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There has been a lot of research on improving
the quality of the phrase table using more princi-
pled methods for phrase extraction (e.g., Lamber
and Banchs 2005), parameter estimation (e.g.,
Wouebker et al. 2010; He and Deng 2012), or both
(e.g., Marcu and Wong 2002; Denero et al. 2006).
The focus of this paper is on the parameter estima-
tion phase. We revisit the problem of scoring a
phrase translation pair by developing a new phrase
translation model based on Markov random fields
(MRFs) and large-scale discriminative training.
We strive to address the following three primary
concerns.

First of all, instead of parameterizing a phrase
translation pair using a set of scoring functidmes t
are learned independently (e.g., phrase translation
probabilities and lexical weights) we use a general
statistical framework in which arbitrary features
extracted from a phrase pair can be incorporated to
model the translation in a unified way. To this end
we propose the use of a MRF model.

Second, because the phrase model has to work
with other component models in an SMT system in
order to produce good translations and the quality
of translation is measured via BLEU score, it is de
sirable to optimize the parameters of the phrase

The phrase translation model, also known as tifaodel jointly with other component models with
phrase table, is one of the core components of despect to an objective function that is closely re
phrase-based statistical machine translation (SM¥{€d to the evaluation metric under consideration,
system. The most common method of constructig» BLEU in this paper. To this end, we resorato

the phrase table takes a two-phase approach. Fiféfge-scale discriminative training approach, fol-
the bilingual phrase pairs are extracted heuristicd®Wing the pioneering work of Liang et al. (2006).
ly from an automatically word-aligned training daAlthough there are established methods of tuning a
ta. The second phase is parameter estimatidgigndful of features on small training sets, such as
where each phrase pair is assigned with sorfi®® MERT method (Och 2003), the development of
scores that are estimated based on counting gpcriminative training methods for millions of fea

words or phrases on the same word-aligned trajfires on millions of sentence pairs is still an@ng
ing data Ing area of research. A recent survey is due to

Koehn (2010). In this paper we show that by using
stochastic gradient ascent and an N-best list based

Abstract

This paper presents a general, statistical
framework for modeling phrase translation
via Markov random fields. The model al-
lows for arbituary features extracted from a
phrase pair to be incorporated as evidence.
The parameters of the model are estimated
using a large-scale discriminative training
approach that is based on stochastic gradi-
ent ascent and an N-best list based expected
BLEU as the objective function. The model
is easy to be incoporated into a standard
phrase-based statistical machine translation
system, requiring no code change in the
runtime engine. Evaluation is performed on
two Europarl translation tasks, German-
English and French-English. Results show
that incoporating the Markov random field
model significantly improves the perfor-
mance of a state-of-the-art phrase-based
machine translation system, leading to a
gain of 0.8-1.3 BLEU points.

1 Introduction
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expected BLEU as the objective function, largeinto phrases, and (3) an alignment between the

scale discriminative training can lead to significa source and target phrases.

improvements. In this paper we use Markov random fields
The third primary concern is the ease of adogMRFs) to model the joint distributioR, (f, e)

tion of the proposed method. To this end, we useoger a source-target translation phrase (fag),

simple and well-established learning method, emparameterized bw. Different from the directional

suring that the results can be easily reproducegianslation models, as in Equation (1), the MRF

We also develop the features for the MRF model imodel is undirected, which we believe upholds the

such a way that the resulting model is of the sanspirit of the use of bi-directional translation pee

format as that of a traditional phrase table. Thubijlities under the log-linear framework. That iset

the model can be easily incorporated into a standgreement or theompatibility of a phrase pair is

ard phrase-based SMT system, requiring no codéigore effective to score translation quality than a

change in the runtime engine. directional translation probability which is mod-
In the rest of the paper, Section 2 presents tleéed based on an imagined generative story does.

