
Proceedings of NAACL-HLT 2015 Student Research Workshop (SRW), pages 147–153,
Denver, Colorado, June 1, 2015. c©2015 Association for Computational Linguistics

Recognizing Textual Entailment using Dependency Analysis and

Machine Learning

Nidhi Sharma Richa Sharma Kanad K. Biswas

cs5080219@cse.iitd.ac.in anz087535@cse.iitd.ac.in kkb@cse.iitd.ac.in

Indian Institute of Technology Delhi

Hauz Khas, New Delhi, India - 110016

Abstract

This paper presents a machine learning system

that uses dependency-based features and lexi-

cal features for recognizing textual entailment.

The proposed system evaluates the feature

values automatically. The performance of the

proposed system is evaluated by conducting

experiments on RTE1, RTE2 and RTE3 da-

tasets. Further, a comparative study of the cur-

rent system with other ML-based systems for

RTE to check the performance of the pro-

posed system is also presented. The depend-

ency-based heuristics and lexical features

from the current system have resulted in sig-

nificant improvement in accuracy over exist-

ing state-of-art ML-based solutions for RTE.

1 Introduction

Recognizing textual entailment (RTE) has aroused

lot of interest in natural language research

community with recent Pascal RTE challenges.

RTE provides a generic evaluation framework and

is useful across various applications like question-

answering, information-extraction, machine trans-

lation etc.

Textual Entailment is a directional relation

between text fragments (Dagan et al., 2005) which

holds true when the truth of one text fragment, re-

ferred to as ‘hypothesis’, follows from another,

referred to as ‘text’. The task of recognizing textu-

al entailment can be thought of as a classification

problem to classify a given pair of sentences, text

(T) and hypothesis (H), as true or false entailment

as suggested by Bos and Markert (2005). Machine

Learning approaches to RTE challenges have used

combination of features like syntactic, semantic or

lexical features. However, in most of the cases, the

features used for the purpose are either large in

number which makes the evaluation time consum-

ing or are not very intuitive which makes them dif-

ficult to comprehend. In our work, we have

attempted to address these two concerns.

Our approach uses a combination of dependen-

cy and lexical features to train Machine Learning

(ML) classifiers. We use only 8 features that are

simple and intuitive. The process of evaluating

feature values is automated, thereby reducing any

manual effort and intervention. The system

performance has been tested over RTE1, RTE2 and

RTE3 datasets. Our system shows significant

improvement in accuracy over the state-of-the-art

ML solutions to RTE challenges.

The paper is organized as follows. Section 2

gives a brief of the earlier work of ML based

approaches for RTE. Section 3 describes our

solution approach for RTE, including details on the

features used and the experimental setup. We

present the results and observations in Section 4,

followed by conclusion in Section 5.

2 Related Work

There have been various solution approaches pro-

posed to RTE challenges like rule-based, logical-

inference based, graph-based and ML-based. Of

these, applying ML algorithms to automatically

learn models from training examples is an effective

way to approach RTE challenges like other NLP

problems.

ML-based systems often use lexical matching

features (Inkpen et al. 2006, Kozareva and Motoyo

2006 and Pakray et al. 2011) such as word overlap

count, word similarity, n-gram, etc, and semantic

147

features such as WordNet similarity measures

(Kozareva and Motoyo 2006). Inkpen et al. (2006)

have achieved an accuracy of 52.85% on RTE2

dataset using lexical match and mismatch features.

Bos and Markert (2005) use a combination of

shallow and deep semantic features using logical

inference to build a hybrid model that achieves an

accuracy of 57.7 % on RTE1 dataset. They also

show that using task label as feature in their model

increases the overall accuracy to 61.2%. Pazienza

et al. (2009) have defined a measure for textual

entailment based on graph matching theory applied

to syntactic dependency graphs. They perform

comparison of rule-based and SVM-based

approach with rule-based approach giving an

accuracy of 52.45% and SVM-based approach

giving an accuracy of 51.82%. Pakray et al. (2011)

describe a two-way textual entailment recognition

system that uses lexical features such as n-gram

match, stemming etc. and syntactic features like

subject comparison, subject-verb comparison, etc.

