
GE ADJUNCT TEST REPORT :
OBJECT-ORIENTED DESIGN AND SCORING FOR MUC- 4

George Krupka and Lisa Rau
Artificial Intelligence Laborator y
GE Research and Development

Schenectady, NY 12301 US A
E-mail : rau@crd .ge.com
Phone: (518) 387 - 505 9

Abstract

This paper reports on the results of the adjunct test performed by GE for the MUC-4 evaluation
of text processing systems . In this test, we evaluated the effect of an object-oriented templat e
design and associated matching conditions on the scores . The results indicate that the curren t
MUC- .{ "flat" templade design with cross-references closely approximates a true object-oriente d
design . However the object-oriented design allows for additional performance data to be calculated ,
facilitating diagnosis .

INTRODUCTION
In this adjunct test, we investigate the issues and effect of transforming the MUC-4 template design au-
tomatically into an object-oriented design, with associated object-level matching conditions affecting th e
overall score .

An object is simply a collection of slots that all refer to one item originating in the text . This collection
of slots is logically connected due to their implicit reference to one particular filler . In addition, objects
may be nested so that one object contains another object, or may be recursive, with one object pointing t o
another and back again . Finally, there may be multiple instances of any given object .

In MUC-4 is is possible to isolate three distinct levels of objects . The first level contains a STORY object .
Attached to a STORY object are INCIDENT objects, each of which contains participant objects ; TARGET ,
INSTRUMENT and PERPETRATOR. The Figure 1 illustrates an object-oriented template design .

The MUC template design has been moving from a flat structure to a more object-oriented structur e
with cross-references tying together multiple slots into what has been termed a "pseudo-object" . Slots tie d
together with cross-references are pseudo-objects and not true objects because the cross-references are no t
enforced. For example, consider the following scenario depicted in Figure 2 . Although the human target
("MARY") is wrong, the system is allowed partial credit for the other slots, even though they are clearl y
cross-referenced to different, and equal incorrect, fills .

MOTIVATIO N
There are a variety of reasons why an object-oriented design is desirable . First, an object-oriented design
is conceptually easier to understand . Instead of a flat listing of all slots of a template, slots pertaining to a
single fill are grouped together . Cross-references are no longer needed, as indentation indicates the grouping ,
so the visual design is cleaner .

Asthetics aside, there are additional performance data that can be obtained when groups of slots ar e
connected as objects . Systems can be scored on how well a given object aligns, in a way analogous t o
template matching alignment scores (template ID score) . Moreover, it is possible to construct an object
total that does not consider whether any given object appears in a matching template or not . For exampl e
in our system, we found that data such as a human target was correctly extracted by the program with all it s
associated fields, but was put in the wrong template . This resulted in missing and spurious points for all th e

78

Story
slot: incident

Incident
slot: date
slot: location
slot: type
slot: stage

slot: inst id
slot: inst type

slot: perp id
slot: perp org

slot: INSTRUMENT

	

slot: perp conf

slot: category slot: phys tgt id
slot: PERPETRATOR
slot: TARGET
slot:hum tot num
slot: phys tot num

slot: phys tgt type
slot: phys tgt number
slot: phys tgt for nat
slot: phys tgt effect

slot: hum tgt name
slot: hum tgt desc
slot: hum tgt type
slot: hum number
slot: hum for nat
slot: hum tgt effec t

Figure 1 : Object-oriented MUC-4 Template Desig n

fields in the object, although it could be argued that all that was incorrect was the association of the object
with an incorrect incident . Finally, with objected-oriented totals, it is very easy to isolate performanc e
problems down to the object-level . With a flat design, less-than-perfect templates must be examined t o
determine where the problems occurred . With object matching totals, it is possible to immediately isolat e
object-level errors which facilitates the error diagnosis process .

The rest of this paper maps out the processes used to transform the flat MUC-4 template design to a n
object-oriented design . We then overview the scoring experiments we performed to test the effect of variou s
configurations . Finally, we present detailed analyses of the effect of object-oriented design and scoring o n
the data from MUC-4 systems performance .

KEY

	

RESPONSE

HUM TGT : ID :

	

"MARY"

	

HUM TGT : ID :

	

"JOSE"
HUM TGT : DESC : "WIFE" : "MARY"

	

HUM TGT : DESC :

	

"WIFE" : "GEORGE"
HUM TGT : TYPE

	

CIVILIAN: "MARY"

	

HUM TGT : TYPE

	

CIVILIAN : " PEDRO "
HUM TGT : EFFECT : DEATH : "MARY"

	

HUM TGT : EFFECT : DEATH : "RAUL "

Figure 2 : Example of Unenforced Cross-reference s

79

TRANSFORMATION TO 0-0 DESIGN
The first step in performing this test was to automatically transform the existing template design to the
object-oriented design illustrated in Figure 1. This process was aided by the existing cross-references, but was
complicated by a variety of special cases we encountered. These special cases fell into two general categories;
system glitches, and problems with the MUC-4 template format. The first three problems described below
are system glitches; the last three are issues in the design of the templates.

