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Abstract 

This paper presents a machine learning system 

that uses dependency-based features and lexi-

cal features for recognizing textual entailment. 

The proposed system evaluates the feature 

values automatically. The performance of the 

proposed system is evaluated by conducting 

experiments on RTE1, RTE2 and RTE3 da-

tasets. Further, a comparative study of the cur-

rent system with other ML-based systems for 

RTE to check the performance of the pro-

posed system is also presented. The depend-

ency-based heuristics and lexical features 

from the current system have resulted in sig-

nificant improvement in accuracy over exist-

ing state-of-art ML-based solutions for RTE. 

1 Introduction 

Recognizing textual entailment (RTE) has aroused 

lot of interest in natural language research  

community with recent Pascal RTE challenges. 

RTE provides a generic evaluation framework and 

is useful across various applications like question-

answering, information-extraction, machine trans-

lation etc. 

Textual Entailment is a directional relation  

between text fragments (Dagan et al., 2005) which 

holds true when the truth of one text fragment, re-

ferred to as ‘hypothesis’, follows from another, 

referred to as ‘text’. The task of recognizing textu-

al entailment can be thought of as a classification 

problem to classify a given pair of sentences, text 

(T) and hypothesis (H), as true or false entailment 

as suggested by Bos and Markert (2005). Machine 

Learning approaches to RTE challenges have used 

combination of features like syntactic, semantic or 

lexical features. However, in most of the cases, the 

features used for the purpose are either large in 

number which makes the evaluation time consum-

ing or are not very intuitive which makes them dif-

ficult to comprehend. In our work, we have 

attempted to address these two concerns. 

Our approach uses a combination of dependen-

cy and lexical features to train Machine Learning 

(ML) classifiers. We use only 8 features that are 

simple and intuitive. The process of evaluating 

feature values is automated, thereby reducing any 

manual effort and intervention. The system  

performance has been tested over RTE1, RTE2 and 

RTE3 datasets. Our system shows significant  

improvement in accuracy over the state-of-the-art 

ML solutions to RTE challenges. 

The paper is organized as follows. Section 2 

gives a brief of the earlier work of ML based  

approaches for RTE. Section 3 describes our  

solution approach for RTE, including details on the 

features used and the experimental setup. We  

present the results and observations in Section 4, 

followed by conclusion in Section 5. 

2 Related Work 

There have been various solution approaches pro-

posed to RTE challenges like rule-based, logical-

inference based, graph-based and ML-based. Of 

these, applying ML algorithms to automatically 

learn models from training examples is an effective 

way to approach RTE challenges like other NLP 

problems.  

ML-based systems often use lexical matching 

features (Inkpen et al. 2006, Kozareva and Motoyo 

2006 and Pakray et al. 2011) such as word overlap 

count, word similarity, n-gram, etc, and semantic 
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features such as WordNet similarity measures 

(Kozareva and Motoyo 2006). Inkpen et al. (2006) 

have achieved an accuracy of 52.85% on RTE2 

dataset using lexical match and mismatch features. 

Bos and Markert (2005) use a combination of  

shallow and deep semantic features using logical 

inference to build a hybrid model that achieves an 

accuracy of 57.7 % on RTE1 dataset. They also 

show that using task label as feature in their model 

increases the overall accuracy to 61.2%. Pazienza 

et al. (2009) have defined a measure for textual 

entailment based on graph matching theory applied 

to syntactic dependency graphs. They perform 

comparison of rule-based and SVM-based  

approach with rule-based approach giving an  

accuracy of 52.45% and SVM-based approach  

giving an accuracy of 51.82%. Pakray et al. (2011) 

describe a two-way textual entailment recognition 

system that uses lexical features such as n-gram 

match, stemming etc. and syntactic features like 

subject comparison, subject-verb comparison, etc. 

Our approach builds mainly on the works of 

Inkpen et al. (2006) and Pakray et al. (2011) and, 

improves accuracy over their work as presented in 

the following section. 

3 Our Approach 

We have developed an RTE system that takes as 

input sentence pairs, text (T) and hypothesis (H), 

and outputs an entailment decision (True/False) for 

each pair. The system evaluates a set of 8 different 

dependency and lexical features for the input  

sentence pairs. One of these features is a mismatch 

feature while the other seven are match features. 