MRF model for phrase translation. Section 3 de-

scribes the way the model parameters are estimatl. MRF

Section 4 presents the experimental results on two . _

Europarl translation tasks. Section 5 reviews pré/RFs, also known as undirected graphical models,

vious work that lays the foundation of this studyre widely used in modeling joint distributions of

Section 6 concludes the paper. spatial or contextual dependencies of physical phe-
nomena (Bishop 2006). A Markov random field is
2 Mod€ constructed from a grapfi. The nodes of the

graph represent random variables, and edges define
The traditional translation models are directionghe independence semantics between the random
models that are based on conditional probabilitiegariables. An MRF satisfies the Markov property,
As suggested by the noisy-channel model for SMihich states that a node is independent of alisof i

(Brown et al. 1993): non-neighbors, defined by the cliqgue configura-
1) tions ofG. In modeling a phrase translation pair,
E* = argmax P(E|F) = argmax P(E)P(F|E we define two types of nodes, (1) two phrase nodes
E E

and (2) a set of word nodes, each for a word in the

se phrases, such as the graph in Figure 1. Let us
The Bayes rule leads us to invert the conditioningenote a clique by and the set of variables in that
of translation probability from a foreign (sourceklique by(f, e).. Then, the joint distribution over

sentence” to an English (target) translatiéh the random variables if is defined as
However, in practice, the implementation of L
state-of-the-art phrase-based SMT systems uses aPy(f,€) = > [lcecs) Pc((f, €)c; W), (3)

weighted log-linear combination of several models h _ _ q ,
h(F,E, A) including the logarithm of the phraseVN€rée = e, ... ee|, f=fi, ... fin and C(G) is
probability (and the lexical weight) in source-tothe set of cliques ify, and eacky.((f,e).; w) is a

target and target-to-source directions (Och and N@pn-negative potential function defined over a
2004) cliquec that measures thempatibility of the var-
. y 5 iables inc, wis a set of parameters that are used
E* = argmax, Y0y A (F,E,4) (2 within the potential functionZ in Equation (3),
— argmax Score, (F, E) sometimes called thpart!tlon function, is a nor-
E malization constant and is given by
whereA in h(F,E,A) is a hidden structure that _ _
best derive® from F, called theViterbi derivation Z = Xt Zellececo) 9c((f, €)c; W) )
afterwards. In phrase-based SMiT¢onsists of (1)
: . = S f,e),
the segmentation of the source sentence into 2s 2 Score(f, €)
phrases, (2) the segmentation of the target semteRghich ensures that the distributi®(f, e) given

by Equation (3) is correctly normalized. The pres-
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which is essentially proportional to a weighted lin
ear combination of a set of features.

To instantiate an MRF model, one needs to de-
fine a graph structure representing the translation
dependencies between source and target phrases,
and a set of potential functions over the cliques o
this graph.

Figure 1: A Markov random field model for phrase 22 Cliquesand Potential Functions
translation ofe = e, e, andf = f3, f5, f5.
The MRF model studied in this paper is construct-
] S ed from the graply in Figure 1. It contains two
ence ofZ is one of the major limitations of MRFSynes of nodes, including two phrase nodes for the
because it is generally not feasible to compute ddg,;ce and target phrases respectively and word
to the exponential number of terms in the SUMMgpdes, each for a word in these phrases. The
tion. However, we notice thatis a global con- cjiques and their corresponding potential functions
stant which is independent efandf. Therefore, in (o features) attempt to abstract the idea behind
ranking phrase translation hypotheses, as pgfose translation models that have been proved ef-
formed by the decoder in SMT systems, we Ca@ctive for machine translation in previous work. |
drop Z and simply rank each hypothesis by it$his study we focus on three types of cliques.
unnormalized joint probability. In our implementa-  First, we consider cliques that contain two
tion, we only store in the phrase table for eachhrase nodes. A potential function over such a
translation pai(f, e) its unnormalized probability, clique captures phrase-to-phrase translation de-
i.e.,Score(f, e) as defined in Equation (4). pendencies similar to the use the bi-directional
It is common to define MRF potential functionsranslation models in phrase-based SMT systems.
of the exponential form asp.((f,e):;w) = The potential is defined as,(f, e) = w,¢,(f, ),
exp (we¢(c)), wherep(c) is a real-valued feature \yhere the featurg, (f, e), called thephrase-pair
function over clique andw, is the weight of the I‘a