Our approach builds mainly on the works of

Inkpen et al. (2006) and Pakray et al. (2011) and,

improves accuracy over their work as presented in

the following section.

3 Our Approach

We have developed an RTE system that takes as

input sentence pairs, text (T) and hypothesis (H),

and outputs an entailment decision (True/False) for

each pair. The system evaluates a set of 8 different

dependency and lexical features for the input

sentence pairs. One of these features is a mismatch

feature while the other seven are match features.

For evaluating the dependency features, we have

used Stanford Dependency parser (Marneffe et al.,

2006) to obtain the dependency relations present in

the sentences. We generate a structured representa-

tion for both text and hypothesis using their

respective dependency relations. This structured

representation is used to evaluate six of the eight

lexical and the syntactic features. Structured repre-

sentation proves to be an effective representation

of the sentence for calculating feature values.

We first present a brief overview of the

structured representation of the sentences before

discussing the features used in the feature vector to

develop classifiers using ML algorithms.

3.1 Structured Representation

The Stanford dependencies describe the grammati-

cal relationships in a sentence. Each dependency is

a tuple consisting of a pair of words in a sentence

and the relation that links them. A dependency is

represented as follows:

reln(govVal,depVal)

where,

reln is the dependency relation

depVal is the dependent value

govVal is the governing value

The structured representation is generated by

using the dependency tags and converting them to

a slot-filler frame-based structure. The entities

extracted from the dependency relations are:

a) Subject: The dependencies tagged as nsubj

(Nominal Subject), nsubjpass (passive nominal

subject), csubj (clausal subject), csubjpass (passive

clausal subject) and xsubj (controlling subject) are

used to extract the words acting as subject in the

sentence.

b) Subject Modifier: The dependency tags

advmod (adverbial modifier), amod (adjectival

modifier), appos (appositional modifier), nn (noun

compound modifier) and npadvmod (noun phrase

as adverbial modifier) are used to identify modifi-

ers. Each dependency relation is returned as a pair

of (governing value, dependent value). If for a

given modifier relation, the governing value is a

subject in the sentence, then the dependent value

acts as the subject modifier.

c) Object: The Stanford parser returns dobj

(direct object), iobj (indirect object) and pobj

(prepositional object) as tags for different objects.

We include all these in the frame entity ‘object’.

d) Object Modifier: The process to extract

object modifier is similar to the one used for Sub-

ject Modifier except that if the governing value in

the modifier relation is an object in the sentence,

the dependent value acts as the object modifier.

e) Verb: The dependency tagged as root is

generally the main verb of the sentence. The tags

cop (copula), ccomp (clausal complement) and

xcomp (open clausal complement) also list the

verbs in the sentence.

f) Verb Complements: In some cases, the

dependencies tagged as root, xcomp or ccomp

(clausal complement) contain noun instead of verb.

The dependent value is then listed as a verb com-

plement. The tags acomp (adjectival complement),

148

pcomp (prepositional complement), advcl

(adverberial clause modifier) and vmod (verbal

modifier) also contains dependency values that

complement the verb.

g) Negation: The parser uses the tag neg

(negation modifier) to identify negation words

(such as, not, don’t, etc.) in the sentence. The

governing value of this dependency contains the

word (usually verb) it negates. We store this value

with the negation word for negation frame entity.

h) Number: The dependency tagged as num

(numeric modifier) contains a numeric value and

the noun-phrase that it modifies. We store both the

number and the entity it modifies under this label.

The generation of the frame-based structured

representation is illustrated using statement S1 and

this structured representation is shown in Table 1.

S1: A two-day auction of property belonging to

actress Katharine Hepburn brought in 3.2 million

pounds.

Label Value

Subject Auction

Subject Modifier two-day

Object property, Hepburn,

pounds

Object Modifier Actress

Verb Brought

Verb Complements Belonging

Negation -

Number 3.2 million (pounds)
Table 1: Structured Representation for S1

3.2 Features

After obtaining a structured representation, we

evaluate the following features (i) to (viii). While

features (i) and (ii) have been borrowed from pre-

vious work (Inkpen et al. 2006, Kozareva and Mo-

toyo 2006, Pakray et al. 2011), the features (iii),

(iv) and (iv), present significant modifications to

features used by researchers (Inkpen et al. 2006,

Molla 2003 and Pakray et al. 2011) in the past. The

features (vi), (vii) and (viii) are new features con-

tributing to our feature set. The dependency over-

lap and word overlap features do not require

structured representation for evaluation.