For evaluating the dependency features, we have 

used Stanford Dependency parser (Marneffe et al., 

2006) to obtain the dependency relations present in 

the sentences. We generate a structured representa-

tion for both text and hypothesis using their  

respective dependency relations. This structured 

representation is used to evaluate six of the eight 

lexical and the syntactic features. Structured repre-

sentation proves to be an effective representation 

of the sentence for calculating feature values. 

We first present a brief overview of the  

structured representation of the sentences before 

discussing the features used in the feature vector to 

develop classifiers using ML algorithms. 

3.1 Structured Representation 

The Stanford dependencies describe the grammati-

cal relationships in a sentence. Each dependency is 

a tuple consisting of a pair of words in a sentence 

and the relation that links them. A dependency is 

represented as follows: 

reln(govVal,depVal) 

where, 

reln is the dependency relation 

depVal is the dependent value 

govVal is the governing value 

The structured representation is generated by  

using the dependency tags and converting them to 

a slot-filler frame-based structure. The entities  

extracted from the dependency relations are: 

a) Subject: The dependencies tagged as nsubj 

(Nominal Subject), nsubjpass (passive nominal 

subject), csubj (clausal subject), csubjpass (passive 

clausal subject) and xsubj (controlling subject) are 

used to extract the words acting as subject in the 

sentence. 

b) Subject Modifier: The dependency tags 

advmod (adverbial modifier), amod (adjectival 

modifier), appos (appositional modifier), nn (noun 

compound modifier) and npadvmod (noun phrase 

as adverbial modifier) are used to identify modifi-

ers. Each dependency relation is returned as a pair 

of (governing value, dependent value). If for a  

given modifier relation, the governing value is a 

subject in the sentence, then the dependent value 

acts as the subject modifier. 

c) Object: The Stanford parser returns dobj 

(direct object), iobj (indirect object) and pobj 

(prepositional object) as tags for different objects. 

We include all these in the frame entity ‘object’. 

d) Object Modifier: The process to extract 

object modifier is similar to the one used for Sub-

ject Modifier except that if the governing value in 

the modifier relation is an object in the sentence, 

the dependent value acts as the object modifier. 

e) Verb: The dependency tagged as root is 

generally the main verb of the sentence. The tags 

cop (copula), ccomp (clausal complement) and 

xcomp (open clausal complement) also list the 

verbs in the sentence. 

f) Verb Complements: In some cases, the 

dependencies tagged as root, xcomp or ccomp 

(clausal complement) contain noun instead of verb. 

The dependent value is then listed as a verb com-

plement. The tags acomp (adjectival complement), 
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pcomp (prepositional complement), advcl  

(adverberial clause modifier) and vmod (verbal 

modifier) also contains dependency values that 

complement the verb. 

g) Negation: The parser uses the tag neg  

(negation modifier) to identify negation words 

(such as, not, don’t, etc.) in the sentence. The  

governing value of this dependency contains the 

word (usually verb) it negates. We store this value 

with the negation word for negation frame entity. 

h) Number: The dependency tagged as num 

(numeric modifier) contains a numeric value and 

the noun-phrase that it modifies. We store both the 

number and the entity it modifies under this label. 

The generation of the frame-based structured 

representation is illustrated using statement S1 and 

this structured representation is shown in Table 1. 

S1: A two-day auction of property belonging to 

actress Katharine Hepburn brought in 3.2 million 

pounds. 

Label Value 

Subject Auction 

Subject Modifier two-day 

Object property, Hepburn, 

pounds 

Object Modifier Actress 

Verb Brought 

Verb Complements Belonging 

Negation - 

Number 3.2 million (pounds) 
Table 1: Structured Representation for S1 

3.2 Features  

After obtaining a structured representation, we 

evaluate the following features (i) to (viii). While 

features (i) and (ii) have been borrowed from pre-

vious work (Inkpen et al. 2006, Kozareva and Mo-

toyo 2006, Pakray et al. 2011), the features (iii), 

(iv) and (iv), present significant modifications to 

features used by researchers (Inkpen et al. 2006, 

Molla 2003 and Pakray et al. 2011) in the past. The 

features (vi), (vii) and (viii) are new features con-

tributing to our feature set. The dependency over-

lap and word overlap features do not require 

structured representation for evaluation. 