. eature, is an indicator function whose value is 1 if
feature function. In phra_lse-based .S.MT systems, theg target phrase arfds source phrase, and 0 oth-
sentence-level translation probability frdito E

erwise. While the conditional probabilities in a di

is deco'mposed as _t_he product of'a set of phrat%?:tional translation model are estimated using rel
translation probabilities. By dropping the phrasge frequencies of phrase pairs extracted from

segmentation and distortion model components, We, q_ajigned parallel sentences, the parameter of

have the phrase-pair functiom, is learned discrimina-
P(E|F) ~ max P(E|A, F) (5) tively, as we will describe in Section 3.
Second, we consider cliques that contain two
P(E|A,F) = Ilreyea P(elf), word nodes, one in source phrase and the other in

target phrase. A potential over such a clique cap-
tures word-to-word translation dependencies simi-
lar to the use the IBM Model 1 for lexical

whereA is the Viterbi derivation. Similarly, the
joint probabilityP(F, E) can be decomposed as

P(F,E) ~ maxP(F, A, E) (6) weighting in phrase-based SMT systems (Koehn et
A al. 2003). The potential function is defined as
P(F,AE) = [1(teyea Pu(f, € @:(f,e) = wee(f, ), where the featuré,(f, e),
called theword-pair feature, is an indicator func-
o Y (r.eyealog Py (f, €) tion whose value is 1 # is a word in target phrase
e andf is a word in source phrageand O other-
O X(f.e)ea LceC (G e Wed(€) wise.
The third type of cliques contains three word
= Yte)caW  ¢(f, €) nodes. Two of them are in one language and the

third in the other language. A potential over sach
clique is intended to capture inter-word dependen-
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cies for selecting word translations. The potentiddased SMTA consists of a segmentation of the
function is inspired by the triplet lexicon modelsource and target sentences into phrases and an
(Hasan et al. 2008) which is based on lexicalizealignment between source and target phrases.
triplets (e, f,f) . It can be understood as two We also assume that translations are modeled
source (or target) words triggering one target (arsing a linear model parameterized by a ve@tor
source) word. The potential function is defined aSiven a vectoh(F, E, A) of feature functions on
Oep(f. f'18) = wepdep (f, f', €), where the feature (F,E,A), and assumin@ contains a component
$ep(f. f',€), called theriplet feature, is an indica- for each feature, the output pélf, A) for a given

tor function whose value is 1 dfis a word in tar- iNputF are selected using the argmax decision rule
get phrase andf andf” are two different words (E*,A*) = argmax 8Th(F, E, A) 7)

in source phrasg and 0 otherwise. (E,A)

For any cliques that contains nodes in only oney, phrase-based SMT, computing the argmax ex-
language we assume thafc) = 1 for all setting ety js intractable, so it is performed approxieat
of the clique, which has no impact on scoring & by beam decoding.
phrase pair. One may wish to define a potential |, 3 phrase-based SMT system equipped by a
over cliques containing a phrase node and WOfrF_pased phrase translation model, the parame-
nodes in target language, which could act as a fogty.c \ve need to learn ade= (A, w), whered is a
of target language model. One may also add edags.tor of a handful parameters used in the log-

in the graph so as to define potentials that captUinear model of Equation (2), with one weight for
more sophisticated translation dependencies. TRg.h component model: amdis a vector contain-

optimal potential set could vary among differenfyq millions of weights, each for one feature func-

language pairs and depend to a large degree URRJh in the MRF model of Equation (3). Our meth-
the amount and quality of training data. We leave & (;kes three steps to ledimn

comprehensive study of features to future work.
1. Given a baseline phrase-based SMT system

3 Training and a pre-sek, we generate for each source

_ _ ) sentence in training data an N-best list of
This section describes the way the parameters of  translation hypotheses.