(i) Word Overlap

This feature is a ratio of the count of directly over-

lapping words between text and hypothesis to the

count of words in hypothesis, after removal of stop

words. A direct word count also takes care of the

overlapping named entities. This feature is a signif-

icant contributor to entailment. The overlap is

evaluated as follows:

countH

countTnH
pwordOverla

where,

countTnH = number of common words in text and

hypothesis after stop word removal

countH = total number of words in hypothesis after

stop word removal

(ii) Negation Check

This feature checks if a verb in hypothesis has

been negated in text or vice-versa. Negation can be

explicit in the form of keywords, such as ‘not’,

‘can't’, ‘don't’, etc. or it can be implicit in the form

of antonym or negative sense of the verb. We cap-

ture explicit as well as implicit negation check

through the structured representation of the sen-

tence. In order to identify if the antonym of a verb

(non-negated) in hypothesis is present in text or

vice-versa, we first identify the root form of the

verbs present in text as well as hypothesis using

Wordnet1. The root form of the verbs is then

checked for antonym (or negative sense) relation-

ship by using VerbOcean2.

This is a binary feature assuming a value of 1

for the presence of negation, either explicit or

implicit and, it remains 0 otherwise. For example,

consider the following text-hypothesis pair:

T: The Philippine Stock Exchange Composite

Index rose 0.1 percent to 1573.65

H: The Philippine Stock Exchange Composite

Index dropped.

In this example, the verbs ‘rose’ and ‘dropped’

are converted to their root forms ‘rise’ and ‘drop’

respectively and found to have an antonym relation

(rise [opposite-of] drop) in VerbOcean.

(iii) Number Agreement

This is a binary feature to check if the numeric

modifiers of the same governing entities are in

agreement in text-hypothesis pair. We use struc-

tured representation to evaluate this feature. The

feature takes a value of 1 for number agreement

and 0 otherwise. We illustrate number agreement

1http://projects.csail.mit.edu/jwi/
2 http://demo.patrickpantel.com/demos/verbocean/

149

using the pair T1-H1 and number disagreement

with the help of pair T2-H2 as follows:

T1: The twin buildings are 88 stories each,

compared with the Sears Tower's 110 stories.

H1: The Sears Tower has 110 stories.

T2: A small bronze bust of Spencer Tracy sold

for £174,000.

H2: A small bronze bust of Spencer Tracy

made £180,447.

(iv) Dependency Overlap

Dependency overlap has been considered as a good

approximation to sentence meaning in context of

question-answering problem by Molla (2003). We

have borrowed the same idea to approximate the

entailment relationship between text and hypothe-

sis. The dependency relations returned by the

Stanford parser consist of a pair of words from the

sentence that are related. We count such similar

pairs irrespective of the relation binding them. The

value of the feature is computed as:

countH

countTnH
depOverlap

where,

countTnH = number of overlapping dependency

pairs in text and hypothesis and,

countH = total number of dependencies in hypoth-

esis

Considering an example:

T: His family has steadfastly denied the charges

H: The charges were denied by his family

Dependency list for T is:

[poss(family-2, His-1), nsubj(denied-5, family-2),

aux(denied-5, has-3), advmod(denied-5, steadfast-

ly-4), root(ROOT-0, denied-5), det(charges-7, the-

6), dobj(denied-5, charges-7)]

Dependency list for H is:

[det(charges-2, The-1), nsubjpass(denied-4,

charges-2), auxpass(denied-4, were-3),

root(ROOT-0, denied-4), poss(family-7, his-6),

agent(denied-4, family-7)]

This example has five overlapping dependency

pairs, namely: the-charges, denied-charges,

ROOT-denied, his-family and denied-family. We

evaluate dependency overlap for this example as

follows:

833.0
6

5

countH

countTnH
depOverlap

(v) Syntactic Role Match

This feature is set to 1 if the (subject, object, verb)

tuple in text matches the (subject, object, verb)

tuple in hypothesis. The subject and object are

matched directly whereas the verbs are matched

after extracting their root forms from Wordnet and

using the ‘similar’ relation from VerbOcean.

