
SPoT: A Trainable Sentence Planner

Marilyn A. Walker
AT&T Labs – Research
Florham Park, NJ, USA

walker@research.att.com

Owen Rambow
AT&T Labs – Research
Florham Park, NJ, USA

rambow@research.att.com

Monica Rogati
Carnegie Mellon University

Pittsburgh, PA, USA
mrogati+@cs.cmu.edu

Abstract
Sentence planning is a set of inter-related but distinct
tasks, one of which is sentence scoping, i.e. the choice
of syntactic structure for elementary speech acts and
the decision of how to combine them into one or more
sentences. In this paper, we present SPoT, a sentence
planner, and a new methodology for automatically train-
ing SPoT on the basis of feedback provided by human
judges. We reconceptualize the task into two distinct
phases. First, a very simple, randomized sentence-plan-
generator (SPG) generates a potentially large list of pos-
sible sentence plans for a given text-plan input. Second,
the sentence-plan-ranker (SPR) ranks the list of output
sentence plans, and then selects the top-ranked plan. The
SPR uses ranking rules automatically learned from train-
ing data. We show that the trained SPR learns to select a
sentence plan whose rating on average is only 5% worse
than the top human-ranked sentence plan.

1 Introduction
Sentence planning is a set of inter-related but distinct
tasks, one of which is sentence scoping, i.e. the choice
of syntactic structure for elementary speech acts and the
decision of how to combine them into sentences.1 For
example, consider the required capabilities of a sentence
planner for a mixed-initiative spoken dialog system for
travel planning:

(D1) System1: Welcome.... What airport would you like to
fly out of?
User2: I need to go to Dallas.
System3: Flying to Dallas. What departure airport was
that?
User4: from Newark on September the 1st.
System5: What time would you like to travel on Septem-
ber the 1st to Dallas from Newark?

Utterance System1 requests information about the
caller’s departure airport, but in User2, the caller takes
the initiative to provide information about her destina-
tion. In System3, the system’s goal is to implicitly con-
firm the destination (because of the possibility of error

1We would like to thank Michael Collins and Rob Schapire for their
help, comments, and encouragement, and Noemie Elhadad and three
anonymous reviewers for very useful feedback. This work was partially
funded by DARPA under contract MDA972-99-3-0003.

in the speech recognition component), and request in-
formation (for the second time) of the caller’s departure
airport. In User4, the caller provides this information
but also provides the month and day of travel. Given the
system’s dialog strategy, the communicative goals for its
next turn are to implicitly confirm all the information that
the user has provided so far, i.e. the departure and desti-
nation cities and the month and day information, as well
as to request information about the time of travel. The
system’s representation of its communicative goals for
utterance System5 is in Figure 1. The job of the sentence
planner is to decide among the large number of potential
realizations of these communicative goals. Some exam-
ple alternative realizations are in Figure 2.2

implicit-confirm(orig-city:NEWARK)
implicit-confirm(dest-city:DALLAS)
implicit-confirm(month:9)
implicit-confirm(day-number:1)
request(depart-time)

Figure 1: The text plan (communicative goals) for utter-
ance System5 in dialog D1

Alt Realization H RB

0 What time would you like to travel on
September the 1st to Dallas from Newark?

5 .85

5 Leaving on September the 1st. What time
would you like to travel from Newark to Dal-
las?

4.5 .82

8 Leaving in September. Leaving on the 1st.
What time would you, traveling from Newark
to Dallas, like to leave?

2 .39

Figure 2: Alternative sentence plan realizations for the
text plan for utterance System5 in dialog D1. H = human
rating, RB = RankBoost score.

In this paper, we present SPoT, for “Sentence Plan-
ner, Trainable”. We also present a new methodology
for automatically training SPoT on the basis of feed-
back provided by human judges. In order to train SPoT,
we reconceptualize its task as consisting of two distinct
phases. In the first phase, the sentence-plan-generator

2The meaning of the human ratings and RankBoost scores in Fig-
ure 2 are discussed below.

(SPG) generates a potentially large sample of possible
sentence plans for a given text-plan input. In the second
phase, the sentence-plan-ranker (SPR) ranks the sample
sentence plans, and then selects the top-ranked output to
input to the surface realizer. Our primary contribution is
a method for training the SPR. The SPR uses rules au-
tomatically learned from training data, using techniques
similar to (Collins, 2000; Freund et al., 1998).

