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Abstract

A twin-model is proposed for coreference res-
olution: a link component, modeling the coref-
erential relationship between an anaphor and
a candidate antecedent, and a creation com-
ponent modeling the possibility that a phrase
is not coreferential with any candidate an-
tecedent. The creation model depends on all
candidate antecedents and is often expensive
to compute; Therefore constraints are imposed
on feature forms so that features in the cre-
ation model can be efficiently computed from
feature values in the link model. The pro-
posed twin-model is tested on the data from
the 2005 Automatic Content Extraction (ACE)
task and the proposed model performs bet-
ter than a thresholding baseline without tuning
free parameter.

1 Introduction

Coreference resolution aims to find multiple mentions
of an entity (e.g., PERSON, ORGANIZATION) in a
document. In a typical machine learning-based coref-
erence resolution system (Soon et al., 2001; Ng and
Cardie, 2002b; Yang et al., 2003; Luo et al., 2004), a
statistical model is learned from training data and is
used to measure how likely an anaphor 1 is corefer-
ential to a candidate antecedent. A related, but often
overlooked, problem is that the anaphor may be non-
coreferential to any candidate, which arises from sce-
narios such as an identified anaphor is truly generic and

1In this paper, “anaphor” includes all kinds of phrases to
be resolved, which can be named, nominal or pronominal
phrases.

there does not exist an antecedent in the discourse con-
text, or an anaphor is the first mention (relative to pro-
cessing order) in a coreference chain.

In (Soon et al., 2001; Ng and Cardie, 2002b),
the problem is treated by thresholding the scores re-
turned by the coreference model. That is, if the max-
imum coreference score is below a threshold, then the
anaphor is deemed non-referential to any candidate an-
tecedent. The threshold approach does not model non-
coreferential events directly, and is by no means the op-
timal approach to the problem. It also introduces a free
parameter which has to be set by trial-and-error. As an
improvement, Ng and Cardie (2002a) and Ng (2004)
train a separate model to classify an anaphor as either
anaphoric or non-anaphoric. The output of this clas-
sifier can be used either as a pre-filter (Ng and Cardie,
2002a) so that non-anaphoric anaphors will not be pre-
cessed in the coreference system, or as a set of features
in the coreference model (Ng, 2004). By rejecting any
anaphor classified as non-anaphoric in coreference res-
olution, the filtering approach is meant to handle non-
anaphoric phrases (i.e., no antecedent exists in the dis-
course under consideration), not the first mention in a
coreference chain.

In this paper, coreference is viewed as a process of
sequential operations on anaphor mentions: an anaphor
can either be linked with its antecedent if the antecedent
is available or present. If the anaphor, on the other
hand, is discourse new (relative to the process order),
then a new entity is created. Corresponding to the two
types of operations, a twin-model is proposed to re-
solve coreferential relationships in a document. The
first component is a statistical model measuring how
likely an anaphor is coreferential to a candidate an-
tecedent; The second one explicitly models the non-
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coreferential events. Both models are trained automat-
ically and are used simultaneously in the coreference
system. The twin-model coreference system is tested
on the 2005 ACE (Automatic Content Extraction, see
(NIST, 2005)) data and the best performance under
both ACE-Value and entity F-measure can be obtained
without tuning a free parameter.

The rest of the paper is organized as follows. The
twin-model is presented in Section 2. A maximum-
entropy implementation and features are then presented
in Section 3. The experimental results on the 2005
ACE data is presented in Section 4. The proposed twin-
model is compared with related work in Section 5 be-
fore the paper is concluded.

2 Coreference Model

A phrasal reference to an entity is called a mention. A
set of mentions referring to the same physical object is
said to belong to the same entity. For example, in the
following sentence:

(I) John said Mary was his sister.

there are four mentions: John, Mary, his, and
sister. John and his belong to the same entity
since they refer to the same person; So do Mary and
sister. Furthermore, John and Mary are named
mentions, sister is a nominal mention and his is a
pronominal mention.

