
Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018), pages 465–475
Brussels, Belgium, October 31 - November 1, 2018. c©2018 Association for Computational Linguistics

465

Bringing Order to Neural Word Embeddings with
Embeddings Augmented by Random Permutations (EARP)

Trevor Cohen
Biomedical and Health Informatics
University of Washington, Seattle

cohenta@uw.edu

Dominic Widdows
Grab, Inc.

Seattle, WA
dominic.widdows@grab.com

Abstract

Word order is clearly a vital part of human
language, but it has been used comparatively
lightly in distributional vector models. This
paper presents a new method for incorporat-
ing word order information into word vector
embedding models by combining the bene-
fits of permutation-based order encoding with
the more recent method of skip-gram with
negative sampling. The new method intro-
duced here is called Embeddings Augmented
by Random Permutations (EARP). It operates
by applying permutations to the coordinates of
context vector representations during the pro-
cess of training. Results show an 8% improve-
ment in accuracy on the challenging Bigger
Analogy Test Set, and smaller but consistent
improvements on other analogy reference sets.
These findings demonstrate the importance of
order-based information in analogical retrieval
tasks, and the utility of random permutations
as a means to augment neural embeddings.

1 Introduction

The recognition of the utility of corpus-derived
distributed representations of words for a broad
range of Natural Language Processing (NLP)
tasks (Collobert et al., 2011) has led to a resur-
gence of interest in methods of distributional se-
mantics. In particular, the neural-probabilistic
word representations produced by the Skip-gram
and Continuous Bag-of-Words (CBOW) architec-
tures (Mikolov et al., 2013a) implemented in the
word2vec and fastText software packages
have been extensively evaluated in recent years.

As was the case with preceding distributional
models (see for example (Schütze, 1993; Lund
and Burgess, 1996; Schütze, 1998; Karlgren and
Sahlgren, 2001)), these architectures generate vec-
tor representations of words — or word embed-
dings — such that words with similar proximal

neighboring terms within a corpus of text will have
similar vector representations. As the relative po-
sition of these neighboring terms is generally not
considered, distributional models of this nature
are often (and sometimes derisively) referred to as
bag-of-words models. While methods of encod-
ing word order into neural-probabilistic represen-
tations have been evaluated, these methods gener-
ally require learning additional parameters, either
for each position in the sliding window (Mnih and
Kavukcuoglu, 2013), or for each context word-by-
position pair (Trask et al., 2015; Ling et al., 2015).

In this paper we evaluate an alternative method
of encoding the position of words within a sliding
window into neural word embeddings using Em-
beddings Augmented by Random Permutations
(EARP). EARP leverages random permutations
of context vector representations (Sahlgren et al.,
2008), a technique that has not been applied dur-
ing the training of neural word embeddings previ-
ously. Unlike prior approaches to encoding posi-
tion into neural word embeddings, it imposes no
computational and negligible space requirements.

Results show that the word order information
encoded through EARP leads to a nearly 8% im-
provement (from 29.17% to 37.07%) in the accu-
racy of analogy predictions in the Bigger Anal-
ogy Test Set of Gladkova et al (2016), with the
improvement being largest (over 20%) in the cat-
egory of analogies that exhibit derivational mor-
phology (a case where the use of subword infor-
mation also improves accuracy for all representa-
tions with and without order information). Smaller
improvements in performance are evident on other
analogy sets, and in downstream sequence label-
ing tasks. This makes EARP a strong contender
for enriching word embeddings with order-based
information, leading to greater accuracy on more
challenging semantic processing tasks.



466

2 Background

2.1 Distributed representations of words
Methods of distributional semantics learn repre-
sentations of words from the contexts they occur in
across large text corpora, such that words that oc-
cur in similar contexts will have similar represen-
tations (Turney and Pantel, 2010). Geometrically-
motivated approaches to this problem often in-
volve decomposition of a term-by-context matrix
(Schütze, 1993; Landauer and Dumais, 1997; Pen-
nington et al., 2014), resulting in word vectors
of considerably lower dimensionality than the to-
tal number of contexts. Alternatively, reduced-
dimensional representations can be generated on-
line while processing individual units of text, with-
out the need to represent a large term-by-context
matrix explicitly. A seminal example of the lat-
ter approach is the Random Indexing (RI) method
(Kanerva et al., 2000), which generates distributed
representations of words by superposing randomly
generated context vector representations.

Neural-probabilistic methods have shown util-
ity as a means to generate semantic vector repre-
sentations of words (Bengio et al., 2003). In par-
ticular, the Skip-gram and CBOW neural network
architectures (Mikolov et al., 2013a) implemented
within the word2vec and fastText software
packages provide scalable approaches to online
training of word vector representations that have
been shown to perform well across a number of
tasks (Mikolov et al., 2013a; Levy et al., 2015;
Mikolov et al., 2017).

While the definition of what constitutes a con-
text varies across models, a popular alternative is
to use words in a sliding window centered on a
focus term for this purpose. Consequently where
decomposition is involved the matrix in question
would be a term-by-term matrix. With online
methods, each term has two vector representations
— a semantic vector and a context vector, corre-
sponding to the input and output weights for each
word in neural-probabilistic approaches.

2.2 Order-based distributional models
In most word vector embedding models based on
sliding windows, the relative position of words
within this sliding window is ignored, but there
have been prior efforts to encode this informa-
tion. Before the popularization of neural word
embeddings, a number of researchers developed
and evaluated methods to encode word position

into distributed vector representations. The BEA-
GLE model (Jones et al., 2006) uses circular con-
volution — as described by Plate (1995) — as a
binding operator to compose representations of n-
grams from randomly instantiated context vector
representations of individual terms. These com-
posite representations are then added to the se-
mantic vector representation for the central term in
a sliding window. The cosine similarity between
the resulting vectors is predictive of human per-
formance in semantic priming experiments.