the MRF model are estimated. Although MRFs are 2. We fix 11 and 0pt|m|ze~ with respect to an

by nature generative models, it is not always ap-  opjective function on training data.
propriate to train the parameters using convention- 3. \we fix w, and optimizé\ using MERT (Och

al likelihood based approaches mainly for two rea-  2003) to maximize the BLEU score on de-
sons. The first is due to the difficulty in compgfi velopment data.

the partition function in Equation (4), especiahy , _ ,

a task of our scale. The second is due to the enetri Now, we describe Steps 1 and 2 in detail.
divergence problem (Morgan et al. 2004). That i :

the maximum likelihood estimation is unlikely to 1 N-Best Generation
be optimal f((j)r the evalu?jtion metric undir CoESidGiven a set of source-target sentence pairs as trai
eration, as demonstrated on a variety of tasks i, qatatF. E"Yn=1..N. we use the baseline
cluding machine translation (Och 2003) and infor g (Fr, En), 1 e

: ) phrase-based SMT system to generate for each
mation retrieval (Metzler and Croft 2005; Gao eEource sentenc€ a list of 100-best candidate

aI.' 2.005.)' Thefef"fe’ we propose a large-scale dﬁénslations, each translatidh coupled with its
criminative training approach that uses stochast*;;I tbi derivationd, according to Equation (7).

gradient ascent and an N-best list based expec !
BLEU as the objective function. denott_a the 10_0 best set®yN(F). Then, each
tput pair(E,A) is labeled by a sentence-level

, . 0
We cast machine translation as a structureﬁEU score, denoted byBLEU, which is comput-

classification task (Liang et al. 2006). It maps al . .
input source sentendeto an output paitE, A) ed according to Equation (8) (He and Deng 2012),

w_here_E is'the_ output ta!rget sentence ahdhe sBLEU(E,E") = BP X%Zizﬂogpn, (8)
Viterbi derivation ofE. A is assumed to be con-
structed during the translation process. In phrase-
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whereE" is the reference translation, gndn = 1 Initialize w, assuming\ is fixed during training
1..4, are precisions afi-grams. While precisions 5 o= 1 (T = the total number of iterations)

of lower ordern-grams, 1.e.p, andp,, are com- 3 For each training sample (labeled 100-best list)

puted directly without any smoothing, matching c P (EIF) h translation hvooth
: _ omputePy or each translation hypothe-
counts for higher order-grams could be sparse at sisE based on the current modek= (4, w)

the sentence level and need to be smoothed as .
5 Update the model vig = w + 7 - g(w),
_ #(matched ngram) + ap? _ wheren is the learning rate arglthe gradient
Pn = #(ngram) + a ,forn = 3,4 computed according to Equations (12) and (13)

Figure 2: The algorithm of training a MRF-based
phrase translation model.

wherea is a smoothing parameter and is set to 5
andp? is the prior value op,,, whose value is
computed ap? = (p,,—1)?/pn—, forn = 3 and 4.

BP in Equation (8) is the sentence-leumlevity
penalty, computed a8P = exp (1 - ﬁg) which
differs from its corpus-level counterpart (Papineni
et al. 2002) in two ways. First, we use a norwheresBLEU is the sentence-level BLEU, defined
clippedBP, which leads to a better approximatiorin Equation (8), andétg (E|F) is a normalized trans-
to the corpus-level BLEU computation because tHation probability fromF to E computed using
per-sentenc8P might effectively exceed unity in softmax as

corpus-level BLEU computation, as discussed in

Chiang et al. (2008). Second, the ratio between the Po(E|F) = Z;giﬁg‘;ﬁfg)) (10)
length of reference sentenceand the length of

translation hypothesisis scaled by a factg such whereScore(.) is the translation score according
that the total length of the references on training the current mode

xBLEU(0) o
= Yrecen(r) Po(E|F)SBLEU(E, ET),

data equals that of the 1-best translation hypotheScoreg(F,E) = A-h(F,E,A) (12)
ses produced by the baseline SMT system. In our
experiments, the value gfis computed, on the N- +XtecaW  O(f, ).