Our method for training a sentence planner is unique
in neither depending on hand-crafted rules, nor on the
existence of a text or speech corpus in the domain of the
sentence planner obtained from the interaction of a hu-
man with a system or another human. We show that the
trained SPR learns to select a sentence plan whose rating
on average is only 5% worse than the top human-ranked
sentence plan. In the remainder of the paper, section 2
describes the sentence planning task in more detail. We
then describe the sentence plan generator (SPG) in sec-
tion 3, the sentence plan ranker (SPR) in section 4, and
the results in section 5.

2 The Sentence Planning Task
The term “sentence planning” comprises many distinct
tasks and many ways of organizing these tasks have been
proposed in the literature. In general, the role of the sen-
tence planner is to choose abstract linguistic resources
(meaning-bearing lexemes, syntactic constructions) for a
text plan. In our case, the output of the dialog manager of
a spoken dialog system provides the input to our sentence
planner in the form of a single spoken dialog text plan
for each of the turns. (In contrast, the dialog managers
of most dialog systems today simply output completely
formed utterances which are passed on to the TTS mod-
ule.) Each text plan is an unordered set of elementary
speech acts encoding all of the system’s communicative
goals for the current turn, as illustrated in Figure 1. Each
elementary speech act is represented as a type (request,
implicit confirm, explicit confirm), with type-specific pa-
rameters. The sentence planner must decide among al-
ternative abstract linguistic resources for this text plan;
surface realizations of some such alternatives are in Fig-
ure 2.

As already mentioned, we divide the sentence plan-
ning task into two phases. In the first phase, the sentence-
plan-generator (SPG) generates 12-20 possible sentence
plans for a given input text plan. Each speech act
is assigned a canonical lexico-structural representation
(called a DSyntS – Deep Syntactic Structure (Mel’čuk,
1988)). The sentence plan is a tree recording how these
elementary DSyntS are combined into larger DSyntSs;
the DSyntS for the entire input text plan is associated
with the root node of the tree. In the second phase, the
sentence plan ranker (SPR) ranks sentence plans gener-
ated by the SPG, and then selects the top-ranked out-
put as input to the surface realizer, RealPro (Lavoie and
Rambow, 1997). The architecture is summarized in Fig-
ure 3.

✍
✍
✍

✍

S
P

R

.

.

Sentence Planner

S
P

G

★

RealPro
Realizer

Text Plan Chosen sp−tree with associated DSyntS

✍

★

Sp−trees with associated DSyntSs

❁
Dialog
System .

Figure 3: Architecture of SPoT

3 The Sentence Plan Generator
The research presented here is primarily concerned

with creating a trainable SPR. A strength of our ap-
proach is the ability to use a very simple SPG, as we
explain below. The basis of our SPG is a set of clause-
combining operations that incrementally transform a list
of elementary predicate-argument representations (the
DSyntSs corresponding to elementary speech acts, in
our case) into a single lexico-structural representation,
by combining these representations using the following
combining operations. Examples can be found in Fig-
ure 4.� MERGE. Two identical main matrix verbs can be iden-

tified if they have the same arguments; the adjuncts are
combined.� MERGE-GENERAL. Same as MERGE, except that one of
the two verbs may be embedded.� SOFT-MERGE. Same as MERGE, except that the verbs
need only to be in a relation of synonymy or hyperonymy
(rather than being identical).� SOFT-MERGE-GENERAL. Same as MERGE-GENERAL,
except that the verbs need only to be in a relation of syn-
onymy or hyperonymy.� CONJUNCTION. This is standard conjunction with con-
junction reduction.� RELATIVE-CLAUSE. This includes participial adjuncts to
nouns.� ADJECTIVE. This transforms a predicative use of an ad-
jective into an adnominal construction.� PERIOD. Joins two complete clauses with a period.

These operations are not domain-specific and are sim-
ilar to those of previous aggregation components (Ram-
bow and Korelsky, 1992; Shaw, 1998; Danlos, 2000), al-
though the various MERGE operations are, to our knowl-
edge, novel in this form.

The result of applying the operations is a sentence
plan tree (or sp-tree for short), which is a binary tree
with leaves labeled by all the elementary speech acts

Rule Sample first argument Sample second argument Result

MERGE You are leaving from Newark. You are leaving at 5 You are leaving at 5 from Newark
MERGE-GENERAL What time would you like to

leave?
You are leaving from Newark. What time would you like to leave

from Newark?
SOFT-MERGE You are leaving from Newark You are going to Dallas You are traveling from Newark to

Dallas
SOFT-MERGE-
GENERAL

What time would you like to
leave?

You are going to Dallas. What time would you like to fly to
Dallas?

CONJUNCTION You are leaving from Newark. You are going to Dallas. You are leaving from Newark and
you are going to Dallas.