A limitation of this approach is that it involves
a large number of operations per sliding window.
For example, Jones and his colleagues (2006) em-
ploy eight superposition and nine convolution op-
erations to represent a single sliding window of
three terms (excluding the focus term). Sahlgren,
Holst and Kanerva (2008) report a computation-
ally simpler method of encoding word order in the
context of RI. Like BEAGLE, this approach in-
volves adding randomly instantiated context vec-
tors for adjacent terms to the semantic vector of
the central term in a sliding window. However, RI
uses sparse context vectors, consisting of mostly
zeroes with a small number non-zero components
initialized at random. These vectors are assigned
permutations indicating their position within a
sliding window. For example, with

∏
p represent-

ing the permutation assigned to a given position p
and words to the right of the equation representing
their context vectors, the sliding window “[fast is
fine but accuracy] is everything” would result in
the following update to S(fine), the semantic vec-
tor for the term “fine”:

S(fine) +=
∏
−2

−−→
fast +

∏
−1

−→
is

+
∏
+1

−→
but +

∏
+2

−−−−−−→accuracy

Amongst the encoding schemes evaluated using
this approach, using a pair of permutations to dis-
tinguish between words preceding the focus term
and those following it resulted in the best per-
formance on synonym test evaluations (Sahlgren
et al., 2008). Furthermore, this approach was
shown to outperform BEAGLE on a number of
evaluations on account of its ability to scale up to
larger amounts of input data (Recchia et al., 2010).

2.3 Encoding order into neural embeddings
Some recent work has evaluated the utility of en-
coding word order into neural word embeddings.



467

A straightforward way to accomplish this involves
maintaining a separate set of parameters for each
context word position, so that for a vocabulary of
size v and p context window positions the number
of output weights in the model is v×p×d for em-
beddings of dimensionality d. This approach was
applied by Ling and his colleagues (2015) to dis-
tinguish between terms occurring before and af-
ter the central term in a sliding window, with im-
provements in performance in downstream part-
of-speech tagging and dependency parsing tasks.

Trask and his colleagues (2015) develop this
idea further in a model they call a Partitioned Em-
bedding Neural Network (PENN). In a PENN,
both the input weights (word embeddings) and
output weights (context embeddings) of the net-
work have separate position-specific instantia-
tions, so the total number of model parameters is
2v × p × d. In addition to evaluating binary (be-
fore/after) context positions, the utility of training
separate weights for each position within a sliding
window was evaluated. Incorporating order in this
way resulted in improvements in accuracy over
word2vec’s CBOW implementation on propor-
tional analogy problems, which were considerably
enhanced by the incorporation of character-level
embeddings.

A more space-efficient approach to encoding
word order involves learning a vector V for each
position p in the sliding window. These vectors are
applied to rescale context vector representations
using pointwise multiplication while construct-
ing a weighted average of the context vectors for
each term in the window (Mnih and Kavukcuoglu,
2013; Mikolov et al., 2017). Results reported
using this approach are variable, with some au-
thors reporting worse performance with position-
dependent weights on a sentence completion task
(Mnih and Kavukcuoglu, 2013), and others report-
ing improved performance on an analogy comple-
tion task (Mikolov et al., 2017).

3 Methods

3.1 Skipgram-with-negative-sampling

In the current work, we extend the skipgram-with-
negative-sampling (SGNS) algorithm to encode
positional information without additional compu-
tation. The Skip-gram model (Mikolov et al.,
2013a) predicts p(c|w): the probability of observ-
ing a context word, c, given an observed word,
w. This can be accomplished by moving a slid-

ing window through a large text corpus, such that
the observed word is at the center of the window,
and the context words surround it. The architec-
ture itself includes two sets of parameters for each
unique word: The input weights of the network
(−→w ), which represent observed words and are usu-
ally retained as semantic vectors after training, and
the output weights of the network which repre-
sent context words (−→c ) and are usually discarded.
The probability of observing a word in context is
calculated by appying the sigmoid function to the
scalar product between the input weights for the
observed word, and the output weights for the con-
text word, such that p(c|w) = σ(−→w .−→c ). As maxi-
mizing this probability using the softmax over all
possible context words would be computationally
inconvenient, SGNS instead draws a small number
of negative samples (¬c) from the vocabulary to
serve as counterexamples to each observed context
term. With D representing observed term/context
pairs, and D′ representing randomly constructed
counterexamples the SGNS optimization objective
is as follows (Goldberg and Levy, 2014):∑
(w,c)∈D

log σ(−→w .−→c ) +
∑

(w,¬c)∈D′
log σ(−−→w .−→¬c)

3.2 Embeddings Augmented by Random
Permutations (EARP)

Sliding window variants of RI are similar in some
respects to the SGNS algorithm, in that training
occurs through an online update step in which
a vector representation for each context term is
added to the semantic vector representation for
a focus term (with SGNS this constitutes an up-
date of the input weight vector for the focus term,
weighted by the gradient and learning rate (for
a derivation see (Rong, 2014)). Unlike SGNS,
however, context vectors in RI are immutable and
sparse. With SGNS, dense context vectors are al-
tered during the training process, providing an en-
hanced capacity for inferred similarity. Nonethe-
less, the technique of permuting context vectors
to indicate the position of a context term within a
sliding window is readily adaptable to SGNS.