best training data, as the ratio between the 10 right hand side of (11) contains two terms. The
length of the references and that of the 1-befis term is the score produced by the baselirse sy
translation hypotheses _ _ tem, which is fixed during phrase model training.
In our experiments we find that usisBBLEU  The second term is the translation score produced
defined above leads to a small but consistent ingy the MRF model, which is updated after each
provement over other _variations of sgntence-levg%ining sample during training. Comparing Equa-
BLEU proposed previously (e.g., Liang et alfions (2) and (11), we can view the MRF model yet
2006). In particular, the use of the scaling faftor 4nother component model under the log linear
in computingBP makesBP of the baseline’s 1- yodel framework with itd being set to 1.
best output close to perfect on training data, and Gjyen the objective function, the parameters of
has an effect of forcing the discriminative tragin the MRF model are optimized using stochastic
to improve BLEU by improvingi-gram precisions gradient ascent. As shown in Figure 2, we go
rather than by improving brevity penalty. through the training séttimes, each time is con-
sidered arepoch. For each training sample, we up-
date the model parameters as

We use an N-best list based expected BLEU, avar-  ynew — yold 4 . g(wold) (12)
iant of that in Rosti et al. (2011), as the objexti _ ] o
function for parameter optimization. Given the curwheren is the learning rate, and the gradigns
rent model®, the expected BLEU, denoted bycomputed as

xBLEU(®), over one training sample i.e., a Iabeleg(w) _ 9xBLEU(w) (13)
N-best listGEN(F) generated from a pair of source ow

and target sentencég, E"), is defined as

3.2 Parameter Estimation

454



= Y 5.4 U(8, E)Po(EIF)¢(F, E, A),
whereU(0, E) = sBLEU(E, E™) — xBLEU(0).

Systems

DE-EN (TEST?2)

FR-EN (TEST2)

Two considerations regarding the development Our basdline

Rank-1 system 27.3 30.8
Rank-2 system 26.0 30.7
Rank-3 system 25.6 30.5

26.0 31.4

of the training method in Figure 2 are worth men-Table 1: Baseline results in BLEU. The results of
tioning. They significantly simplify the training top ranked systems are reported in Koehn and
procedure without sacrificing much the quality of Monz (2006.

the trained model. First, we do not include a regu-

larization term in the objective function because

we find early stopping and cross valuation more efask contains 2000 sentences. In our experiments,
fective and simpler to implement. In experimentge used the first 1000 sentences as a development
we produce a MRF model after each epoch, ar@t for MERT training and optimizing parameters
test its quality on a development set by first confor discriminative training, such as learning rate
bining the MRF model with other baseline compoand the number of iterations. We used the rest
nent models via MERT and then examining BLEW00O sentences as the first test set (TEST1). We
score on the development set. We performed traigsed the WMTO06 test data as the second test set
ing for T epochs T = 100 in our experiments) and (TEST2), which contains 2000 sentences.

then pick the model with the best BLEU score on For FR-EN, the training set contains 688K sen-
the development set. Second, we do not use thehce pairs, with 21 words per sentence on average.
leave-one-out method to generate the N-best listhe development set contains 2000 sentences. We
(Wuebker et al. 2010). Instead, the models used iiged 2000 sentences from the WMTO5 shared task
the baseline SMT system are trained on the same TEST1, and the 2000 sentences from the
parallel data on which the N-best lists are gereralyMT06 shared task as TEST2.

ed. One may argue that this could lead to over- Two baseline phrase-based SMT systems, each
fitting. For example, comparing to the translationfor one language pair, are developed as follows.
on unseen test data, the generated translation Mhese baseline systems are used in our experi-
potheses on the training set are of artificiallghhi ments both for comparison purpose and for gener-
quality with the derivations containing artificiall ating N-best lists for discriminative training. &ir
long phrase pairs. The discrepancy between th& performed word alignment on the training set
translations on training and test sets could thet tusing a hidden Markov model with lexicalized dis-
training performance. However, we found in outortion (He 2007), then extracted the phrase table
experiments that the impact of over-fitting on thérom the word aligned bilingual texts (Koehn et al.
quality of the trained MRF models is negligible ~ 2003). The maximum phrase length is set to four.
Other models used in a baseline system include a
lexicalized reordering model, word count and
at]rase count, and a trigram language model trained