(i) Word Overlap 

This feature is a ratio of the count of directly over-

lapping words between text and hypothesis to the 

count of words in hypothesis, after removal of stop 

words. A direct word count also takes care of the 

overlapping named entities. This feature is a signif-

icant contributor to entailment. The overlap is 

evaluated as follows: 

countH

countTnH
pwordOverla   

where, 

countTnH = number of common words in text and 

hypothesis after stop word removal 

countH = total number of words in hypothesis after 

stop word removal 

(ii) Negation Check 

This feature checks if a verb in hypothesis has 

been negated in text or vice-versa. Negation can be 

explicit in the form of keywords, such as ‘not’, 

‘can't’, ‘don't’, etc. or it can be implicit in the form 

of antonym or negative sense of the verb. We cap-

ture explicit as well as implicit negation check 

through the structured representation of the sen-

tence. In order to identify if the antonym of a verb 

(non-negated) in hypothesis is present in text or 

vice-versa, we first identify the root form of the 

verbs present in text as well as hypothesis using 

Wordnet1. The root form of the verbs is then 

checked for antonym (or negative sense) relation-

ship by using VerbOcean2. 

This is a binary feature assuming a value of 1 

for the presence of negation, either explicit or  

implicit and, it remains 0 otherwise. For example, 

consider the following text-hypothesis pair: 

T: The Philippine Stock Exchange Composite 

Index rose 0.1 percent to 1573.65 

H: The Philippine Stock Exchange Composite 

Index dropped. 

In this example, the verbs ‘rose’ and ‘dropped’ 

are converted to their root forms ‘rise’ and ‘drop’ 

respectively and found to have an antonym relation 

(rise [opposite-of] drop) in VerbOcean. 

(iii) Number Agreement 

This is a binary feature to check if the numeric 

modifiers of the same governing entities are in 

agreement in text-hypothesis pair. We use struc-

tured representation to evaluate this feature. The 

feature takes a value of 1 for number agreement 

and 0 otherwise. We illustrate number agreement 

                                                           
1http://projects.csail.mit.edu/jwi/ 
2 http://demo.patrickpantel.com/demos/verbocean/ 
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using the pair T1-H1 and number disagreement 

with the help of pair T2-H2 as follows: 

T1: The twin buildings are 88 stories each, 

compared with the Sears Tower's 110 stories. 

H1: The Sears Tower has 110 stories. 

 

T2: A small bronze bust of Spencer Tracy sold 

for £174,000. 

H2: A small bronze bust of Spencer Tracy 

made £180,447. 

(iv) Dependency Overlap 

Dependency overlap has been considered as a good 

approximation to sentence meaning in context of 

question-answering problem by Molla (2003). We 

have borrowed the same idea to approximate the 

entailment relationship between text and hypothe-

sis. The dependency relations returned by the  

Stanford parser consist of a pair of words from the 

sentence that are related. We count such similar 

pairs irrespective of the relation binding them. The 

value of the feature is computed as: 

countH

countTnH
depOverlap 

 
where, 

countTnH = number of overlapping dependency 

pairs in text and hypothesis and, 

countH = total number of dependencies in hypoth-

esis 

Considering an example: 

T: His family has steadfastly denied the charges 

H: The charges were denied by his family 

Dependency list for T is: 

[poss(family-2, His-1), nsubj(denied-5, family-2), 

aux(denied-5, has-3), advmod(denied-5, steadfast-

ly-4), root(ROOT-0, denied-5), det(charges-7, the-

6), dobj(denied-5, charges-7)] 

 

Dependency list for H is: 

[det(charges-2, The-1), nsubjpass(denied-4, 

charges-2), auxpass(denied-4, were-3), 

root(ROOT-0, denied-4), poss(family-7, his-6),  

agent(denied-4, family-7)] 

This example has five overlapping dependency 

pairs, namely: the-charges, denied-charges, 

ROOT-denied, his-family and denied-family. We 

evaluate dependency overlap for this example as 

follows: 

833.0
6

5


countH

countTnH
depOverlap  

(v) Syntactic Role Match 

This feature is set to 1 if the (subject, object, verb) 

tuple in text matches the (subject, object, verb) 

tuple in hypothesis. The subject and object are 

matched directly whereas the verbs are matched 

after extracting their root forms from Wordnet and 

using the ‘similar’ relation from VerbOcean. 