Our approach to encoding the position of
context words involves assigning a randomly-
generated permutation to each position within a
sliding window. For example, with a sliding win-
dow of window radius 2 (considering two posi-
tions to the left and the right of a focus term), we
assign a random permutation,

∏
p, to each element



468

Figure 1: The Architecture of EARP

of the set of positions {−2;−1; +1; +2}. With∏
p indicating the application of a context-specific

random permutation for position p, the optimiza-
tion objective becomes:∑

(w,c:p)∈D

log σ(−→w .
∏
p

(−→c )) +

∑
(w,¬c:p)∈D′

log σ(−−→w .
∏
p

(−→¬c))

For example, upon observing the term “wy-
att” in the context of the term “earp”, the
model would attempt to maximize p(c|w) =
σ(−−−→wyatt.

∏
+1(
−−→earp)), with −−−→wyatt and −−→earp as se-

mantic and context vectors respectively. The un-
derlying architecture is illustrated in Figure 1, us-
ing a simplified model generating 5-dimensional
vector representations for a small vocabulary of 10
terms. The permutation

∏
p can be implemented

by “rewiring” the components of the input and out-
put weights, without explicitly generating a per-
muted copy of the context vector concerned. In
this way, p(c|w) is estimated and maximized in
place without imposing additional computational
or space requirements, beyond those required to
store the permutations. This is accomplished by
changing the index values used to access compo-
nents of−−→earp when the scalar product is calculated,
and when weights are updated. The inverse per-
mutation (or reverse rewiring - connecting compo-
nents 1:3 rather than 3:1) is applied to −−−→wyatt when
updating−−→earp, and this procedure is used with both
observed context terms and negative samples.

Within this general framework, we evaluate four
word order encoding schemes, implemented by
adapting the open source Semantic Vectors1

package for distributional semantics research:
1https://github.com/semanticvectors/semanticvectors

3.2.1 Directional (EARPdir )
Directional encoding draws a distinction between
terms that occur before or after the focus term
in a sliding window. As such, only two permu-
tations (and their inverse permutations) are em-
ployed:

∏
−1 for preceding terms, and

∏
+1 for

all subseqent terms. Directional encoding with
permutations has been shown to improve perfor-
mance in synonym tests evaluations when applied
in the context of RI (Sahlgren et al., 2008).

3.2.2 Positional (EARPpos )
With positional encoding, a permutation is used
to encode each space in the sliding window. As
a randomly permuted vector is highly likely to
be orthogonal or close-to-orthogonal to the vec-
tor from which it originated (Kanerva, 2009), this
is likely to result in orthogonal encodings for the
same context word in different positions. With
RI, positional encoding degraded synonym test
performance, but permitted a novel form of dis-
tributional query, in which permutation is used
to retrieve words that occur in particular posi-
tions in relation to one another (Sahlgren et al.,
2008). EARPpos facilitates queries of this form
also: the nearest neighboring context vector to the
permuted semantic vector

∏INV
−1 (−−→earp) is −−−→wyatt in

both static-window subword-agnostic EARPpos

spaces used in the experiments that follow.

3.2.3 Proximity-based (EARPprox )
With proximity-based encoding, the positional en-
coding of a particular context term occurring in the
first position in a sliding window will be some-
what similar to the encoding when this term oc-
curs in the second position, and less similar (but
still not orthogonal) to the encoding when it occurs
in the third. This is accomplished by randomly
generating an index permutation

∏
+1, randomly

reassigning a half of its permutations to generate∏
+2, and repeating this process iteratively until

a permutation for every position in the window is
obtained (for the current experiments, we assigned
two index permutations

∏
+1 and

∏
−1, proceed-

ing bidirectionally). As a low-dimensional ex-
ample, if

∏
+1 were {4:1, 1:2, 2:3, 3:4},

∏
+2

might be {4:3, 1:2, 2:1, 3:4}. The net result is
that the similarity between the position-specific
representations of a given context vector reflects
the proximity between the positions concerned.
While this method is reminiscent of interpolation
between randomly generated vectors or matrices



469

to encode character position within words (Cohen
et al., 2013) and pixel position within images (Gal-
lant and Culliton, 2016) respectively, the iterative
application of permutations for this purpose is a
novel approach to such positional binding.

3.3 Subword embeddings

The use of character n-grams as components of
distributional semantic models was introduced by
Schütze (1993), and has been shown to improve
performance of neural-probabilistic models on
analogical retrieval tasks (Bojanowski et al., 2017;
Mikolov et al., 2017). It is intuitive that this should
be the case as standard analogy evaluation refer-
ence sets include many analogical questions that
require mapping from a morphological derivative
of one word (e.g. fast:faster) to the same morpho-
logical derivative of another (e.g. high:higher).

Consequently, we also generated n-gram based
variants of each of our models, by adapting the
approach described in (Bojanowski et al., 2017)
to our SGNS configuration. Specifically, we de-
composed each word into character n-grams, after
introducing characters indicating the start (<) and
end (>) of a word. N-grams of size betweeen 3
and 6 characters (inclusive) were encoded, and in
order to place an upper bound on memory require-
ments a hash function was used to map each ob-
served n-gram to one of at the most two million
vectors without constraints on collisions. The in-
put vector Vi for a word with n included n-grams
(including the word itself) was then generated as2

Vi =
1

n

n∑
i=1

−−−−→ngrami

During training, we used Vi as the input vector for
EARP and SGNS, with updates propagating back
to component word and n-gram vectors in propor-
tion to their contribution to Vi.