Similar feature has been used in Pakray et al.’s

(2011) approach, wherein they have considered

matching pairs of subject-verb, verb-object, sub-

ject-subject and object-object. However, the se-

mantics of any sentence are governed by subject,

verb and the object, if present. Our feature differs

in the sense that a value of 1 is assigned for match-

ing of the subject, object and the verb altogether;

else its value remains 0. For example:

T: Israeli Prime Minister Ariel Sharon threat-

ened to dismiss Cabinet ministers who don't sup-

port his plan to withdraw from the Gaza Strip.

H: Israeli Prime Minister Ariel Sharon warned

to fire cabinet opponents of his Gaza withdrawal

plan.

In this example, the subject in both T and H is

Ariel Sharon, the direct object in T is plan whereas

the direct object in H, is opponents but H has plan

as the prepositional object and so we consider it as

an object agreement. The verbs ‘threaten’ in T and

‘warn’ in H are similar as inferred from Verb-

Ocean. Therefore, the value of syntactic-role match

feature for the above-mentioned text-hypothesis

pair is 1. In contrast, following Pakray et al.’s

(2011) approach, the value of Wordnet-based sub-

ject-verb feature is 0.5 instead of 1 and the value of

Wordnet-based verb-object feature is 0 due to

mismatch in direct object.

(vi) Complement Verb Match

The sentences are not always simple and apart

from main action-verbs, there can be entailment

relationship due to complementing verb or clausal

components. This feature performs a semantic

match of root form (derived from Wordnet) of such

verbs of text and hypothesis using VerbOcean. In

addition, it also checks if the acting verb of

hypothesis matches the acting verb or verb com-

plement of the text and vice-versa. Let us consider

an example to understand such pairs:

T: Officials said Michael Hamilton was killed

when gunmen opened fire and exchanged shots

with Saudi security forces yesterday.

150

H: Michael Hamilton died yesterday.

The main verb in T is ‘said’ while the main

verb in H is ‘died’ and these verbs do not match.

However, ‘killed’ is a clausal complement in T

which is similar to the verb ‘died’ in H. Thus, a

match results in this case assigning a value of 1 to

the feature else the value of the feature would be 0.

(vii) Modifier Relation

In this feature, we check if the subject-object pair

of hypothesis appears as subject-subject modifier

or object-object modifier pair in the text. It is also

a binary feature assuming a value of 1 for match

and 0 for mismatch. For example:

T: Antonio Fazio, the Bank of Italy governor,

engulfed in controversy.

H: Antonio Fazio works for the Bank of Italy.

In T, ‘Antonio Fazio’ is the subject and ‘Bank

of Italy governor’ is the appositional modifier of

the subject. In H, ‘Antonio Fazio’ is the subject

and ‘Bank of Italy’ is the object. Therefore, a

match occurs and the value of feature assigned is 1.

(viii) Nominalization

This features checks for nominal forms of the

verbs as there can be correspondence between text

and hypothesis owing to nominal verbs. We check

if the nominal form of a verb in hypothesis acts as

object in the text or the nominal form of verb in

text acts as object in hypothesis. If a match is

found, then we assign 1 to this feature else we as-

sign 0. Following pair presents one such example:

T: Satomi Mitarai died of blood loss.

H: Satomi Mitarai bled to death.

In this example, the verb ‘bled’ in H has its

noun-form ‘blood’ in T and the verb ‘died’ in T

has its noun-form ‘death’ in H.

3.3 Experimental Setup

The system performance is evaluated by conduct-

ing experiments on RTE1, RTE2 and RTE3 da-

tasets. The RTE1 dataset consists of 567 sentences

pairs (T and H) in the development set and 800

sentence pairs in the test set. These sets are further

divided into seven subsets, namely: Information

Retrieval (IR), Comparable Documents (CD),

Question Answering (QA), Information Extraction

(IE), Machine Translation (MT) and Paraphrase

Acquisition (PP). The RTE2 and RTE3 datasets

contain 800 sentence pairs each in their develop-

ment as well as test sets. Both the development and

test sets of RTE2 and RTE3 are subdivided into

four tasks, namely: IE, IR, QA and SUM (summa-

rization).