Similar feature has been used in Pakray et al.’s 

(2011) approach, wherein they have considered 

matching pairs of subject-verb, verb-object, sub-

ject-subject and object-object. However, the se-

mantics of any sentence are governed by subject, 

verb and the object, if present. Our feature differs 

in the sense that a value of 1 is assigned for match-

ing of the subject, object and the verb altogether; 

else its value remains 0. For example: 

T: Israeli Prime Minister Ariel Sharon threat-

ened to dismiss Cabinet ministers who don't sup-

port his plan to withdraw from the Gaza Strip. 

H: Israeli Prime Minister Ariel Sharon warned 

to fire cabinet opponents of his Gaza withdrawal 

plan. 

In this example, the subject in both T and H is 

Ariel Sharon, the direct object in T is plan whereas 

the direct object in H, is opponents but H has plan 

as the prepositional object and so we consider it as 

an object agreement. The verbs ‘threaten’ in T and 

‘warn’ in H are similar as inferred from Verb-

Ocean. Therefore, the value of syntactic-role match 

feature for the above-mentioned text-hypothesis 

pair is 1. In contrast, following Pakray et al.’s 

(2011) approach, the value of Wordnet-based sub-

ject-verb feature is 0.5 instead of 1 and the value of 

Wordnet-based verb-object feature is 0 due to 

mismatch in direct object. 

(vi) Complement Verb Match 

The sentences are not always simple and apart 

from main action-verbs, there can be entailment 

relationship due to complementing verb or clausal 

components. This feature performs a semantic 

match of root form (derived from Wordnet) of such 

verbs of text and hypothesis using VerbOcean. In 

addition, it also checks if the acting verb of  

hypothesis matches the acting verb or verb com-

plement of the text and vice-versa. Let us consider 

an example to understand such pairs: 

T: Officials said Michael Hamilton was killed 

when gunmen opened fire and exchanged shots 

with Saudi security forces yesterday. 

150



H: Michael Hamilton died yesterday. 

The main verb in T is ‘said’ while the main 

verb in H is ‘died’ and these verbs do not match. 

However, ‘killed’ is a clausal complement in T 

which is similar to the verb ‘died’ in H. Thus, a 

match results in this case assigning a value of 1 to 

the feature else the value of the feature would be 0.  

(vii) Modifier Relation 

In this feature, we check if the subject-object pair 

of hypothesis appears as subject-subject modifier 

or object-object modifier pair in the text. It is also 

a binary feature assuming a value of 1 for match 

and 0 for mismatch. For example: 

T: Antonio Fazio, the Bank of Italy governor, 

engulfed in controversy. 

H: Antonio Fazio works for the Bank of Italy. 

In T, ‘Antonio Fazio’ is the subject and ‘Bank 

of Italy governor’ is the appositional modifier of 

the subject. In H, ‘Antonio Fazio’ is the subject 

and ‘Bank of Italy’ is the object. Therefore, a 

match occurs and the value of feature assigned is 1. 

(viii) Nominalization 

This features checks for nominal forms of the 

verbs as there can be correspondence between text 

and hypothesis owing to nominal verbs. We check 

if the nominal form of a verb in hypothesis acts as 

object in the text or the nominal form of verb in 

text acts as object in hypothesis. If a match is 

found, then we assign 1 to this feature else we as-

sign 0. Following pair presents one such example: 

T: Satomi Mitarai died of blood loss. 

H: Satomi Mitarai bled to death. 

In this example, the verb ‘bled’ in H has its 

noun-form ‘blood’ in T and the verb ‘died’ in T 

has its noun-form ‘death’ in H. 

3.3 Experimental Setup  

The system performance is evaluated by conduct-

ing experiments on RTE1, RTE2 and RTE3 da-

tasets. The RTE1 dataset consists of 567 sentences 

pairs (T and H) in the development set and 800 

sentence pairs in the test set. These sets are further 

divided into seven subsets, namely: Information 

Retrieval (IR), Comparable Documents (CD), 

Question Answering (QA), Information Extraction 

(IE), Machine Translation (MT) and Paraphrase 

Acquisition (PP). The RTE2 and RTE3 datasets 

contain 800 sentence pairs each in their develop-

ment as well as test sets. Both the development and 

test sets of RTE2 and RTE3 are subdivided into 

four tasks, namely: IE, IR, QA and SUM (summa-

rization).  