3.4 Training data

All models were trained on the first January 2018
release of the English Wikipedia3, to which we ap-
plied the pre-processing script distributed with the
fastText package4, resulting in a corpus of ap-
proximately 8.8 billion words.

2Words and n-grams are weighted equally, following (Bo-
janowski et al., 2017) and the fastText implementation

3https://dumps.wikimedia.org/enwiki
4https://github.com/facebookresearch

/fastText

3.5 Training procedure

All models used 500-dimensional vectors, and
were trained for a single iteration across the cor-
pus with five negative samples per context term.
For each of the four models (SGNS , EARPdir ,
EARPpos , EARPprox ), embeddings were gener-
ated with sliding window radii r of 2 and 5 (in
each direction), with and without subword embed-
dings. For all experiments, we excluded numbers,
and terms occurring less than 150 times in the cor-
pus. SGNS has a number of hyperparameters that
are known to influence performance (Levy et al.,
2015). We did not engage in tuning of these hyper-
parameters to improve performance of our mod-
els, but rather were guided by prior research in se-
lecting hyper-parameter settings that are known to
perform well with the SGNS baseline model.

Specifically, we used a subsampling threshold
t of 10−5. In some experiments (EARP and
SGNS), we used dynamic sliding windows with
uniform probability of a sliding window radius be-
tween one and r, in an effort to align our base-
line model closely with other SGNS implemen-
tations. Stochastic reduction of the sliding win-
dow radius will result in distal words being ig-
nored at times. With a dynamic sliding window,
subsampled words are replaced by the next word
in sequence. This increases the data available for
training, but will result in relative position being
distorted at times. Consequently, we also gen-
erated spaces with static fixed-width sliding win-
dows (EARPx) for position-aware models.

After finding that fastText trained on
Wikipedia performed better on analogy tests than
prior results obtained with word2vec (Levy
et al., 2015), we adopted a number of its hyperpa-
rameter settings. We set the probability of negative
sampling for each term to f

1
2 , where f is the num-

ber of term occurrences divided by the total token
count. In addition we used an initial learning rate
of .05, and subsampled terms with a probability of
1− (

√
t
f + t

f )5.

5While using this formula reliably improves performance
on some of the analogy sets, it differs from both the for-
mula described in Mikolov et al. (2013b), and the formula
implemented in the canonical word2vec implementation of
SGNS - see Levy et al. (2015) for details. It is also diffi-
cult to justify on theoretical grounds, as it returns values less
than zero for some words that meet the subsampling thresh-
old. Nevertheless, retaining it throughout our experiments
seemed more principled than altering the fastText base-
line in a manner that impaired its performance.



470

3.6 Evaluation

To evaluate the nature and utility of the additional
information encoded by permutation-based vari-
ants, we utilized a set of analogical retrieval refer-
ence sets, including the MSR set (Mikolov et al.,
2013c) consisting of 8,000 proportional analogy
questions that are morphological in nature (e.g.
young:younger:quick:?) and the Google anal-
ogy set (Mikolov et al., 2013a) which includes
8,869 semantic (and predominantly geographic,
e.g. brussels:belgium:dublin:?) and 10,675
morphologically-oriented “syntactic” questions.
We also included the Bigger Analogy Test Set
(BATS) set (Gladkova et al., 2016), a more chal-
lenging set of 99,200 proportional analogy ques-
tions balanced across 40 linguistic types in four
categories: Inflections (e.g. plurals, infinitives),
Derivation (e.g. verb+er), Lexicography (e.g. hy-
pernyms, synonyms) and Encylopedia (e.g. coun-
try:capital, male:female). We obtained these sets
from the distribution described in Finley et al
(2017)6, in which only the first correct answer to
questions with multiple correct answers in BATS
is retained, and used a parallelized implementa-
tion of the widely used vector offset method, in
which for a given proportional analogy a:b:c:d, all
word vectors in the space are rank-ordered in ac-
cordance with their cosine similarity to the vector−−−−−−→
c+ b− a. We report average accuracy, where a
result is considered accurate if d is the top-ranked
result aside from a, b and c.7

To evaluate the effects of encoding word order
on the relative distance between terms, we used
a series of widely used reference sets that medi-
ate comparison between human and machine es-
timates of pairwise similarity and relatedness be-
tween term pairs. Specifically, we used Wordsim-
353 (Finkelstein et al., 2001), split into subsets
emphasizing similarity and relatedness (Agirre
et al., 2009); MEN (Bruni et al., 2014) and Simlex-
999 (Hill et al., 2015). For each of these sets,
we estimated the Spearman correlation of the co-
sine similarity between vector representations of
the words in a given pair, with the human ratings
(averaged across raters) of similarity and/or relat-

6 https://github.com/gpfinley/analogies
7For a finer-grained estimate of performance — which we

considered particularly important in cases in BATS in which
only the first of a set of correct answers was retained — we
also calculated the mean reciprocal rank (rank−1) (Voorhees
et al., 1999) of d across all questions. As these results closely
mirrored the accuracy results, we report accuracy only.

edness provided in the reference standards.
Only those examples in which all relevant terms

were represented in our vector spaces were con-
sidered. Consequently, our analogy test sets con-
sisted of 6136; 19,420 and 88,108 examples for
the MSR8, Google and BATS sets respectively.
With pairwise similarity, we retained 998; 335 and
all 3,000 of the Simlex, Wordsim and MEN exam-
ples respectively. These numbers were identical
across models, including fastText baselines.