We have conducted experiments with different

ML algorithms including Support Vector Machines

(SVM), Naïve Bayes and Decision Trees (DT) us-

ing Weka3 tool. For each of the RTE datasets, re-

spective training set has been used while

experimenting with corresponding test-set. We

have also performed task based analysis for RTE1

dataset. Following section summarizes the obser-

vations of our experiments.

4 Results

Table 2 presents the results achieved with 67%

split evaluation of the classifiers on each of the

development (training) datasets:

Classifier Accuracy Precision Recall

RTE - 1

NB 59.28 57.8 68.6

SVM 67.02 63.3 80.9

DT 66.07 64 73.6

RTE - 2

NB 60.62 62.2 54.3

SVM 65.75 67 62

DT 63.0 60.7 73.8

RTE - 3

NB 64.75 68.2 59.2

SVM 66.62 66.4 71.4

DT 67.87 67 74
Table 2: Validation of system on development sets

As evident from table 2, highest accuracy is

achieved with DT algorithm and SVM with RBF

kernel. DT learns very fast and identifies strong

relationship between input and target values (Ville,

2006). In our case, DT turned out to be efficient

and fast learners to identify relationship between

the feature vectors and the expected entailment

results. For SVM, though it is not guaranteed

which kernel performs better in a situation, RBF

kernel is generally more flexible than the linear or

polynomial kernels as it can model a high dimen-

sional feature space with minimum error. The ob-

servations with these algorithms are strengthened

by the test-set results as presented in table 3.

We have also experimented by using task label

as a feature in our system as Bos and Markert

3 http://www.cs.waikato.ac.nz/ml/weka/

151

(2005) experimented with their system. Like Bos

and Markert’s (2005) observation, we also found

that the system performance increases with DT

algorithms in contrast to other ML classifiers.

Table 4 shows our system’s performance on RTE1,

RTE2 and RTE3 datasets using DT algorithm.

Classifier Accuracy Precision Recall

RTE – 1

NB 57.62 56.4 67.5

SVM 57.25 57.6 55.3

DT 60.12 60.3 68.7

RTE – 2

NB 59.12 60.9 60

SVM 59.62 60 61

DT 59.87 57.5 73.2

RTE – 3

NB 60.62 62.1 63.9

SVM 62.12 61.5 69.75

DT 62.75 62 71
Table3: Performance of system on test sets

DataSet Accuracy Precision Recall

RTE1 61.25 61.7 57.7

RTE2 60.41 62.8 60.3

RTE3 64.38 62 78
Table 4: System Performance - Task label as Feature

For task-based analysis, we experimented with

the tasks of RTE1 dataset separately. We present

the comparative study of the accuracy achieved by

our system with the SVM-based solution of Pazi-

enza et al. (2005) and DT-based solution of Bos

and Markert (2005) in table 5. The improvement in

accuracy by our system is reflected in table 5.

Table 5: Task-based performance comparison for RTE1

test set

We carried out a comparative study of our sys-

tem with other ML-based systems for RTE to

check the performance of our system. The observa-

tions from this comparative analysis of our system

with relevant related systems for RTE along with

the feature counts (FC) used by the respective

systems in presented in table 6. The comparative

study indicates significant improvement in accura-

cy of our system over most of the existing state-of-

art ML-based solutions for RTE except for few

solutions only.

Accuracy FC RTE

1

RTE

2

RTE

3

(Bos&Markert,

2005)4
> 8 57.7 - -

(Inkpen et al.,

2006)
26 - 58.25 -

(Kozareva &

Montoyo, 2006)
17 - 55.8 -

(Pakray et al.,

2011)
16 53.7 59.2 61

(MacCartney et

al., 2006)
28 59.1 - -

(Hickl et al.,

2006)
12 - 65.25 -

(Adams et al.,

2006)
13 - - 67

Ours 8 60.12 59.87 62.75

Table 6: Comparison of accuracy of our system with

other systems

5 Conclusion

As the results indicate, our dependency-based heu-

ristics and lexical features have resulted in signifi-

cant improvement in accuracy of RTE1, RTE2 and

RTE3 datasets. DT outperforms other classifiers

with only 8 features that are syntactic and lexical

in nature. SVM classifier shows comparable per-

formance with the RBF kernel. The features are

simple and intuitive; easy to comprehend and eval-

uate. The task-based performance for RTE1 dataset

shows improved performance as compared to the

similar study by Pazienza et al. (2005) and by Bos

and Markert (2005). We intend to identify more

syntactic and semantic features in future and im-

prove upon and, experiment with them to refine the

results further.