4 Experiments

We conducted our experiments on two Europa n the English training data provided by the

translation tasks, German-to-English (DE-EN) an MT06 shared task. A fast beam-search phrase-

French-to-English (FR-EN). The data sets are pup- - -
lished for the shared task in NAACL 2006 Work-Based decoder (Moore and Quirk 2007) is used and

>, . . the distortion limit is set to four. The decoder is
shop on Statistical Machine TranslatQ~¥MTO6) modified so as to output the Viterbi derivation for
(Koehn and Monz 2006).

g . each translation hypothesis.
For DE-EN, the training set contains 751K sen- The metric used for evaluation is case insensi-

tence pairs, with 21 words per sentence on averae%z

. e BLEU score (Papineni et al. 2002). We also
The official development set used for the shar rformed a significance test using the paited

test. Differences are considered statistically ifign
icant when thep-value is less than 0.05. Table 1

1 As pointed out by one of the reviewers, the fauwtt tour
training works fine without leave-one-out is prolyatdue to
the small phrase length limit (i.e., 4) we usedalfonger
phrase limit (e.g., 7) is used the result mighdifgerent. We
leave it to future work.

2 The official results are accessible at
http://www.statmt.org/wmt06/shared-task/resultslhtm
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# | Systems DE-EN FR-EN
TEST1 | TEST2 | TEST1| TEST2
Basedline 26.0 26.0 31.3 31.4
MRFpup | 27.3“ | 27.1% [ 324 | 32.2°
M RFy. 27.2" 26.9" | 32.3" | 32.0°
MRF, 26.87 | 26.77 | 32.2° | 31.87
M RF, 26.87 | 26.8" | 32.1* | 31.97
Table 2: Main results (BLEU scores) of MRF-
based phrase translation models with different
feature classes. The superscriptndg indicate
statistically significant differencep(< 0.05)
from Baseline and M RF...p, respectively.

Q| [WIN|F-

Feature classes # of features (weights)
DE-EN FR-EN
phrase-pair features (p) 2.5M 2.3M
word-pair features (t) 12.2M 9.7M
triplet features (tp) 13.4M 13.8M

Table 3: Statistics of the features used in build-
ing MRF-based phrase translation models.

presents the baseline results. The performance
our phrase-based SMT systems compares favo
bly to the top-ranked systems, thus providing a fali

baseline for our research.

41 Results

27.0 4

26.8 -

26.6 -

26.4 -

26.2

26.0 -

25.8

319 4

31.8 A
31.7 A
31.6 4

315 4
314 A
31.3 A

31.2

0 2I0 4I0 GIO 8I0 1(IJO
Figure 3: BLEU score on development daya (
axis) for DE-EN (top) and FR-EN (bottom) as a
function of the number of epochsdxis).

The result suggests that while the MRF models are
very effective in modeling phrase translations, the
faatures we used in this study may not fully realiz
{Ae potential of the modeling technology.

We also measured the sensitivity of the discrim-
inative training method to different initializatisn
and training parameters. Results show that our
method is very robust. All the MRF models in Ta-

Table 2 shows the main results measured in BLERIe 2 are trained by setting the initial featuretoe

evaluated on TEST1 and TEST2.

to zero, and the learning raje0.01. Figure 3 plots

Row 1 is the baseline system. Rows 2 to 5 atBe BLEU score on development sets as a function
the systems enhanced by integrating different ve@f the number of epochs The BLEU score im-
sions of the MRF-based phrase translation modéiroves quickly in the first 5 epochs, and thenegith
These versions, labeled BERF;, are trained using remains flat, as on the DE-EN data, or keeps in-
the method described in Section 3, and differ & ttereasing but in a much slower pace, as on the FR-
feature classes (which are specified by the subN data.
scriptf) incorporated in the MRF-based model. In _ L .
this study we focused on three classes of featurd2 ~ Comparing Objective Functions

as described in Section 2, phrase-pair featukgs (

word-pair featurest) and triplet featuresyf). The

statistics for these features are given in Table 3.