In addition we evaluated the effects of incor-
porating word order with EARP on three stan-
dard sequence labeling tasks: part-of-speech tag-
ging of the Wall Street Journal sections of the
Penn Treebank (PTB) and the CoNLL’00 sentence
chunking (Tjong Kim Sang and Buchholz, 2000)
and CoNLL’03 named entity recognition (Tjong
Kim Sang and De Meulder, 2003) shared tasks.
As was the case with the pairwise similarity and
relatedness evaluations, we conducted these eval-
uations using the repEval2016 package 9 after
converting all vectors to the word2vec binary
format. This package provides implementations
of the neural NLP architecture developed by Col-
lobert and his colleagues (2011), which uses vec-
tors for words within a five-word window as input,
a single hidden layer of 300 units and an output
Softmax layer. The implementation provided in
repEval2016 deviates by design from the orig-
inal implementation by fixing word vectors during
training in order to emphasize difference between
models for the purpose of comparative evaluation,
which tends to reduce performance (for further
details, see (Chiu et al., 2016)). As spaces con-
structed with narrower sliding windows generally
perform better on these tasks (Chiu et al., 2016),
we conducted these experiments with models of
window radius 2 only. To facilitate fair compari-
son, we added random vectors representing tokens
available in the fastText-derived spaces only
to all spaces, replacing the original vectors where
these existed. This was important in this evalua-
tion as only fastText retains vector represen-
tation for punctuation marks (these are eliminated
by the Semantic Vectors tokenization pro-
cedure), resulting in a relatively large number of
out-of-vocabulary terms and predictably reduced

8The fraction of the MSR set retained is smaller, because
1000 of the examples in this set concern identifying posses-
sives indicates by the presence of an apostrophe, and terms of
this nature were eliminated by the pre-processing procedure.

9https://github.com/cambridgeltl/RepEval-2016



471

performance with the Semantic Vectors im-
plementation of the same algorithm. With the ran-
dom vectors added, out-of-vocabulary rates were
equivalent across the two SGNS implementations,
resulting in similar performance.

4 Results

4.1 Analogical retrieval

The results of our analogical retrieval experiments
are shown in Table 1. With the single exception
of the semantic component of the Google set, the
best result on every set and subset was obtained
by a variant of the EARPprox model, strongly
suggesting that (1) information concerning rela-
tive position is of value for solving analogical re-
trieval problems; (2) encoding this information in
a flexible manner that preserves the natural rela-
tionship of proximity between sliding window po-
sitions helps more than encoding only direction, or
encoding window positions as disparate “slots”.

On the syntactically-oriented subsets (Gsyn,
Binf, Bder) adding subword information improves
performance of baseline SGNS and EARP mod-
els, with subword-sensitive EARPx prox mod-
els showing improvements of between ∼6% and
∼21% in accuracy on these subtasks, as compared
with the best performing baseline10. The results
follow the same pattern at both sliding window
radii, aside from a larger decrease in performance
of EARPx models on the semantic component of
the Google set at radius 2, attributable to seman-
tically useful information lost on account of sub-
sampling without replacement. In general, bet-
ter performance on syntactic subsets is obtained at
radius 2 with subword-sensitive models, with se-
mantic subsets showing the opposite trend.

While better performance on the total Google
set has been reported with larger training corpora
(Pennington et al., 2014; Mikolov et al., 2017),
the best EARP results on the syntactic compo-
nent of this set surpass those reported from order-
insensitive models trained on more comprehensive
corpora for multiple iterations. With this subset,

10To assess reproducibility, we repeated the window radius
2 experiments a further 4 times, with different stochastic ini-
tialization of network weights. Performance was remarkably
consistent, with a standard error of the mean accuracy on the
MSR, Google and BATS sets at or below .24% (.0024), .33%
(.0033) and .12% (.0012) for all models. All differences in
performance from the baseline (only SGNS semVec was re-
peated) were statistically significant by unpaired t-test, aside
from the results of EARPdir and EARPprox on the Google
set when no subwords were used.

the best EARPprox model obtained an accuracy
of 76.74% after a single training iteration on a ∼9
billion word Wikipedia-derived corpus. Penning-
ton and his colleagues (2014) report a best accu-
racy of 69.3% after training Glove on a corpus
of 42 billion words, and Mikolov and colleagues
(2017) report an accuracy of 73% when training a
subword-sensitive CBOW model for five iterations
across a 630 billion word corpus derived from
Common Crawl. The latter performance improved
to 82% with pre-processing to tag phrases and
position-dependent weighting – modifications that
may improve EARP performance also, as would
almost certainly be the case with multiple training
iterations across a much larger corpus.

Regarding the performance of other order-
sensitive approaches on this subset, Trask and
his colleagues (2015) report a 1.41% to 3.07%
increase in absolute accuracy over a standard
CBOW baseline with PENN, and Mikolov and
his colleagues (2017) report a 4% increase over a
subword-sensitive CBOW model with incorpora-
tion of position-dependent weights11. By compar-
ison, EARPx prox yields improvements of up to
4.27% over the best baseline when subwords are
not considered, and 8.29% with subword-sensitive
models (both at radius 5).

With the more challenging BATS analogies,
Drozd and his colleagues (2016) report results for
models trained on a 6 billion word corpus de-
rived from the Wikipedia and several other re-
sources, with best results with the vector offset
method for BATS components of 61%, 11.2%
(both SGNS), 10.9% and 31.5% (both Glove) for
the Inflectional, Derivational, Lexicography and
Encyclopedia components respectively. While not
strictly comparable on account of our training on
Wikipedia alone and acknowledging only one of a
set of possible correct answers in some cases, our
best results for these sets were 71.56%, 44.30%,
10.07% and 36.52% respectively, with a fourfold
increase in performance on the derivational com-
ponent. These results further support the hypoth-
esis that order-related information is of value in
several classes of proportional analogy problem.