1. Inconsistent cross-references: We encountered inconsistent cross-reference strings. For example, ' 'PEOPLE' J

may have been present as a human target description, but a slot intended to cross-reference to it may
have read "TWO PEOPLE j .

2. Violation of Templa te Filling Rules: Some sites cross-referenced the perpetrator confidence to a null
value, or to the PERP ID slot for example.

3. Multiple Set Fills: We encountered fills such as NO INJURY NO DEATH INJURY DEATH.

4. Inconsistent t reatments: The treatment of repeated fills, as could be required in sentences such as
"KILLED 3 PEOPLE AND INJURED 2 a was handled in different ways, with PEOPLE repeated as a fill,
or with two EFFECTS cross-referenced to one fill.

. When an EFFECT has a blank value, its scoping is ambiguous. When we attempt 5. Ambigui ty of ' ' - ' '.
to group targets into objects, we cannot decide which object this effect belongs to.

6. Ambigui ty of Optional Fills: It is impossible with the current template design to determine when an
optional fill of an optional object was meant, as opposed to a required fill of an optional object.

For the system problems, we manually intervened and allowed the conversion process to proceed. However
one sites' responses were too unusual too allow us to transform the output without a great deal of manual
interaction. For the template design problems, we came up with adequate methods of working around the
problems.

OBJECT-ORIENTED SCORING

After all (execept one) of the sites' answers were transformed into the object-oriented design, a modified
version of the MUC-4 scoring program was run in a variety of configurations to test the effect of enforcing
object-level matching. This program used the merged history file, and took 10 seconds to score an average
run. It took one person-week to convert all the sites' answer templates to the object oriented design, and
create a new version of the scoring program to use this design.

We experimented with a variety of conditions for aligning templates and objects. These were:

1. Only incident type match. This was closer to the MUC-2 scoring conditions.

2. Must match on incident type, plus either a match on ID or type for target or ID or ORG for perpetrator.
This duplicated the MUC-4 scoring, in that either a match on target or perpetrator would cause the
incident to align.

3. Must match on incident type plus a match on the string ID slot of a target. With this condition, we
only aligned templates if the targets aligned according to a stricter matching condition. This matching
condition required at least a partial match on the target string. Note that virtually no templates have
no targets.

4. Free-floating object match. For this design, we computed the score if objects were allowed to match
each other without considering if they happen to belong to an aligning template object. That is, if a
system mistyped an ATTACK as an ARSON but correctly extracted any human or physical targets, credit
would be given for these objects.

SITE MUC-4 condition
Delta from score

String Primacy
Delta from score

BBN 4.80 1 .0 3
GE 1 .53 0 .0
GE-CMU 1 .50 -1 .0 1
LSI 2 .72 0,3 1
MDC 5.51 0 . 0
NMSU 5.02 1 .0 1
NYU 1 .43 -2 .0 1
PARA MAX 1 .33 - .0 1
PRC 1 .68 -2 .0 8
SRA 1 .82 -1 .1 0
SRI 2.02 0 . 0
UMASS 1 .41 -2 .43
UMICH 3 .00 -1 .52

Figure 4: Effect of 00-Alignment and String Primacy on Scores

SITE Original Object Tot Free-Floating Tot Delta
BBN 30 .00 31 .77 1 .7 7
GE 51 .46 55 .00 3 .5 4
GE-CMU 45 .90 49 .50 3 .7 0
LSI 16 .61 20 .87 4 .2 6
MDC 18 .44 20 .62 2 .1 8
NMSU 15 .44 18 .16 2 .7 2
NYU 36.93 41 .18 4 .2 2
PARAMAX 23.09 27 .77 4 .68
PRC 23.29 26 .89 3 .60
SRA 22.96 28 .13 5 .1 7
SRI 42 .53 47 .68 5 .1 5
UMASS 43 .03 47 .34 4 .3 1
UMICH 33 .00 39 .78 6 .78

Figure 5 : Effect of Free-Floating Object Scores

8 2

META SLOT POS ACT COR PAR INC MIS SPU REC PRE OVG PR 2PR P2R
instrument s
perpetrator s

targets
incidents

5 2
137
21 6
114

5 3
11 8
26 9
12

34
6 2

13 9
88

0
0
0
0

0
0
0
0

1 8
7 5
7 7
26

19
56

13 0
34

6 5
45
64
77

64
53
52
72

3 6
4 7
4 8
28

64 .5 0
48 .67
57 .38
74 .42

64 .2 0
51 .1 8
54 .03
72 .95

64 .8 0
46 .40
61 .1 8
75 .95

TOTAL 519 562 323 0 0 196 239 62 57 43 59 .39 57 .93 60 .93

OBJECT TOT POS ACT COR PAR INC MIS SPU REC PRE OVG PR 2PR P2R
PHYS-TGT 247 269 101 4 11 131 153 42 38 57 39 .90 38 .74 41 .1 3
HUM-TGT 609 679 353 19 26 211 281 60 53 41 56 .28 54 .27 58 .4 6