RELATIVE-
CLAUSE

Your flight leaves at 5. Your flight arrives at 9. Your flight, which leaves at 5, ar-
rives at 9.

ADJECTIVE Your flight leaves at 5. Your flight is nonstop. Your nonstop flight leaves at 5.
PERIOD You are leaving from Newark. You are going to Dallas. You are leaving from Newark.

You are going to Dallas

Figure 4: List of clause combining operations with examples from our domain; an explanation of the operations is
given in Section 3.

from the input text plan, and with its interior nodes la-
beled with clause-combining operations3. Each node is
also associated with a DSyntS: the leaves (which corre-
spond to elementary speech acts from the input text plan)
are linked to a canonical DSyntS for that speech act (by
lookup in a hand-crafted dictionary). The interior nodes
are associated with DSyntSs by executing their clause-
combing operation on their two daughter nodes. (A PE-
RIOD node results in a DSyntS headed by a period and
whose daughters are the two daughter DSyntSs.) If a
clause combination fails, the sp-tree is discarded (for ex-
ample, if we try to create a relative clause of a struc-
ture which already contains a period). As a result, the
DSyntS for the entire turn is associated with the root
node. This DSyntS can be sent to RealPro, which returns
a sentence (or several sentences, if the DSyntS contains
period nodes). The SPG is designed in such a way that
if a DSyntS is associated with the root node, it is a valid
structure which can be realized.

2

1

3
imp−confirm(month) request(time) soft−merge−general

imp−confirm(dest−city) imp−confirm(orig−city)

imp−confirm(day)

soft−merge

soft−merge−general

soft−merge−general

Figure 5: Alternative 0 Sentence Plan Tree

Figure 2 shows some of the realizations of alternative
sentence plans generated by our SPG for utterance Sys-

3The sp-tree is inspired by (Lavoie and Rambow, 1998). The rep-
resentations used by Danlos (2000), Gardent and Webber (1998), or
Stone and Doran (1997) are similar, but do not (always) explicitly rep-
resent the clause combining operations as labeled nodes.

21

3

soft−merge−general

imp−confirm(day)

period

soft−merge−general

imp−confirm(month)

imp−confirm(orig−city) imp−confirm(dest−city)

request(time)soft−merge−general

Figure 6: Alternative 5 Sentence Plan Tree

2

1

soft−merge−general

imp−confirm(orig−city)

request(time)

imp−confirm(dest−city)

relative−clause

imp−confirm(day)

period

period

imp−confirm(month)

Figure 7: Alternative 8 Sentence Plan Tree

tem5 in Dialog D1. Sp-trees for alternatives 0, 5 and
8 are in Figures 5, 6 and 7. For example, consider the
sp-tree in Figure 7. Node soft-merge-general merges
an implicit-confirmations of the destination city and the
origin city. The row labelled SOFT-MERGE in Figure 4
shows the result of applying the soft-merge operation
when Args 1 and 2 are implicit confirmations of the ori-
gin and destination cities. Figure 8 illustrates the rela-
tionship between the sp-tree and the DSyntS for alter-
native 8. The labels and arrows show the DSyntSs as-
sociated with each node in the sp-tree (in Figure 7), and
the diagram also shows how structures are composed into
larger structures by the clause combining operations.

number: sg

mood: question

mood: inf−to

AT1

time

travel

IN1

September

PRONOUN ON1

1 WHAT2

person: 2

Dallasimp−confirm(moth)

imp−confirm(day)

soft−merge−general

relative−clause request(time)

imp−confirm(dest−city)imp−confirm(orig−city)

TO1

mood:prespartmood:prespart

period

travel mood:prespart

Newark

FROM1PRONOUN

leave

period

leave

like

PRONOUN

PRONOUN

Figure 8: Alternative 8 DSyntS (not all linguistic features are shown)

The complexity of most sentence planners arises from
the attempt to encode constraints on the application of,
and ordering of, the operations, in order to generate a sin-
gle high quality sentence plan. In our approach, we do
not need to encode such constraints. Rather, we gener-
ate a random sample of possible sentence plans for each
text plan, up to a pre-specified maximum number of sen-
tence plans, by randomly selecting among the operations
according to some probability distribution.4

4 The Sentence-Plan-Ranker
The sentence-plan-ranker SPR takes as input a set of sen-
tence plans generated by the SPG and ranks them. In
order to train the SPR we applied the machine learning
program RankBoost (Freund et al., 1998), to learn from
a labelled set of sentence-plan training examples a set of
rules for scoring sentence plans.