4.2 Semantic similarity/relatedness
These improvements in analogy retrieval were not
accompanied by better correlation with human es-

11CBOW baselines were around 10% higher than our
SGNS baselines, attributable to differences in corpus size,
composition and preprocessing; and perhaps architecture.



472

Radius 2 SW BATS MSR Google Gsem Gsyn Binf Bder Blex Benc
SGNS fastText 27.22 53.78 70.13 77.30 64.17 56.00 11.76 7.06 32.12
SGNS semVec 27.46 53.72 69.53 77.30 63.07 56.28 11.65 7.25 32.66
EARPdir 28.26 54.48 69.34 76.57 63.33 56.33 11.51 8.36 34.62
EARPpos 28.80 54.38 67.71 71.85 64.28 57.22 12.75 8.47 34.70
EARPprox 28.95 55.08 69.19 74.95 64.40 57.38 12.86 8.44 35.04
EARPx pos 30.50 60.15 61.71 58.94 64.01 66.09 11.07 9.37 33.05
EARPx prox 30.79 62.45 66.86 68.80 65.25 66.90 10.76 9.46 33.56
SGNS fastText X 28.16 59.83 63.57 57.87 68.31 61.05 22.51 4.47 24.60
SGNS semVec X 29.17 61.44 65.24 59.38 70.10 62.28 23.56 5.02 25.83
EARPdir X 31.70 62.94 68.90 62.46 74.26 63.85 29.26 5.54 28.65
EARPpos X 33.18 62.89 69.35 62.98 74.63 65.10 32.23 6.01 30.12
EARPprox X 33.26 64.26 70.82 64.83 75.80 66.08 31.72 6.05 29.85
EARPx pos X 36.89 68.90 61.12 44.05 75.29 71.32 44.14 6.81 27.62
EARPx prox X 37.07 69.07 63.88 49.31 75.98 71.56 44.30 6.92 27.81

Radius 5 SW BATS MSR Google Gsem Gsyn Binf Bder Blex Benc
SGNS fastText 25.54 48.21 69.29 78.47 61.66 49.93 11.95 7.00 31.51
SGNS semVec 25.76 46.90 68.75 79.04 60.20 49.42 11.84 6.87 33.08
EARPdir 27.07 49.20 68.66 76.85 61.85 50.58 12.38 8.30 35.04
EARPpos 26.14 45.39 61.29 65.53 57.76 49.82 12.41 7.71 32.80
EARPprox 28.40 51.06 69.17 77.05 62.62 53.59 14.05 8.51 35.56
EARPx pos 28.30 52.67 59.18 59.80 58.67 57.27 12.90 8.78 32.35
EARPx prox 30.94 58.15 69.37 73.51 65.93 59.86 15.36 10.07 36.52
SGNS fastText X 26.27 55.04 66.32 64.56 67.79 56.23 18.56 4.43 25.38
SGNS semVec X 27.69 55.93 67.96 67.37 68.44 57.90 20.32 5.12 26.98
EARPdir X 30.12 58.20 70.22 69.42 70.88 59.98 24.46 5.78 30.11
EARPpos X 31.02 54.78 65.67 60.41 70.03 60.28 28.21 5.96 29.94
EARPprox X 32.67 60.77 72.23 69.79 74.27 64.01 28.71 6.46 31.67
EARPx pos X 34.75 61.08 63.83 54.41 71.66 66.02 36.32 7.51 30.33
EARPx prox X 36.67 67.44 72.22 66.78 76.74 69.16 38.72 7.56 32.52

Table 1: Analogical retrieval results at radius 2 (top) and 5 (bottom). SW: subwords. Gsem/syn: “semantic”
and “syntactic” components of Google set. Binf/der/lex/enc: inflectional, derivational, lexical and encyclopedia-
derived components of the BATS. SGNS: fastText and Semantic Vectors (semVec) implementations of
skipgram-with-negative-sampling. EARP: Embeddings Augmented by Random Permutations. EARPx: EARP
with exact window positions. Best results are in boldface, and rows concerning baseline models are shaded.

timates of semantic similarity and relatedness. To
the contrary with a window radius of 2, the best
results on all sets and subsets were produced by
SGNS baselines, with a best baseline Spearman
Rho of .41 (SGNS fastText ), .72 (SGNS semVec)
and .77 (SGNS semVec + subwords) for SimLex-
999, WS-353 and MEN respectively. Surprisingly,
incorporating order-related information reduced
performance on all of these sets, with best perfor-
mance for SimLex-999, WS-353 and MEN of .40
(EARPx prox ), .71 (EARPpos ) and .76 (EARPdir

+ subwords) respectively; and worst performance
of .37 (EARPpos ), .66 and .71 (both EARPx prox )
respectively. Other models fell between these ex-

tremes, with a similar pattern observed with win-
dow radius of 5. The differences in performance
observed with these tasks are neither as stark nor
as consistent as those with analogy tasks, with
EARP performance falling between that of the two
baseline models in several cases. Nonetheless,
EARP models tend to correlate worse with hu-
man estimates of pairwise similarity and related-
ness. This drop in performance may relate to how
semantic information is dispersed with position-
aware models - a neighboring word is encoded
differently depending on position, which may ob-
scure the semantically useful information that two
other words both occur in proximity to it.