In our coreference system, mentions are processed
sequentially, though not necessarily in chronological
order. For a document with n mentions {mi : 1 ≤ i ≤
n}, at any time t(t > 1), mention m1 through mt−1

have been processed and each mention is placed in one
of Nt(Nt ≤ (t−1)) entities: Et = {ej : 1 ≤ j ≤ Nt}.
Index i in mi indicates the order in which it is pro-
cessed, not necessarily the order in which it appears in
a document. The basic step is to extend Et to Et+1

with mt.
Let us use the example in Figure 1 to illustrate how

this is done. Note that Figure 1 contains one possible
processing order for the four mentions in Example (I):
first name mentions are processed, followed by nom-
inal mentions, followed by pronominal mentions. At
time t = 1, there is no existing entity and the mention
m1=John is placed in an initial entity (entity is signi-
fied by a solid rectangle). At time t = 2, m2=Mary
is processed and a new entity containing Mary is cre-
ated. At time t = 3, the nominal mention m3=sister
is processed. At this point, the set of existing entities

E3 =
{

{John}, {Mary}
}

.

m3 is linked with the existing entity {Mary}. At the
last step t = 4, the pronominal mention his is linked
with the entity {John}.

The above example illustrates how a sequence of
coreference steps lead to a particular coreference result.
Conversely, if the processing order is known and fixed,
every possible coreference result can be decomposed
and mapped to a unique sequence of such coreference
steps. Therefore, if we can score the set of coreference
sequences, we can score the set of coreference results
as well.

In general, when determining if a mention mt is
coreferential with any entity in Et, there are two types
of actions: one is that mt is coreferential with one of
the entities; The other is that mt is not coreferential
with any. It is important to distinguish the two cases
for the following reason: if mt is coreferential with an
entity ej , in most cases it is sufficient to determine the
relationship by examining mt and ej , and their local
context; But if mt is not coreferential with any existing
entities, we need to consider mt with all members in
Et. This observation leads us to propose the following
twin-model for coreference resolution.

The first model, P (L|ej , mt), is conditioned on an
entity ej and the current mention mt and measure how
likely they are coreferential. L is a binary variable, tak-
ing value 1 or 0, which represents positive and nega-
tive coreferential relationship, respectively. The second
model, on the other hand, P (C|Et, mt), is conditioned
on the past entities Et and the current mention mt. The
random variable C is also binary: when C is 1, it means
that a new entity {mt} will be created. In other words,
the second model measures the probability that mt is
not coreferential to any existing entity. To avoid con-
fusion in the subsequent presentation, the first model
will be written as Pl(·|ej , mt) and called link model;
The second model is written as Pc(·|Et, mt) and called
creation model.

For the time being, let’s assume that we have the link
and creation model at our disposal, and we will show
how they can be used to score coreference decisions.

Given a set of existing entities Et = {ej}
Nt

1 , formed
by mentions {mi}

t−1
i=1, and the current mention mt,

there are Nt + 1 possible actions: we can either link
mt with an existing entity ej (j = 1, 2, · · · , Nt), or
create a new entity containing mt. The link action be-
tween ej and mt can be scored by Pl(1|ej , mt) while
the creation action can be measured by Pc(1|Et, mt).
Each possible coreference outcome consists of n such
actions {at : t = 1, 2, · · · , n}, each of which can be
scored by either the link model Pl(·|ej , mt) or the cre-

74



John
John

Mary

John

Mary
sister

John
his

Mary
sister

John Mary sister his

t=1 t=2 t=3 t=4

E1={}

m3 m4m2m1

E3E2 E4

Figure 1: Coreference process for the four mentions in Example (I). Mentions in a document are processed se-
quentially: first name mentions, then nominal mentions, and then pronominal mentions. A dashed arrow signifies
that a new entity is created, while a solid arrow means that the current mention is linked with an existing entity.

ation model Pc(·|Et, mt). Denote the score for ac-
tion at by S(at|a

t−1
1 ), where dependency of at on

a1 through at−1 is emphasized. The coreference re-
sult corresponding to the action sequence is written as
En({ai}

n
i=1). When it is clear from context, we will

drop {ai}
n
i=1 and write En only.

