development
questions, and 100 test questions. Recently, re-
searchers (Rao et al., 2016; Shen et al., 2017)
developed a clean version, where they removed
questions in the development and test sets with no
answers or only positive/negative answers. This
reduced the development and test set’s sizes to 65
and 68 questions respectively.

Baselines. We compare the performance of our
models with that of the state-of-the-art models on
the clean version of the TREC-QA dataset (Shen
et al., 2017; Bian et al., 2017; Wang et al., 2017;
Rao et al., 2016; Tay et al., 2017). We do not have
access to the original implementation of IWAN,
hence we use our implementation of the IWAN
model as the basis for our models.

Results and discussion. Table 3 shows the
MAP (Mean Average Precision) and MRR (Mean
Reciprocal Rank) of our systems and the base-
lines. To the best of our knowledge, our systems
outperform all previous systems on this dataset.
Enhancing IWAN with cross-context CARNN
statistically significantly improves performance.
Among the variants, the iCARNN is the most con-
sistent in both MAP and MRR. During our error
analysis, we noted that the top answer returned
by IWAN models with either LSTM or CARNNs
are usually good. However, in many cases, lower
ranked answers returned by the LSTM model are
not as good as those produced by the CARNN
models. We show an example of this in Table 4.

6 Conclusion and future work

In this paper, we propose a novel family of
RNN units which are particularly useful for
the contextual sequence mapping problem: the
CARNNs. Together with our neural net archi-
tectures, CARNN-based systems outperform pre-
vious methods on several public datasets for di-
alog (Frame and Babi Task 6), question answer-
ing (TrecQA) and contextual language modelling
(Switchboard and Penn Discourse Tree Bank). In
the future, we plan to investigate the effective-
ness of CARNN units in other sequence modelling
tasks.

Question: During what war did Nimitz serve?
IWAN-LSTM IWAN-iCARNN

Since the museum opened
in 1983, Fredericksburg
has become a haven for
retired military service-
men who come to trace
Nimitz’s career and the
events of World War II.

Since the museum opened
in 1983, Fredericksburg
has become a haven for
retired military service-
men who come to trace
Nimitz’s career and the
events of World War II.

Bill McCain, who grad-
uated from West Point,
chased Pancho Villa with
Gen. Blackjack Pershing,
served as an artillery of-
ficer during World War I
and attained the rank of
brigadier general.

Indeed, the ancestors of
Chester W. Nimitz, the
U.S. naval commander in
chief of the Pacific in
World War II, were among
the first German pioneers
to settle the area.

There was his grandfather,
Admiral John “Slew” Mc-
Cain, Class of 1906, a
grizzled old sea dog who
commanded aircraft carri-
ers in the Pacific during
World War II.

Slew McCain’s peers
at the Naval Academy
were Chester Nimitz and
William “Bull” Halsey,
who would become major
commanders during World
War II.

Table 4: Top three answers produced by CARNN and
LSTM. Blue colored answers are correct and red ones
are incorrect.
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