Table 2 shows that all the MRF models lead to
substantial improvement over the baseline syste|
across all test sets, with a statistically sigaific

This section compares different objective functions
for discriminative training. As shown in Table 4,
)éBLEU is compared to three widely used convex
Il%ss functions, i.e., hinge loss, logistic losg] &y
0ss. The hinge loss and logistic loss take into ac

dcount only two hypotheses among an N-best list
ggN: the one with the best sentence-level BLEU
score with respect to its reference translation, de
noted by(E*,A"), called theoracle candidate
II};lenceforth, and the highest scoracbrrect candi-
éjate according to the current model, denoted by
(E',A"), defined as

margin from 0.8 to 1.3 BLEU points. As expecte
the best phrase model incorporates all of the thr
classes of featuredRFp..p in Row 2). We also
find that bothMRF, and MRF,;, although using
only one class of features, perform quite well.
TEST2 of DE-EN and TEST1 of FR-EN, they ar
in a near statistical tie withl RF.; andM RF ..+ p.
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# | Objective DE-EN FR-EN over all hypotheses in an N-best list (ixBLEU
functions TElsT TEST2| TEST1 | TEST2 and log loss) are more effective than the ones that
do notxBLEU, although it is a non-concave func-
XBLEU 21.2 | 26.9 323 32.0 tion, significantly outperforms the others becaise
hinge loss 26.4 | 26.27 | 3.8 3.5 . . . i
is more closely coupled with the evaluation metric

isti 26. 26.2 1.7 1. ; : .
2 :gg'lsé:;m$ Zgg 222 3;21 3315; under consideration (i.e., BLEU).

Table 4: BLEU scores of MRF-based phrase trans15 Related Work
lation models trained using different objective

functions. The MRF models use phrase-pair andamong the attempts to learning phrase translation
word-pair features. The superscriptindicates  propabilities that go beyond pure counting of
statistically significant differencep(< 0.05) from phrases on word-aligned corpora, Wuebker et al.
xBLUE. (2010) and He and Deng (2012) are most related to
our work. The former find phrase alignment direct-
ly on training data and update the translation prob
(E',A") = abilities based on this aligr_lrr_\ent. '_I'he_ Ia_tter_ learn
oramax s yccancen o SO0 (L E ) O proach. But He and
whereScoreg(.) is defined in Equation (11)et  peng's method involves multiple stages, and is not
x=h(F,E",A") —h(F,E',A’) . The hinge 10Ss giraightforward to implemehtOur method differs
under the N-best re-ranking framework is defineflom previous work in its use of a MRF model that
asmax (0,1 - 0"x). It is easy to verify that to js simple and easy to understand, and a stochastic
train a model using this version of hinge loss, thgradient ascent based training method that is effi-
update rule of Equation (12) can be rewritten as ¢jent and easy to implement.
wold, ifE = E* A large portion of previous studies on discrimi-
{ (14)  native training for SMT either use a handful of-fea
R tures or use small training sets of a few thousand
whereE is the highest scored candidateGEN. sentences (e.g., Och 2003; Shen et al. 2004;
Following Shalev-Shwartz (2012), by setting- \watanabe et al. 2007; Duh and Kirchhoff 2008;
1, we reach the Perceptron-based training algehiang et al. 2008; Chiang et al. 2009). Although
rithm that has been widely used in previous studiggere is growing interest in large-scale discrimina
of discriminative training for SMT (e.g., Liang ettjve training (e.g., Liang et al. 2006; Tillmanndan