473

Task CoNLL00 CoNLL03 PTB CoNLL00 CoNLL03 PTB
SGNS fastText 87.09 80.32 94.38 87.34 80.66 94.78
SGNS semVec 87.11 77.93 95.59 87.57 80.33 95.96
EARPdir 88.25 80.24 95.83 88.06 80.96 96.07
EARPpos 88.71 80.10 95.74 88.55 80.84 95.89
EARPprox 88.59 79.64 95.85 88.78 80.54 96.09
EARPx pos 89.05 80.43 95.92 89.52 80.17 95.93
EARPx prox 88.99 80.77 96.02 89.37 79.77 95.93
Subwords - - - X X X

Table 2: Performance on Sequence Labeling Tasks. % accuracy shown for PTB, and % F-measure otherwise

4.3 Sequence labeling

Results of these experiments are shown in Ta-
ble 2, and suggest an advantage for models en-
coding position in sequence labeling tasks. In
particular, for the sentence chunking shared task
(CoNLL00), the best results obtained with an
order-aware model (EARPx pos + subwords) ex-
ceeds the best baseline result by around 2%, with
smaller improvements in performance on the other
two tasks, including a .43% improvement in ac-
curacy for part-of-speech tagging (PTB, without
subwords) that is comparable to the .37% im-
provement over a SGNS baseline reported on
this dataset by Ling and his colleagues (2015)
when using separate (rather than shared) position-
dependent context weights.

4.4 Computational performance

All models were trained on a single multi-core ma-
chine. In general, Semantic Vectors takes
slightly longer to run than fastText, which
takes around an hour to generate models includ-
ing building of the dictionary. With Semantic
Vectors, models were generated in around 1h20
when the corpus was indexed at document level,
which is desirable as this package uses Lucene12

for tokenization and indexing. As the accuracy of
fastText on analogy completion tasks dropped
considerably when we attempted to train it on
unsegmented documents, we adapted Semantic
Vectors to treat each line of input as an individ-
ual document. As this approximately doubled the
time required to generate each model, we would
not recommend this other than for the purpose of
comparative evaluation. Adding subword embed-
dings increased training time by three- to four-
fold. Source code is available via GitHub13, and

12https://lucene.apache.org/
13https://github.com/semanticvectors/semanticvectors

embeddings are publicly available at 14.

4.5 Limitations and future work

While this paper focused on encoding positional
information, EARP is generalizable and could be
used to encode other sorts of relational infor-
mation also. An interesting direction for future
work may involve using EARP to encode the na-
ture of semantic and dependency relations, as has
been done with RI previously (Cohen et al., 2009;
Basile et al., 2011). As the main focus of the cur-
rent paper was on comparative evaluation across
models with identical hyper-parameters, we have
yet to formally evaluate the extent to which hyper-
parameter settings (such as dimensionality) may
affect performance, and it seems likely that hyper-
parameters that would further accentuate EARP
performance remain to be identified.

4.6 Conclusion

This paper describes EARP, a novel method
through which word order can be encoded into
neural word embedding representations. Of note,
this additional information is encoded without the
need for additional computation, and space re-
quirements are practically identical to those of
baseline models. Upon evaluation, encoding word
order results in substantive improvements in per-
formance across multiple analogical retrieval ref-
erence sets, with best performance when order in-
formation is encoded using a novel permutation-
based method of positional binding.

Acknowledgments

This work was supported by US National Library
of Medicine grant (R01 LM011563), and con-
ducted in part at the University of Texas School
of Biomedical Informatics at Houston.

14https://doi.org/10.5281/zenodo.1345333



474

References
Eneko Agirre, Enrique Alfonseca, Keith Hall, Jana

Kravalova, Marius Paşca, and Aitor Soroa. 2009. A
study on similarity and relatedness using distribu-
tional and wordnet-based approaches. In Proceed-
ings of Human Language Technologies: The 2009
Annual Conference of the North American Chap-
ter of the Association for Computational Linguistics,
pages 19–27. Association for Computational Lin-
guistics.

Pierpaolo Basile, Annalina Caputo, and Giovanni Se-
meraro. 2011. Encoding syntactic dependencies by
vector permutation. In Proceedings of the GEMS
2011 Workshop on GEometrical Models of Natural
Language Semantics, pages 43–51. Association for
Computational Linguistics.

Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and
Christian Jauvin. 2003. A neural probabilistic lan-
guage model. Journal of machine learning research,
3(Feb):1137–1155.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and
Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion of Computational Linguistics, 5(1):135–146.

Elia Bruni, Nam-Khanh Tran, and Marco Baroni. 2014.
Multimodal distributional semantics. Journal of Ar-
tificial Intelligence Research, 49:1–47.

Billy Chiu, Anna Korhonen, and Sampo Pyysalo. 2016.
Intrinsic evaluation of word vectors fails to predict
extrinsic performance. In Proceedings of the 1st
Workshop on Evaluating Vector-Space Representa-
tions for NLP, pages 1–6.

Trevor Cohen, Roger W Schvaneveldt, and Thomas C
Rindflesch. 2009. Predication-based semantic in-
dexing: Permutations as a means to encode predi-
cations in semantic space. In AMIA Annual Sympo-
sium Proceedings, volume 2009, page 114. Ameri-
can Medical Informatics Association.

Trevor Cohen, Dominic Widdows, Manuel Wahle, and
Roger Schvaneveldt. 2013. Orthogonality and or-
thography: introducing measured distance into se-
mantic space. In International Symposium on Quan-
tum Interaction, pages 34–46. Springer.