4.1 RankBoost

RankBoost is a member of a family of boosting algo-
rithms (Schapire, 1999). Freund et al. (1998) describe
the boosting algorithms for ranking in detail: for com-
pleteness, we give a brief description in this section.
Each example � is represented by a set of � indicator
functions

����� �	� for
������� . The indicator functions
are calculated by thresholding the feature values (counts)
described in section 4.2. For example, one such indicator
function might be

��������� ����� �� �
 if DSYNT-TRAVERSAL-PRONOUN(�)���
otherwise !

4Here the probability distribution is hand-crafted based on assumed
preferences for operations such as SOFT-MERGE and SOFT-MERGE-
GENERAL over CONJUNCTION and PERIOD. This allows us to bias the
SPG to generate plans that are more likely to be high quality, while
generating a relatively smaller sample of sentence plans.

So
� �"�#� � �	�$�%
 if the number of pronouns in � is

�&�
.

A single parameter ' � is associated with each indicator
function, and the “ranking score” for an example � is
then calculated as(� �	���*) � ' � � � � ���
This score is used to rank competing sp-trees of the same
text plan in order of plausibility. The training examples
are used to set the parameter values ' � . In (Freund et al.,
1998) the human judgments are converted into a train-
ing set of ordered pairs of examples �,+.- , where � and- are candidates for the same sentence, and � is strictly
preferred to - . More formally, the training set / is/0�21 � �,+.-��435�	+#- are realizations for the same text plan,� is preferred to - by human judgments 6
Thus each text plan with 20 candidates could contribute
up to

� � 87
�9:�"; � �<
59 such pairs: in practice, fewer
pairs could be contributed due to different candidates get-
ting tied scores from the annotators.

Freund et al. (1998) then describe training as a process
of setting the parameters ' � to minimize the following
loss function:=?>

@A�)BDCFE GIHKJMLONMP BDQRBDC5H P Q�BDGIHSH
It can be seen that as this loss function is minimized, the
values for

� (� ����T
(� -��.� where � is preferred to - will

be pushed to be positive, so that the number of ranking
errors (cases where ranking scores disagree with human
judgments) will tend to be reduced. Initially all parame-
ter values are set to zero. The optimization method then
greedily picks a single parameter at a time – the param-
eter which will make most impact on the loss function
– and updates the parameter value to minimize the loss.

The result is that substantial progress is typically made in
minimizing the error rate, with relatively few non-zero
parameter values. Freund et al. (1998) show that un-
der certain conditions the combination of minimizing the
loss function while using relatively few parameters leads
to good generalization on test data examples. Empiri-
cal results for boosting have shown that in practice the
method is highly effective.

4.2 Examples and Feedback
To apply RankBoost, we require a set of example sp-
trees, each of which have been rated, and encoded in
terms of a set of features (see below). We started with
a corpus of 100 text plans generated in context in 25 di-
alogs by the dialog system. We then ran the SPG, param-
eterized to generate at most 20 distinct sp-trees for each
text plan. Since not all text plans have 20 valid sp-trees
(while some have many more), this resulted in a corpus
of 1868 sentence plans. These 1868 sp-trees, realized by
RealPro, were then rated by two expert judges in the con-
text of the transcribed original dialogs (and therefore also
with respect to their adequacy given the communicative
goals for that turn), on a scale from 1 to 5. The ratings
given by the judges were then averaged to provide a rat-
ing between 1 and 5 for each sentence plan alternative.
The ratings assigned to the sentence plans were roughly
normally distributed, with a mean of 2.86 and a median
of 3. Each sp-tree provided an example input to Rank-
Boost, and each corresponding rating was the feedback
for that example.

4.3 Features Used by RankBoost
Rankboost, like other machine learning programs of the
boosting family, can handle a very large number of fea-
tures. Therefore, instead of carefully choosing a small
number of features by hand which may be useful, we
generated a very large number of features and let Rank-
Boost choose the relevant ones. In total, we used 3,291
features in training the SPR. Features were discovered
from the actual sentence plan trees that the SPG gener-
ated through the feature derivation process described be-
low, in a manner similar to that used by Collins (2000).
The motivation for the features was to capture declar-
atively decisions made by the randomized SPG. We
avoided features specific to particular text plans by dis-
carding those that occurred fewer than 10 times.

Features are derived from two sources: the sp-trees
and the DSyntSs associated with the root nodes of sp-
trees. The feature names are prefixed with “sp-” or
“dsynt-” depending on the source. There are two types
of features: local and global. Local features record struc-
tural configurations local to a particular node, i.e., that
can be described with respect to a single node (such as
its ancestors, its daughters, etc.). The value of the fea-
ture is the number of times this configuration is found in
the sp-tree or DSyntS. Each type of local feature also
has a corresponding parameterized or lexicalized ver-
sion, which is more specific to aspects of the particular

dialog in which the text plan was generated.5 Global fea-
tures record properties of the entire tree. Features and
examples are discussed below.