With this notation, the score for a coreference out-
come En({ai}

n
i=1) is the product of individual scores

assigned to the corresponding action sequence {ai}
n
i=1,

and the best coreference result is the one with the high-
est score:

Ên = arg max
En

S(En)

= arg max
{at}n

1

n
∏

t=1

S(at|a
t−1
1 ). (1)

Given n mentions, the number of all possible
entity outcomes is the Bell Number (Bell, 1934):
B(n) = 1

e

∑∞
k=0

kn

k! . Exhaustive search is out of the
question. Thus, we organize hypotheses into a Bell
Tree (Luo et al., 2004) and use a beam search with the
following pruning strategy: first, a maximum beam size
(typically 20) S is set, and we keep only the top S hy-
potheses; Second, a relative threshold r (we use 10−5)
is set to prune any hypothesis whose score divided by
the maximum score falls below the threshold.

To give an concrete example, we use the example
in Figure 1 again. The first step at t = 1 creates a
new entity and is therefore scored by Pc(1|{},John);
the second step also creates an entity and is scored
by Pc(1|{John},Mary); the step t = 3, how-
ever, links sister with {Mary} and is scored by
Pl(1|{Mary},sister); Similarly, the last step is
scored by Pl(1|{John},his). The score for this
coreference outcome is the product of the four num-

bers:

S(
{

{John,his}, {Mary,sister}
}

)

=Pc(1|{},John)Pc(1|{John},Mary)·

Pl(1|{Mary},sister)·

Pl(1|{John},his). (2)

Other coreference results for these four mentions can
be scored similarly. For example, if his at the last
step is linked with {Mary,sister}, the score would
be:

S(
{

{John}, {Mary,sister,his}
}

)

=Pc(1|{},John)Pc(1|{John},Mary)·

Pl(1|{Mary},sister)·

Pl(1|{Mary,sister},his). (3)

At testing time, (2) and (3), among other possible out-
comes, will be searched and compared, and the one
with the highest score will be output as the coreference
result.

Examples in (2) and (3) indicate that the link model
Pl(·|ej , mt) and creation model Pc(·|Et, mt) form an
integrated coreference system and are applied simul-
taneously at testing time. As will be shown in the next
section, features in the creation model Pc(·|Et, mt) can
be computed from their counterpart in the link model
Pl(·|ej , mt) under some mild constraints. So the two
models’ training procedures are tightly coupled. This
is different from (Ng and Cardie, 2002a; Ng, 2004)
where their anaphoricty models are trained indepen-
dently of the coreference model, and it is either used
as a pre-filter, or its output is used as features in the
coreference model. The creation model Pc(·|Et, mt)
proposed here bears similarity to the starting model
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in (Luo et al., 2004). But there is a crucial differ-
ence: the starting model in (Luo et al., 2004) is an
ad-hoc use of the link scores and is not learned auto-
matically, while Pc(·|Et, mt) is fully trained. Training
Pc(·|Et, mt) is covered in the next section.

3 Implementation

3.1 Feature Structure

To implement the twin model, we adopt the log linear
or maximum entropy (MaxEnt) model (Berger et al.,
1996) for its flexibility of combining diverse sources of
information. The two models are of the form:

Pl(L|ej , mt) =
exp

(

∑

k λkgk(ej , mt, L)
)

Y (ej , mt)
(4)

Pc(C|Et, mt) =
exp

(

∑

i νihi(Et, mt, C)
)

Z(Et, mt)
, (5)

where L and C are binary variables indicating either
mt is coreferential with ej , or mt is used to create a
new entity. Y (ej , mt) and Z(ej , mt) are normalization
factors to ensure that Pl(·|ej , mt) and Pc(·|Et, mt) are
probabilities; λk and νi are the weights for feature
gk(ej , mt, L) and hi(Et, mt, C), respectively. Once
the set of features functions are selected, algorithm
such as improved iterative scaling (Berger et al., 1996)
or sequential conditional generalized iterative scal-
ing (Goodman, 2002) can be used to find the optimal
parameter values of {λk} and {νi}.