Ronan Collobert, Jason Weston, Léon Bottou, Michael
Karlen, Koray Kavukcuoglu, and Pavel Kuksa.
2011. Natural language processing (almost) from
scratch. Journal of Machine Learning Research,
12(Aug):2493–2537.

Aleksandr Drozd, Anna Gladkova, and Satoshi Mat-
suoka. 2016. Word embeddings, analogies, and ma-
chine learning: Beyond king-man+ woman= queen.
In Proceedings of COLING 2016, the 26th Inter-
national Conference on Computational Linguistics:
Technical Papers, pages 3519–3530.

Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias,
Ehud Rivlin, Zach Solan, Gadi Wolfman, and Ey-
tan Ruppin. 2001. Placing search in context: The
concept revisited. In Proceedings of the 10th inter-
national conference on World Wide Web, pages 406–
414. ACM.

Gregory Finley, Stephanie Farmer, and Serguei Pakho-
mov. 2017. What analogies reveal about word vec-
tors and their compositionality. In Proceedings of
the 6th Joint Conference on Lexical and Computa-
tional Semantics (* SEM 2017), pages 1–11.

Stephen I Gallant and Phil Culliton. 2016. Positional
binding with distributed representations. In Image,
Vision and Computing (ICIVC), International Con-
ference on, pages 108–113. IEEE.

Anna Gladkova, Aleksandr Drozd, and Satoshi Mat-
suoka. 2016. Analogy-based detection of morpho-
logical and semantic relations with word embed-
dings: what works and what doesn’t. In Proceedings
of the NAACL Student Research Workshop, pages 8–
15.

Yoav Goldberg and Omer Levy. 2014. word2vec
explained: Deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint
arXiv:1402.3722.

Felix Hill, Roi Reichart, and Anna Korhonen. 2015.
Simlex-999: Evaluating semantic models with (gen-
uine) similarity estimation. Computational Linguis-
tics, 41(4):665–695.

Michael N Jones, Walter Kintsch, and Douglas JK Me-
whort. 2006. High-dimensional semantic space ac-
counts of priming. Journal of memory and lan-
guage, 55(4):534–552.

Pentii Kanerva, Jan Kristoferson, and Anders Holst.
2000. Random indexing of text samples for la-
tent semantic analysis. In Proceedings of the An-
nual Meeting of the Cognitive Science Society, vol-
ume 22.

Pentti Kanerva. 2009. Hyperdimensional computing:
An introduction to computing in distributed rep-
resentation with high-dimensional random vectors.
Cognitive Computation, 1(2):139–159.

Jussi Karlgren and Magnus Sahlgren. 2001. From
words to understanding. Foundations of Real-World
Intelligence, pages 294–308.

Thomas Landauer and Susan Dumais. 1997. A solu-
tion to Plato’s problem: The latent semantic anal-
ysis theory of acquisition. Psychological Review,
104(2):211–240.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation for Computational Linguistics, 3:211–225.



475

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 1299–1304.

Kevin Lund and Curt Burgess. 1996. Producing
high-dimensional semantic spaces from lexical co-
occurrence. Behavior research methods, instru-
ments, & computers, 28(2):203–208.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013a. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2017. Ad-
vances in pre-training distributed word representa-
tions. arXiv preprint arXiv:1712.09405.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013b. Distributed representa-
tions of words and phrases and their compositional-
ity. In Advances in neural information processing
systems, pages 3111–3119.

Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig.
2013c. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 746–751.

Andriy Mnih and Koray Kavukcuoglu. 2013. Learning
word embeddings efficiently with noise-contrastive
estimation. In Advances in neural information pro-
cessing systems, pages 2265–2273.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP), pages 1532–1543.

Tony A Plate. 1995. Holographic reduced represen-
tations. IEEE Transactions on Neural networks,
6(3):623–641.

Gabriel Recchia, Michael Jones, Magnus Sahlgren, and
Pentti Kanerva. 2010. Encoding sequential informa-
tion in vector space models of semantics: Compar-
ing holographic reduced representation and random
permutation. In Proceedings of the Annual Meeting
of the Cognitive Science Society, volume 32.

Xin Rong. 2014. word2vec parameter learning ex-
plained. arXiv preprint arXiv:1411.2738.

Magnus Sahlgren, Anders Holst, and Pentti Kanerva.
2008. Permutations as a means to encode order in
word space.

Hinrich Schütze. 1993. Word space. In Advances in
neural information processing systems, pages 895–
902.

Hinrich Schütze. 1998. Automatic word sense discrim-
ination. Computational Linguistics, 24(1):97–124.

Erik F Tjong Kim Sang and Sabine Buchholz. 2000.
Introduction to the conll-2000 shared task: Chunk-
ing. In Proceedings of the 2nd workshop on Learn-
ing language in logic and the 4th conference on
Computational natural language learning-Volume 7,
pages 127–132. Association for Computational Lin-
guistics.

Erik F Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the conll-2003 shared task:
Language-independent named entity recognition. In
Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003-Volume 4,
pages 142–147. Association for Computational Lin-
guistics.

Andrew Trask, David Gilmore, and Matthew Rus-
sell. 2015. Modeling order in neural word em-
beddings at scale. In Proceedings of the 32nd In-
ternational Conference on International Conference
on Machine Learning-Volume 37, pages 2266–2275.
JMLR. org.

Peter D Turney and Patrick Pantel. 2010. From fre-
quency to meaning: Vector space models of se-
mantics. Journal of artificial intelligence research,
37:141–188.

Ellen M Voorhees et al. 1999. The trec-8 question an-
swering track report. In Trec, volume 99, pages 77–
82.