We have conducted experiments with different 

ML algorithms including Support Vector Machines 

(SVM), Naïve Bayes and Decision Trees (DT) us-

ing Weka3 tool. For each of the RTE datasets, re-

spective training set has been used while 

experimenting with corresponding test-set. We 

have also performed task based analysis for RTE1 

dataset. Following section summarizes the obser-

vations of our experiments. 

4 Results 

Table 2 presents the results achieved with 67% 

split evaluation of the classifiers on each of the 

development (training) datasets: 

Classifier Accuracy Precision Recall 

RTE - 1 

NB 59.28 57.8 68.6 

SVM 67.02 63.3 80.9 

DT 66.07 64 73.6 

RTE - 2 

NB 60.62 62.2 54.3 

SVM 65.75 67 62 

DT 63.0 60.7 73.8 

RTE - 3 

NB 64.75 68.2 59.2 

SVM 66.62 66.4 71.4 

DT 67.87 67 74 
Table 2: Validation of system on development sets 

As evident from table 2, highest accuracy is 

achieved with DT algorithm and SVM with RBF 

kernel. DT learns very fast and identifies strong 

relationship between input and target values (Ville, 

2006). In our case, DT turned out to be efficient 

and fast learners to identify relationship between 

the feature vectors and the expected entailment 

results. For SVM, though it is not guaranteed 

which kernel performs better in a situation, RBF 

kernel is generally more flexible than the linear or 

polynomial kernels as it can model a high dimen-

sional feature space with minimum error. The ob-

servations with these algorithms are strengthened 

by the test-set results as presented in table 3.  

We have also experimented by using task label 

as a feature in our system as Bos and Markert 
                                                           
3 http://www.cs.waikato.ac.nz/ml/weka/ 
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(2005) experimented with their system. Like Bos 

and Markert’s (2005) observation, we also found 

that the system performance increases with DT 

algorithms in contrast to other ML classifiers.  

Table 4 shows our system’s performance on RTE1, 

RTE2 and RTE3 datasets using DT algorithm. 

 

Classifier Accuracy Precision Recall 

RTE – 1 

NB 57.62 56.4 67.5 

SVM 57.25 57.6 55.3 

DT 60.12 60.3 68.7 

RTE – 2 

NB 59.12 60.9 60 

SVM 59.62 60 61 

DT 59.87 57.5 73.2 

RTE – 3 

NB 60.62 62.1 63.9 

SVM 62.12 61.5 69.75 

DT 62.75 62 71 
Table3: Performance of system on test sets 

 

DataSet Accuracy Precision Recall 

RTE1 61.25 61.7 57.7 

RTE2 60.41 62.8 60.3 

RTE3 64.38 62 78 
Table 4: System Performance - Task label as Feature 

For task-based analysis, we experimented with 

the tasks of RTE1 dataset separately. We present 

the comparative study of the accuracy achieved by 

our system with the SVM-based solution of Pazi-

enza et al. (2005) and DT-based solution of Bos 

and Markert (2005) in table 5. The improvement in 

accuracy by our system is reflected in table 5. 

Table 5: Task-based performance comparison for RTE1 

test set 

We carried out a comparative study of our sys-

tem with other ML-based systems for RTE to 

check the performance of our system. The observa-

tions from this comparative analysis of our system 

with relevant related systems for RTE along with 

the feature counts (FC) used by the respective  

systems in presented in table 6. The comparative 

study indicates significant improvement in accura-

cy of our system over most of the existing state-of-

art ML-based solutions for RTE except for few 

solutions only. 

Accuracy FC RTE

1 

RTE

2 

RTE

3 

(Bos&Markert, 

2005)4 
> 8 57.7 - - 

(Inkpen et al., 

2006) 
26 - 58.25  - 

(Kozareva & 

Montoyo, 2006) 
17 - 55.8 - 

(Pakray et al., 

2011) 
16 53.7 59.2 61 

(MacCartney et 

al., 2006) 
28 59.1 - - 

(Hickl et al., 

2006) 
12 - 65.25 - 

(Adams et al., 

2006) 
13 - - 67 

Ours 8 60.12 59.87 62.75 

Table 6: Comparison of accuracy of our system with 

other systems 

5 Conclusion 

As the results indicate, our dependency-based heu-

ristics and lexical features have resulted in signifi-

cant improvement in accuracy of RTE1, RTE2 and 

RTE3 datasets. DT outperforms other classifiers 

with only 8 features that are syntactic and lexical 

in nature. SVM classifier shows comparable per-

formance with the RBF kernel. The features are 

simple and intuitive; easy to comprehend and eval-

uate. The task-based performance for RTE1 dataset 

shows improved performance as compared to the 

similar study by Pazienza et al. (2005) and by Bos 

and Markert (2005). We intend to identify more 

syntactic and semantic features in future and im-

prove upon and, experiment with them to refine the 

results further. 