Traversal features: For each node in the tree, fea-
tures are generated that record the preorder traversal of
the subtree rooted at that node, for all subtrees of all
depths (up to the maximum depth). Feature names are
constructed with the prefix “traversal-”, followed by the
concatenated names of the nodes (starting with the cur-
rent node) on the traversal path. As an example, consider
the sp-tree in Figure 5. Feature SP-TRAVERSAL-SOFT-
MERGE*IMPLICIT-CONFIRM*IMPLICIT-CONFIRM has
value 1, since it counts the number of subtrees in the sp-
tree in which a soft-merge rule dominates two implicit-
confirm nodes. In the DSyntS tree for alternative 8 (Fig-
ure 8), feature DSYNT-TRAVERSAL-PRONOUN, which
counts the number of nodes in the DSyntS tree labelled
PRONOUN (explicit or empty), has value 4.

Sister features: These features record all con-
secutive sister nodes. Names are constructed with
the prefix “sisters-”, followed by the concatenated
names of the sister nodes. As an example, con-
sider the sp-tree shown in Figure 7, and the DSyntS
tree shown in Figure 8. Feature DSYNT-SISTERS-
PRONOUN-ON1 counts the number of times the lexi-
cal items PRONOUN and ON1 are sisters in the DSyntS
tree; its value is 1 in Figure 8. Another example
is feature SP-SISTERS-IMPLICIT-CONFIRM*IMPLICIT-
CONFIRM, which describes the configuration of all im-
plicit confirms in the sp-trees in; its value is 2 for all
three sp-trees in Figures 5, 6 and 7.

Ancestor features: For each node in the tree, these
features record all the initial subpaths of the path from
that node to the root. Feature names are constructed with
the prefix “ancestor-”, followed by the concatenated
names of the nodes (starting with the current node).
For example, the feature SP-ANCESTOR*IMPLICIT-
CONFIRM-ORIG-CITY*SOFT-MERGE-GENERAL*SOFT-
MERGE-GENERAL counts the number of times that
two soft-merge-general nodes dominate an implicit
confirm of the origin city; its value is 1 in the sp-trees of
Figures 5 and 6, but 0 in the sp-tree of Figure 7.

Leaf features: These features record all initial
substrings of the frontier of the sp-tree (recall that its
frontier consists of elementary speech acts). Names
are prefixed with “leaf-”, and are then followed by
the concatenated names of the frontier nodes (starting
with the current node). The value is always 0 or
1. For example, the sp-trees of Figure 5, 6 and 7
have value 1 for features LEAF-IMPLICIT-CONFIRM

AND LEAF-IMPLICIT-CONFIRM*IMPLICIT-CONFIRM,
representing the first two sequences of speech acts on
the leaves of the tree. Figure 5 sp-tree has value 1
for features LEAF-IMPLICIT-CONFIRM*IMPLICIT-
CONFIRM*REQUEST, and LEAF-IMPLICIT-

5Lexicalized features are useful in learning lexically specific restric-
tions on aggregation (for example, for verbs such as kiss).

N Condition A0 A5 A8 UWV
1 LEAF-IMPLICIT-CONFIRM X 1 1 1 1 0.94
2 DSYNT-TRAVERSAL-PRONOUN X 2 1 2 4 -0.85
3 LEAF-IMPLICIT-CONFIRM*IMPLICIT-CONFIRM*REQUEST*IMPLICIT-CONFIRM X 1 1 0 0 -0.52
4 DSYNT-TRAVERSAL-IN1 X 1 0 0 1 -0.52
5 DSYNT-TRAVERSAL-PRONOUN X 3 1 2 4 -0.34
6 SP-ANCESTOR*IMPLICIT-CONFIRM-ORIG-CITY*SOFT-MERGE-GENERAL*SOFT-