INSTRUMENT 85 89 52 7 0 26 30 65 62 34 63 .46 62 .58 64 .3 8
PERP-ORG 103 85 36 1 8 58 40 35 43 47 38 .59 41 .12 36 .3 5

PERP-INDIV 85 75 34 5 0 46 36 43 49 48 45 .80 47 .67 44 .0 8
INCIDENT 521 558 324 47 23 127 164 67 62 29 64 .40 62 .94 65 .9 4

TOTAL 1650 1755 900 83 68 599 704 57 54 40 55 .46 54 .57 56 .3 7

FF-OBJECT TOT POS ACT COR PAR INC MIS SPU REC PRE OVG PR 2PR P2R
PHYS-TGT 276 269 129 4 15 128 121 47 49 45 47 .98 48 .59 47 .3 9
HUM-TGT 638 679 381 22 29 206 247 61 58 36 59 .46 58 .58 60 .3 8

INSTRUMENT87 89 54 8 0 25 27 67 65 30 65 .98 65 .39 66 .59
PERP-ORG 117 85 40 1 10 66 34 35 48 40 40 .48 44 .68 37 .0 0

PERP-INDIV 93 75 39 6 0 48 30 45 56 40 49 .90 53 .39 46 .8 4
INCIDENT 535 558 354 46 21 114 137 70 68 25 68 .99 68 .39 69 .5 9

TOTAL 1746 1755 997 87 75 587 596 60 59 34 59 .50 59 .20 59 .8 0

PSUEDO TOT POS ACT COR PAR INC MIS SPU REC PRE OVG PR 2PR P2R
inc-total 539 574 339 57 21 0 20 157 122 209 68 64 2 7

perp-total 258 233 113 7 22 5 6 91 116 271 45 50 3 9
phys-tgt-total 249 269 95 15 23 5 10 136 116 628 41 38 5 0
hum-tgt-total 615 693 342 64 34 18 55 253 175 516 61 54 36

Figure 6 : Sample Object Totals for GE Syste m

in the next section .

DISCUSSIO N
One of the advantages of object-oriented scoring is that it is possible to obtain object alignment totals, an d
object matching totals . Figure 6 illustrates this type of data for our system on MUC-3 (a description of ou r
system and a summary of our performance can be found in this volume) . The META SLOT table contains a
measurement of how well our system aligned objects .

The OBJECT-TOT table is useful to compare the totals for object matches when objects that appear in
different templates are not scored, with the FF-OBJECT TOT table which presents the "free-floating" objec t
totals, allowing for matches between unaligned objects that appear in incorrect templates to contribute t o
recall and precision . The PSEUDO TOT table gives the pseudo-object numbers presented at the bottom of our
score report for comparison .

FUTURE WORK
One benefit of object-oriented design is that there can be only one representation of each unique object . This
representation can be pointed to by a variety of slots . This allows for credit to be assigned once for eac h
matching object, with separate credit assigned for attaching the object correctly in whichever relationship s

8 3

it participates in .
Primarly to ensure that the total number of points in this adjunct test was comparable to the the tota l

number of points in the official scores, we did not make objects unique . However we believe that assignin g
credit for extracting information from an object once would increase the accuracy of the evaluation .

SUMMARY
This paper has reported on an adjunct test performed in connection with MUC-4 to investigate the utilit y
and issues involved in object-oriented template design and scoring . We have shown that an object-oriente d
design, even when modified to enforce partial string matching as the criterion for object alignment, doe s
not significantly alter the MUC-4 scores . Object-oriented design is a more intuitive method of representin g
information that is related . Moreover, objects can be aligned, allowing for object-level scoring . This increase s
the usefulness of an automated scoring program to perform selective diagnosis for performance evaluation .
Also, object-oriented alignment allows for the scoring of objects that match even when they are placed i n
an incorrect template . This yields a more accurate evaluation of performance than scoring all the slots of a
misplaced object as missing and spurious .

84

PART II: TEST RESULTS AND ANALYSI S
(SITE REPORTS)

The papers in this section were prepared by each of the sites that complete d
the MUC-4 evaluation . The papers are intended to provide the reader with som e
context for interpreting the test results, which are presented more fully i n
appendices G and H of the proceedings . The sites were asked to comment on the
following aspects of their MUC-4 experience :

* Explanation of test settings (precision/recall/overgeneration)
and how these settings were chosen

* Where bulk of effort was spent, and how much time was spen t
overall on MUC- 4

* What the limiting factor was (time, people, CPU cycles ,
knowledge, . . .)

* How the training of the system was done
What proportion of the training data was used (and how)
Whether/Why/How the system improved over time, an d
how much of the training was automate d

* What was successful and what wasn't, and what system module
you would most like to rewrit e

* What portion of the system is reusable on a different applicatio n

* What was learned about the system, about a MUC-like task ,
about evaluation