Computing features {gk(ej , mt, ·)} for the link
model Pl(L|ej , mt)

2 is relatively straightforward:
given an entity ej and the current mention mt, we
just need to characterize things such as lexical similar-
ity, syntactic relationship, and/or semantic compatibil-
ity of the two. It is, however, very challenging to com-
pute the features {hi(Et, mt, ·)} for the creation model
Pc(·|Et, mt) since its conditioning includes a set of en-
tities Et, whose size grows as more and more mentions
are processed. The problem exists because the decision
of creating a new entity with mt has to be made after
examining all preceding entities. There is no reason-
able modeling assumption one can make to drop some
entities in the conditioning.

To overcome the difficulty, we impose the follow-
ing constraints on the features of the link and creation

2The link model is actually implemented as:
Pl(L|ej , mt) ≈ maxm′∈ej

P̂l(L|ej , m
′, mt). Some

features are computed on a pair of mentions (m′, mt) while
some are computed at entity level. See (Luo and Zitouni,
2005) and (Daumé III and Marcu, 2005).

model:

gk(ej , mt, L) =g
(1)
k (ej , mt)g

(2)
k (L) (6)

hi(Et, mt, C) =h
(1)
i

(

{g
(1)
k (e, mt) : e ∈ Et}

)

·

h
(2)
i (C), for some k. (7)

(6) states that a feature in the link model is separable
and can be written as a product of two functions: the
first one, g

(1)
k (·, ·), is a binary function depending on

the conditioning part only; the second one, g
(2)
k (·), is

an indicator function depending on the prediction part
L only. Like g

(2)
k (·), h

(2)
i (·) is also a binary indicator

function.
(7) implies that features in the creation model

are also separable; Moreover, the conditioning part
h

(1)
i

(

{g
(1)
k (e, mt) : e ∈ Et}

)

, also a binary function,
only depends on the function values of the set of link
features {g(1)

k (e, mt) : e ∈ Et} (for some k). In other

words, once {g
(1)
k (e, mt) : e ∈ Et} and C are known,

we can compute hi(Et, mt, C) without actually com-
paring mt with any entity in Et. Using binary features
is a fairly mild constraint as non-binary features can be
replaced by a set of binary features through quantiza-
tion.

How fast h
(1)
i

(

{g
(1)
k (e, mt) : e ∈ Et}

)

can be com-

puted depends on how h
(1)
i is defined. In most cases

– as will be shown in Section 3.2, it boils down test-
ing if any member in {g

(1)
k (e, mt) : e ∈ Et} is non-

zero; or counting how many non-zero members there
are in {g

(1)
k (e, mt) : e ∈ Et}. Both are simple op-

erations that can be carried out quickly. Thus, the as-
sumption (7) makes it possible to compute efficiently
hi(Et, mt, C).

3.2 Features in the Creation Model

We describe features used in our coreference system.
We will concentrate on features used in the creation
model since those in the link model can be found in
the literature (Soon et al., 2001; Ng and Cardie, 2002b;
Yang et al., 2003; Luo et al., 2004). In particular,
we show how features in the creation model can be
computed from a set of feature values from the link
model for a few example categories. Since g

(2)
k (·) and

h
(2)
i (·) are simple indicator functions, we will focus on

g
(1)
k (·, ·) and h

(1)
i (·).

3.2.1 Lexical Features

This set of features computes if two surface strings
(spellings of two mentions) match each other, and are
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applied to name and nominal mentions only. For the
link model, a lexical feature g

(1)
k (ej , mt) is 1 if ej con-

tains a mention matches mt, where a match can be ex-
act, partial, or one is an acronym of the other.