MERGE-GENERAL X 1.0
1 1 0 0.33

7 SP-ANCESTOR-SOFT-MERGE-GENERAL*PERIOD X 1 0 1 0 0.21
8 DSYNT-ANCESTOR-IN1*LEAVE X 1 0 0 1 -0.16
9 SP-TRAVERSAL-IMPLICIT-CONFIRM-DAY-NUMBER X 1 1 1 1 -0.13
10 SP-TRAVERSAL-SOFT-MERGE*IMPLICIT-CONFIRM*IMPLICIT-CONFIRM X 1 1 0 0 0.11
11 REL-CLAUSE-AVG X 2 0 0 3 -0.12
12 PERIOD-AVG X 3 0 5 3.5 0.12
13 DSYNT-ANCESTOR-TRAVEL*LIKE X 1 1 0 0 0.10
14 DSYNT-SISTERS-PRONOUN-ON1 X 1 0 1 1 -0.10
15 LEAF-IMPLICIT-CONFIRM*IMPLICIT-CONFIRM*REQUEST X 1 1 0 0 -0.10
16 REL-CLAUSE-MIN X 2 0 0 3 -0.09
17 SP-SISTERS-IMPLICIT-CONFIRM*IMPLICIT-CONFIRM- X 1 2 2 2 0.09
18 REL-CLAUSE-MAX X 2 0 0 3 -0.07
19 SP-ANCESTOR-IMPLICIT-CONFIRM*SOFT-MERGE*SOFT-MERGE-GENERAL X 1 1 0 0 0.06

Figure 9: Rules with the largest impact on the final RankBoost score. ' � represents the increment or decrement
associated with satisfying the condition. The columns A0, A5 and A8 give the values of the feature for alternatives 0,
5 and 8

CONFIRM*IMPLICIT-CONFIRM*REQUEST*IMPLICIT-
CONFIRM. Each of these has a corresponding param-
eterized feature, e.g. for LEAF-IMPLICIT-CONFIRM,
there is a corresponding parameterized feature of
LEAF-IMPLICIT-CONFIRM-ORIG-CITY.

Global Features: The global sp-tree features record,
for each sp-tree and for each operation labeling a
non-frontier node (i.e., rule such as CONJUNCTION or
MERGE-GENERAL), (1) the minimal number of leaves
(elementary speech acts) dominated by a node labeled
with that rule in that tree (MIN); (2) the maximal num-
ber of leaves dominated by a node labeled with that rule
(MAX); and (3) the average number of leaves dominated
by a node labeled with that rule (AVG). For example, the
sp-tree for alternative 8 in Figure 7 has value 2 for SOFT-
MERGE-GENERAL-MAX -MIN, and -AVG, but a PERIOD-
MAX of 5, PERIOD-MIN of 2 and PERIOD-AVG of 3.5.

5 Experimental Results
To train and test the SPR we partitioned the corpus into
5 disjoint folds and performed 5-fold cross-validation, in
which at each fold, 80% of the examples were used for
training an SPR and the other unseen 20% was used for
testing. This method ensures that every example occurs
once in the test set. We evaluate the performance of the
the trained SPR on the test sets of text plans by compar-
ing for each text plan:Y BEST: The score of the top human-ranked sentence

plan(s);Y SPOT: The score of SPoT’s selected sentence plan;

Y RANDOM: The score of a sentence plan randomly
selected from the alternate sentence plans.

Figure 10 shows the distributions of scores for the
highest ranked sp-tree for each of the 100 text plans, ac-
cording to the human experts, according to SPoT, and ac-
cording to random choice. The human rankings provide
a topline for SPoT (since SPoT is choosing among op-
tions ranked by the humans, it cannot possibly do better),
while the random scores provide a baseline. The BEST
distribution shows that 97% of text plans had at least one
sentence plan ranked 4 or better. The RANDOM distri-
bution approximates the distribution of rankings for all
sentence plans for all examples.

Because each text plan is used in some fold of 5-fold
cross validation as a test element, we assess the signif-
icance of the ranking differences with a paired t-test of
SPOT to BEST and SPOT to RANDOM.

A paired t-test of SPOT to BEST shows that there
are significant differences in performance (ZA�\[! 9]+_^a` ! � cb). Perfect performance would have meant that there
would be no significant difference. However, the mean
of BEST is 4.82 as compared with the mean of SPOT of
4.56, for a mean difference of 0.26 on a scale of 1 to 5.
This is only a 5% difference in performance. Figure 5
also shows that the main differences are in the lower half
of the distribution of rankings; both distributions have a
median of 5.

A paired t-test of SPOT to RANDOM shows that
there are also significant differences in performance (ZR�
5d ! � +_^�` ! M Mb). The median of the RANDOM distri-

1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

40

50

60

70

80

90

100

Score

N
um

be
r

of
 p

la
ns

 w
ith

 th
at

 s
co

re
 o

r
m

or
e

BEST
SPOT
RANDOM

Figure 10: Distribution of rankings for BEST, SPOT and
RANDOM

bution is 2.50 as compared to SPoT’s median of 5.0. The
mean of RANDOM is 2.76, as compared to the mean of
SPOT of 4.56, for a mean difference of 1.8 on a scale of
1 to 5. The performance difference in this case is 36%,
showing a large difference in the performance of SPoT
and RANDOM.