WIN (P

new _
w =

wold + nx,  otherwise

al. 2006; Simianer et al. 2012). . Zhang 2006; Blunsom et al. 2008; Hopkins and

The logistic losdog(1 + exp(~68"x)) leads to May 2011; Zhang et al. 2011), only recently does

an update rule similar to that of hinge loss some improvement start to be observed (e.g.,

wold ifE = E* Simianer et al. 2012; He and Deng 2012). It still

whew = { old, . (19) remains uncertain if the improvement is attributed
W + nPy(X)X, otherwise o . L

to new features, new training algorithms, objective

wherePy(x) = 1/(1 + exp(07x)). functions, or simply large amounts of training data

The log loss is widely used when a probabilistitve show empirically the importance of objective
interpretation of the trained model is desiredinas functions. Gimple and Smith (2012) also analyze
conditional random fields (CRFs) (Lafferty et alobjective functions, but more from a theoretical
2001). Given a training sample, log loss is definegdewpoint.
aslog Py (E*|F), whereE™ is the oracle translation  The proposed MRF-based translation model is
hypothesis with respect to its reference trangtatioinspired by previous work of applying MRFs for
Po(E*|F) is computed as Equation (10). So, unlikénformation retrieval (Metzler and Croft 2005),
hinge loss and logistic loss, log loss takes imto aquery expansion (Metzler et al. 2007; Gao et al.
count the distribution over all hypotheses in an N2012) and POS tagging (Haghighi and Klein 2006).
best list.

The results in Table 4 suggest that the objectivéor comparison, the method of He and Deng (2018) a

functions that take into account the distributiogchieved very similar results to ours using the es@xperi-
mental setting, as described in Section 4.
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Another undirected graphical model that has bed&Phiang, D., Marton, Y., and Resnik, P. 2008.
more widely used for NLP is a CRF (Lafferty et al. Online large-margin training of syntactic and
2001). An MRF differs from a CRF in that its par- structural translation features. EMNLP.

tition function is no longer observation dependen[DeNerO 3., Gillick, D., Zhang, J., and Klein, D

As a result, learning an MRF is harder than Iearn—2006 Whv qenerative phrase models underper-
ing a CRF using maximum likelihood estimation form .surfa)éegheuristics pM/orksho on Satisti- P
(Haghighi and Klein 2006). Our work provides an cal Machine Trang ation .pp 31_3813

alternative learning method that is based on dis-

criminative training. Duh, K., and Kirchhoff, K. 2008. Beyond log-
. linear models: boosted minimum error rate train-
6 Conclusions ing for n-best ranking. IACL.

The contributions of this paper are two-fold. FirstGalley, M., Hopkins, M., Knight, K., Marcu, D.
we present a general, statistical framework for 2004. What's in a translation rule? HLT-
modeling phrase translations via MRFs, where dif- NAACL, pp. 273-280.

ferent features can be incorporated in a unifiedao, J., Xie, S., He, X., and Ali, A. 2012. Leaqin
manner. Second, we demonstrate empil‘ica"y thatlexicon models from search |ogs for query ex-
the parameters of the MRF model can be learnedyansion. IFEMNLP-CONLL, pp. 666-676.
effectively using a large-scale discriminative nrai _ _ _ _

ing approach which is based on stochastic gradi€d@: J-» Qi, H., Xia, X., and Nie, J-Y. 2005. Linea
ascent and an N-best list based expected BLEU adliscriminant model for information retrieval. In
the objective function. SGIR, pp. 290-297.

In future work we strive to fully realize the po-Gimpel, K., and Smith, N. A. 2012. Structured

tential of the MRF model by developing features ramp loss minimization for machine translation.
that can capture more sophisticated translation deqn NAACL-HLT.

pendencies that those used in this study. We wijll . _
also explore the use of MRF-based translatiof2ghighi, A., and Klein, D. 2006. Prototype-driven
models for translation systems that go beyond sim-€&rning for sequence models.NAACL.

ple phrases, such as hierarchical phrase based $yssan, S., Ganitkevitch, J., Ney, H., and Andres-
tems (Chiang 2005) and syntax-based systemsrnerre, J. 2008. Triplet lexicon models for statis-

(Galley et al. 2004). tical machine translation. IEMNLP, pp. 372-
381.
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