Since gk(ej , mt) is binary, one corresponding fea-
ture used in the creation model is the disjunction of the
values in the link model, or

h
(1)
i (Et, mt) = ∨e∈Et

{g
(1)
k (e, mt)}, (8)

where ∨ is a binary “or” operator. The intuition is that
if there is any mention in Et matching mt, then the
probability to create a new entity with mt should be
low; Conversely, if none of the mentions in Et matches
mt, then mt is likely to be the first mention of a new
entity.

Take t = 2 in Figure 1 as an example. There is
only one partially-established entity {John}, so E2 =
{John}, and m2 = Mary. The exact string match
feature g

(1)
em(·, ·) would be

g(1)
em({John},Mary) = 0,

and the corresponding string match feature in the cre-
ation model is

h(1)
em({John},Mary) = ∨e∈Et

{g(1)
em(e,Mary)}

= 0.

Disjunction is not the only operation we can use.
Another possibility is counting how many times mt

matches mentions in Et, so (8) becomes:

h
(1)
i (Et, mt) = Q

[

∑

e∈Et

{g
(1)
k (e, mt)}

]

, . (9)

where Q[·] quantizes raw counts into bins.

3.2.2 Attribute Features
In the link model, features in this category compare

the properties of the current mention mt with that of an
entity ej . Properties of a mention or an entity, when-
ever applicable, include gender, number, entity type,
reflexivity of pronouns etc. Similar to what done in
the lexical feature, we again synthesize a feature in the
creation model by taking the disjunction of the corre-
sponding set of feature values in the link model, or

h
(1)
i (Et, mt) = ∨e∈Et

{g
(1)
k (e, mt)},

where g
(1)
k (e, mt) takes value 1 if entity e and mention

mt share the same property; Otherwise its value is 0.
The intuition is that if there is an entity having the same

property as the current mention, then the probability for
the current mention to be linked with the entity should
be higher than otherwise; Conversely, if none of the en-
tities in Et shares a property with the current mention,
the probability for the current mention to create a new
entity ought to be higher.

Consider the gender attribute at t = 4 in Fig-
ure 1. Let g

(1)
gender(·, ·) be the gender feature in the

link model, assume that we know the gender of John,
Mary and his. Then g

(1)
gender({{John},his) is 1,

while g
(1)
gender({Mary, sister},his) is 0. There-

fore, the gender feature for the creation model would
be

h
(1)
gender(

{

{John},{Mary, sister}
}

, his)

=0 ∨ 1 = 1,

which means that there is at least one mention which
has the same the gender of the current mention mt.

3.2.3 Distance Feature

Distance feature needs special treatment: while it
makes sense to talk about the distance between a pair
of mentions, it is not immediately clear how to compute
the distance between a set of entities Et and a mention
mt. To this end, we compute the minimum distance be-
tween the entities and the current mention with respect
to a “fired” link feature, as follows.

For a particular feature g
(1)
k (·, ·) in the link model,

define the minimum distance to be

d̂(Et, mt; gk) = min{d(m, mt) : m ∈ Et,

and g
(1)
k (m, mt) = 1}, (10)

where d(m, mt) is the distance between mention mand
mt. The distance itself can be the number of tokens,
or the number of intervening mentions, or the number
of sentences. The minimum distance d̂(Et, mt; gk) is
quantized and represented as binary feature in the cre-
ation model. The idea here is to encode what is the
nearest place where a feature fires.

Again as an example, consider the gender attribute at
t = 4 in Figure 1. Assuming that d(m, mt) is the num-
ber of tokens. Since only John matches the gender of
his,

d̂(E4, m4; ggender) = 3.

The number is then quantized and used as a binary fea-
ture to encode the information that “there is a mention
whose gender matches the current mention within in a
token distance range including 3.”
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In general, binary features in the link model which
measure the similarity between an entity and a mention
can be turned into features in the creation model in the
same manner as described in Section 3.2.1 and 3.2.2.
For example, syntactic features (Ng and Cardie, 2002b;
Luo and Zitouni, 2005) can be computed this way and
are used in our system.