We then examined the rules that SPoT learned in
training and the resulting RankBoost scores. Figure 2
shows, for each alternative sentence plan, the BEST rat-
ing used as feedback to RankBoost and the score that
RankBoost gave that example when it was in the test set
in a fold. Recall that RankBoost focuses on learning rel-
ative scores, not absolute values, so the scores are nor-
malized to range between 0 and 1.

Figure 9 shows some of the rules that were learned on
the training data, that were then applied to the alternative
sentence plans in each test set of each fold in order to
rank them. We include only a subset of the rules that
had the largest impact on the score of each sp-tree. We
discuss some particular rule examples here to help the
reader understand how SPoT’s SPR works, but leave it
to the reader to examine the thresholds and feature values
in the remainder of the rules and sum the increments and
decrements.

Rule (1) in Figure 9 states that an implicit confirma-
tion as the first leaf of the sp-tree leads to a large (.94)
increase in the score. Thus all three of our alternative sp-
trees accrue this ranking increase. Rules (2) and (5) state
that the occurrence of 2 or more PRONOUN nodes in the
DSyntS reduces the ranking by 0.85, and that 3 or more
PRONOUN nodes reduces the ranking by an additional
0.34. Alternative 8 is above the threshold for both of
these rules; alternative 5 is above the threshold for Rule
(2) and alternative 0 is always below the thresholds. Rule
(6) on the other hand increases only the scores of alter-
natives 0 and 5 by 0.33 since alternative 8 is below the
threshold for that feature.

Note also that the quality of the rules in general seems
to be high. Although we provided multiple instantiations
of features, some of which included parameters or lexical
items that might identify particular discourse contexts,
most of the learned rules utilize general properties of the
sp-tree and the DSyntS. This is probably partly due to
the fact that we eliminated features that appeared fewer
than 10 times in the training data, but also partly due to
the fact that boosting algorithms in general appear to be
resistant to overfitting the data (Freund et al., 1998).

6 Related Work

Previous work in sentence planning in the natural lan-
guage generation (NLG) community uses hand-written
rules to approximate the distribution of linguistic phe-
nomena in a corpus (see (Shaw, 1998) for a recent exam-
ple with further references). This approach is difficult to
scale due to the nonrobustness of rules and unexpected
interactions (Hovy and Wanner, 1996), and it is difficult
to develop new applications quickly. Presumably, this is
the reason why dialog systems to date have not used this
kind of sentence planning.

Most dialog systems today use template-based gener-
ation. The template outputs are typically concatenated to
produce a turn realizing all the communicative goals. It
is hard to achieve high quality output by concatenating
the template-based output for individual communicative
goals, and templates are difficult to develop and maintain
for a mixed-initiative dialog system. For these reasons,
Oh and Rudnicky (2000) use e -gram models and Ratna-
parkhi (2000), maximum entropy to choose templates,
using hand-written rules to score different candidates.
But syntactically simplistic approaches may have qual-
ity problems, and more importantly, these approaches
only deal with inform speech acts. And crucially, these
approaches suffer from the need for training data. In
general there may be no corpus available for a new ap-
plication area, or if there is a corpus available, it is a
transcript of human-human dialogs. Human-human di-
alogs, however, may not provide a very good model of
sentence planning strategies for a computational system
because the sentence planner must plan communicative
goals such as implicit confirmation which are needed to
prevent and correct errors in automatic speech recogni-
tion but which are rare in human-human dialog.

Other related work deals with discourse-related as-
pects of sentence planning such as cue word placement
(Moser and Moore, 1995), clearly a crucial task whose
integration into our approach we leave to future work.
Mellish et al. (1998) investigate the problem of deter-
mining a discourse tree for a set of elementary speech
acts which are partially constrained by rhetorical rela-
tions. Using hand-crafted evaluation metrics, they show
that a genetic algorithm achieves good results in finding
discourse trees. However, they do not address clause-
combining, and we do not use hand-crafted metrics.

7 Discussion
We have presented SPoT, a trainable sentence planner.
SPoT re-conceptualizes the sentence planning task as
consisting of two distinct phases: (1) a very simple sen-
tence plan generator SPG that generates multiple candi-
date sentence plans using weighted randomization; and
(2) a sentence plan ranker SPR that can be trained from
examples via human feedback, whose job is to rank the
candidate sentence plans and select the highest ranked
plan. Our results show that:Y SPoT’s SPR selects sentence plans that on aver-

age are only 5% worse than the sentence plan(s) se-
lected as the best by human judges.Y SPoT’s SPR selects sentence plans that on average
are 36% better than a random SPR that simply se-
lects randomly among the candidate sentence plans.