4Authors have used 8 deep semantic feature and some shallow

lexical features, count of which is not clear from the paper.

Therefore, we are considering their feature-count to be more

than 8

Task Pazi-

enza

et al.

(2005)

Our

System

(SVM)

Bos &

Markert

(2005)

Our

System

(DT)

IE 49.17 59.16 54.2 55.83

IR 48.89 71.33 62.2 67.51

QA 45.74 63.84 56.9 60.76

MT 47.9 62.5 52.5 58.33

RC 52.14 62.0 50.7 61.3

CD 64.43 83.46 70.0 81.04

PP 50.0 78.03 56 75.75

152

References
Andrew Hickl, Jeremy Bensley, John Williams, Kirk

Roberts, Bryan Rink and Ying Shi. 2006. Recogniz-

ing Textual Entailment with LCC’s Groundhog Sys-

tem. In Proceedings of the Second PASCAL

Challenges Workshop on Recognizing Textual En-

tailment.

Barry de Ville. 2006. Decision Trees for Business Intel-

ligence and Data Mining. SAS Enterprise Miner.

Bill MacCartney, Trond Grenager, Marie-Catherine de

Marneffe, Daniel Cer and Christopher D. Manning.

2006. Learning to recognize features of valid textual

entailments. In Proceedings of North American

Chapter of ACL (NAACL-2006.

Diana Inkpen, Darren Kipp, and Vivi Nastase. 2006.

Machine Learning Experiments for Textual Entail-

ment. In Proceedings of the Second Challenge Work-

shop Recognizing Textual Entailment: 10-15, Italy.

Diego Molla. 2003. Towards semantic-based overlap

measures for question answering. In Proceedings of

the Australasian Language Technology Workshop

2003, Australia.

Fabio M. Zanzotto, Marco Pennacchiotti and Ales-

sandro Moschitti. 2009. A machine learning ap-

proach to textual entailment recognition. Natural

Language Engineering, 15(4): 551-582.

Ido Dagan, Oren Glickman and Bernardo Magnini.

2005. The PASCAL Recognizing Textual Entailment

Challenge, In Proceedings of the First PASCAL Rec-

ognizing Textual Entailment Workshop.

Johan Bos and Katja Markert. 2005. Recognising textu-

al entailment with logical inference, In Proceedings

of the conference on Human Language Technology

and Empirical Methods in Natural Language Pro-

cessing: 628-635.

Maria T. Pazienza, Marco Pennacchiotti and Fabio M.

Zanzotto. 2005. Textual Entailment as Syntactic

Graph Distance: a Rule Based and a SVM Based Ap-

proach. In Proceedings of first PASCAL RTE chal-

lenge:528—535.

Marie-Catherine de Marneffe, Bill MacCartney and

Christopher D. Manning. 2006. Generating Typed

Dependency Parses from Phrase Structure Parses.

In LREC 2006.

Partha Pakray, Alexander Gelbukh and Sivaji Bandyo-

padhyay. 2011. Textual Entailment using Lexical and

Syntactic Similarity. International Journal of Artifi-

cial Intelligence & Applications (IJAIA), 2(1): 43-58.

Rod Adams, Gabriel Nicolae, Cristina Nicolae and San-

da Harabagiu. 2007. Textual Entailment through Ex-

tended Lexical Overlap and Lexico-Semantic

Matching. In Proceedings of the Third PASCAL

Challenges Workshop on Recognizing Textual En-

tailment.

Zornitsa Kozareva and Andrés Montoyo. 2006. MLEnt:

The Machine Learning Entailment System of the

University of Alicante. In Proceedings of the Second

Challenge Workshop Recognizing Textual Entail-

ment: 17-20.

153