4 Experiments

4.1 Data and Evaluation Metric

We report the experimental results on ACE 2005
data (NIST, 2005). The dataset consists of 599 doc-
uments from a rich and diversified sources, which in-
clude newswire articles, web logs, and Usenet posts,
transcription of broadcast news, broadcast conversa-
tions and telephone conversations. We reserve the last
16% documents of each source as the test set and use
the rest of the documents as the training set. Statistics
such as the number of documents, words, mentions and
entities of this data split is tabulated in Table 1.

DataSet #Docs #Words #Mentions #Entities
Training 499 253771 46646 16102

Test 100 45659 8178 2709
Total 599 299430 54824 18811

Table 1: Statistics of ACE 2005 data: number of docu-
ments, words, mentions and entities in the training and
test set.

The link and creation model are trained at the same
time. Besides the basic feature categories described in
Section 3.2, we also compute composite features by
taking conjunctions of the basic features. Features are
selected by their counts with a threshold of 8.

ACE-Value is the official score reported in the ACE
task and will be used to report our coreference system’s
performance. Its detailed definition can be found in the
official evaluation document 3. Since ACE-Value is a
weighted metric measuring a coreference system’s rel-
ative value, and it is not sensitive to certain type of
errors (e.g., false-alarm entities if these entities con-
tain correct mentions), we also report results using un-
weighted entity F-measure.

4.2 Results

To compare the proposed twin model with simple
thresholding (Soon et al., 2001; Ng and Cardie, 2002b),

3The official evaluation document can be found at:
www.nist.gov/speech/tests/ace/ace05/doc/
ace05-evalplan.v3.pdf.
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Figure 2: Performance comparison between a thresh-
olding baseline and the twin-model: lines with square
points are the entity F-measure (x100) results; lines
with triangle points are ACE-Value (in %). Solid lines
are baseline while dashed lines are twin-model.

we first train our twin model. To simulate the thresh-
olding approach, a baseline coreference system is cre-
ated by replacing the creation model with a constant,
i.e.,

Pc(1|Et, mt) = θ, (11)

where θ is a number between 0 and 1. At testing time,
a new entity is created with score θ when

Pl(1|ej , mt) < θ, ∀ej ∈ Et.

The decision rule simply implies that if the scores be-
tween the current mention mt and all candidate entities
ej ∈ Et are below the threshold θ, a new entity will be
created.

Performance comparison between the baseline and
the twin-model is plotted in Figure 2. X-axis is the
threshold varying from 0.1 to 0.9 with a step size 0.1.
Two metrics are used to compare the results: two lines
with square data points are the entity F-measure results,
and two lines with triangle points are ACE-Value. Note
that performances for the twin-model are constant since
it does not use thresholding.

As shown in the graph, the twin-model (two dashed
lines) always outperforms the baseline (two solid
lines). A “bad” threshold impacts the entity F-measure
much more than ACE-Value, especially in the region
with high threshold value. Note that a large θ will lead
to more false-alarm entities. The graph suggests that
ACE-Value is much less sensitive than the un-weighted
F-measure in measuring false-alarm errors. For exam-
ple, at θ = 0.9, the baseline F-measure is 0.591 while
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the twin model F-measure is 0.848, a 43.5% difference;
On the other hand, the corresponding ACE-Values are
84.5% (baseline) vs. 88.4% (twin model), a mere 4.6%
relative difference. There are at least two reasons: first,
ACE-Value discounts importance of nominal and pro-
noun entities, so more nominal and pronoun entity er-
rors are not reflected in the metric; Second, ACE-Value
does not penalize false-alarm entities if they contain
correct mentions. The problem associated with ACE-
Value is the reason we include the entity F-measure re-
sults.