We validated these results in an independent experi-
ment in which 60 subjects evaluated the quality of differ-
ent realizations for a given turn. (Recall that our train-
able sentence planner was trained on the scores of only
two human judges.) This evaluation revealed that the
choices made by SPoT were not statistically distinguish-
able from the choices ranked at the top by the two hu-
man judges. More importantly, they were also not dis-
tinguishable statistically from the current hand-crafted
template-based output of the AT&T Communicator sys-
tem, which has been developed and fine-tuned over an
extended period of time (whereas SPoT is based on judg-
ments that took about three person-days to make). SPoT
also was rated better than two rule-based versions of our
SPG which we developed as baselines. All systems out-
performed the random choice. We will report on these
results in more detail in a future publication.

In future work, we intend to build on the work reported
in this paper in several ways. First, we believe that we
could utilize additional features as predictors of the qual-
ity of a sentence plan. These include features based on
the discourse context, and features that encode relation-
ships between the sp-tree and the DSyntS. We will also
expand the capabilities of the SPG to cover additional
sentence planning tasks in addition to sentence scoping,
and duplicate the methods described here to retrain SPoT
for our extended SPG.

References
Michael Collins. 2000. Discriminative reranking for

natural language parsing. In Proceedings of the Inter-
national Conference on Machine Learning (ICML).

Laurence Danlos. 2000. G-TAG: A lexicalized for-
malism for text generation inspired by tree adjoining
grammar. In Anne Abeillé and Owen Rambow, edi-
tors, Tree Adjoining Grammars: Formalisms, Linguis-
tic Analysis, and Processing. CSLI Publications.

Yoav Freund, Raj Iyer, Robert E. Schapire, and
Yoram Singer. 1998. An efficient boosting al-
gorithm for combining preferences. In Machine

Learning: Proceedings of the Fifteenth Interna-
tional Conference. Extended version available from
http://www.research.att.com/ schapire.

Claire Gardent and Bonnie Webber. 1998. Varieties
of ambiguity in incremental discourse processing. In
Proceedings of AMLap-98 (Architectures and Mecha-
nisms for Language Processing), Freiburg, Germany.

E.H. Hovy and Leo Wanner. 1996. Managing sen-
tence planning requirements. In Proceedings of the
ECAI’96 Workshop Gaps and Bridges: New Direc-
tions in Planning and Natural Language Generation.

Benoit Lavoie and Owen Rambow. 1997. RealPro – a
fast, portable sentence realizer. In Proceedings of the
Conference on Applied Natural Language Processing
(ANLP’97), Washington, DC.

Benoit Lavoie and Owen Rambow. 1998. A frame-
work for customizable generation of multi-modal
presentations. In 36th Meeting of the Association
for Computational Linguistics and 17th International
Conference on Computational Linguistics (COLING-
ACL’98), Montréal, Canada. ACL.

Igor A. Mel’čuk. 1988. Dependency Syntax: Theory and
Practice. State University of New York Press, New
York.

Chris Mellish, Alistair Knott, Mick O’Donnell, and
Jon Oberlander. 1998. Experiments using stochastic
search for text planning. In Proceedings of the 8th In-
ternational Workshop on Natural Language Genera-
tion, pages 98–107, Niagara-on-the-Lake, Ontario.

Margaret G. Moser and Johanna Moore. 1995. Inves-
tigating cue selection and placement in tutorial dis-
course. In ACL 95, pages 130–137.

Alice H. Oh and Alexander I. Rudnicky. 2000. Stochas-
tic language generation for spoken dialog systems. In
Proceedings of the ANL/NAACL 2000 Workshop on
Conversational Systems, pages 27–32, Seattle. ACL.

Owen Rambow and Tanya Korelsky. 1992. Applied text
generation. In Proceedings of the Third Conference
on Applied Natural Language Processing, ANLP92,
pages 40–47.

Adwait Ratnaparkhi. 2000. Trainable methods for sur-
face natural language generation. In Proceedings of
First North American ACL, Seattle, USA, May.

Robert E. Schapire. 1999. A brief introduction to boost-
ing. In Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence.

James Shaw. 1998. Clause aggregation using linguistic
knowledge. In Proceedings of the 8th International
Workshop on Natural Language Generation, Niagara-
on-the-Lake, Ontario.

Matthew Stone and Christine Doran. 1997. Sentence
planning as description using tree adjoining grammar.
In 35th Meeting of the Association for Computational
Linguistics (ACL’97), pages 198–205, Madrid, Spain.