                                                           
4Authors have used 8 deep semantic feature and some shallow 

lexical features, count of which is not clear from the paper. 

Therefore, we are considering their feature-count to be more 

than 8 

Task Pazi-

enza 

et al. 

(2005) 

Our 

System 

(SVM) 

Bos & 

Markert 

(2005)  

Our 

System 

(DT) 

IE 49.17 59.16 54.2 55.83 

IR 48.89 71.33 62.2 67.51 

QA 45.74 63.84 56.9 60.76 

MT 47.9 62.5 52.5 58.33 

RC 52.14 62.0 50.7 61.3 

CD 64.43 83.46 70.0 81.04 

PP 50.0 78.03 56 75.75 

152



References 
Andrew Hickl, Jeremy Bensley, John Williams, Kirk 

Roberts, Bryan Rink and Ying Shi. 2006. Recogniz-

ing Textual Entailment with LCC’s Groundhog Sys-

tem. In Proceedings of the Second PASCAL 

Challenges Workshop on Recognizing Textual En-

tailment. 

Barry de Ville. 2006. Decision Trees for Business Intel-

ligence and Data Mining. SAS Enterprise Miner. 

Bill MacCartney, Trond Grenager, Marie-Catherine de 

Marneffe, Daniel Cer and Christopher D. Manning. 

2006. Learning to recognize features of valid textual 

entailments. In Proceedings of North American 

Chapter of ACL (NAACL-2006. 

Diana Inkpen, Darren Kipp, and Vivi Nastase. 2006. 

Machine Learning Experiments for Textual Entail-

ment. In Proceedings of the Second Challenge Work-

shop Recognizing Textual Entailment: 10-15, Italy. 

Diego Molla. 2003. Towards semantic-based overlap 

measures for question answering. In Proceedings of 

the Australasian Language Technology Workshop 

2003, Australia.  

Fabio M. Zanzotto, Marco Pennacchiotti and Ales-

sandro Moschitti. 2009. A machine learning ap-

proach to textual entailment recognition. Natural 

Language Engineering, 15(4): 551-582. 

Ido Dagan, Oren Glickman and Bernardo Magnini. 

2005. The PASCAL Recognizing Textual Entailment 

Challenge, In Proceedings of the First PASCAL Rec-

ognizing Textual Entailment Workshop. 

Johan Bos and Katja Markert. 2005. Recognising textu-

al entailment with logical inference, In Proceedings 

of the conference on Human Language Technology 

and Empirical Methods in Natural Language Pro-

cessing: 628-635. 

Maria T. Pazienza, Marco Pennacchiotti and Fabio M. 

Zanzotto. 2005. Textual Entailment as Syntactic 

Graph Distance: a Rule Based and a SVM Based Ap-

proach. In Proceedings of first PASCAL RTE chal-

lenge:528—535. 

Marie-Catherine de Marneffe, Bill MacCartney and 

Christopher D. Manning. 2006. Generating Typed 

Dependency Parses from Phrase Structure Parses. 

In LREC 2006. 

Partha Pakray, Alexander Gelbukh and Sivaji Bandyo-

padhyay. 2011. Textual Entailment using Lexical and 

Syntactic Similarity. International Journal of Artifi-

cial Intelligence & Applications (IJAIA), 2(1): 43-58. 

Rod Adams, Gabriel Nicolae, Cristina Nicolae and San-

da Harabagiu. 2007. Textual Entailment through Ex-

tended Lexical Overlap and Lexico-Semantic 

Matching. In Proceedings of the Third PASCAL 

Challenges Workshop on Recognizing Textual En-

tailment. 

 

Zornitsa Kozareva and Andrés Montoyo. 2006. MLEnt: 

The Machine Learning Entailment System of the 

University of Alicante. In Proceedings of the Second 

Challenge Workshop Recognizing Textual Entail-

ment: 17-20. 

153