Another interesting observation is that an optimal
threshold for the entity F-measure is not necessarily op-
timal for ACE-Value, and vice versa: θ = 0.3 is the
best threshold for the entity F-measure, while θ = 0.5
is optimal for ACE-Value. This is highlighted in Ta-
ble 2, where row “B-opt-F” contains the best results op-
timizing the entity F-measure (at θ = 0.3), row “B-opt-
AV” contains the best results optimizing ACE-Value (at
θ = 0.5), and the last line “Twin-model” contains the
results of the proposed twin-model. It is clear from
Table 2 that thresholding cannot be used to optimize
the entity F-measure and ACE-Value simultaneously.
A sub-optimal threshold could be detrimental to an un-
weighted metric such as the entity F-measure. The pro-
posed twin model eliminates the need for threshold-
ing, a benefit of using the principled creation model.
In practice, the optimal threshold is a free parameter
that has to be tuned every time when a task, dataset and
model changes. Thus the proposed twin model is more
portable when a task or dataset changes.

System F-measure ACE-Value
B-opt-F 84.7 87.5

B-opt-AV 81.1 88.0
Twin-model 84.8 88.4

Table 2: Comparison between the thresholding base-
line and the twin model: optimal threshold depends on
performance metric. The proposed twin-model outper-
forms the baseline without tuning the free parameter.

5 Related Work

Some earlier work (Lappin and Leass, 1994; Kennedy
and Boguraev, 1996) use heuristic to determine
whether a phrase is anaphoric or not. Bean and Riloff
(1999) extracts rules from non-anaphoric noun phrases
and noun phrases patterns, which are then applied to
test data to identify existential noun phrases. It is in-
tended as as pre-filtering step before a coreference res-

olution system is run. Ng and Cardie (2002a) trains a
separate anaphoricity classifier in addition to a corefer-
ence model. The anaphoricity classifier is applied as a
filter and only anaphoric mentions are later considered
by the coreference model. Ng (2004) studies what is
the best way to make use of anaphoricity information
and concludes that the constrained-based and globally-
optimized approach works the best. Poesio et al. (2004)
contains a good summary of recent research work on
discourse new or anaphoricity. Luo et al. (2004) uses
a start model to determine whether a mention is the
first one in a coreference chain, but it is computed ad
hoc without training. Nicolae and Nicolae (2006) con-
structs a graph where mentions are nodes and an edge
represents the likelihood two mentions are in an entity,
and then a graph-cut algorithm is employed to produce
final coreference results.

We take the view that determining whether an
anaphor is coreferential with any candidate antecedent
is part of the coreference process. But we do recog-
nize that the disparity between the two types of events:
while a coreferential relationship can be resolved by
examining the local context of the anaphor and its an-
tecedent, it is necessary to compare the anaphor with
all the preceding candidates before it can be declared
that it is not coreferential with any. Thus, a creation
component Pc(·|Et, mt) is needed to model the second
type of events. A problem arising from the adoption of
the creation model is that it is very expensive to have
a conditional model depending on all preceding enti-
ties Et. To solve this problem, we adopt the MaxEnt
model and impose some reasonable constraints on the
feature functions, which makes it possible to synthe-
size features in the creation model from those of the
link model. The twin model components are intimately
trained and used simultaneously in our coreference sys-
tem.

6 Conclusions

A twin-model is proposed for coreference resolution:
one link component computes how likely a mention is
coreferential with a candidate entity; the other compo-
nent, called creation model, computes the probability
that a mention is not coreferential with any candidate
entity. Log linear or MaxEnt approach is adopted for
building the two components. The twin components
are trained and used simultaneously in our coreference
system.

The creation model depends on all preceding enti-
ties and is often expensive to compute. We impose
some reasonable constraints on feature functions which
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makes it feasible to compute efficiently the features in
the creation model from a subset of link feature val-
ues. We test the proposed twin-model on the ACE 2005
data and the proposed model outperforms a threshold-
ing baseline. Moreover, it is observed that the optimal
threshold in the baseline depends on performance met-
ric, while the proposed model eliminates the need of
tuning the optimal threshold.
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