
Proceedings of the CoNLL SIGMORPHON 2017 Shared Task: Universal Morphological Reinflection, pages 100–109,
Vancouver, Canada, August 3–4, 2017. c©2017 Association for Computational Linguistics

Seq2seq for Morphological Reinflection: When Deep Learning Fails

Hajime Senuma
University of Tokyo

National Institute of Informatics
senuma@nii.ac.jp

Akiko Aizawa
National Institute of Informatics

University of Tokyo
aizawa@nii.ac.jp

Abstract

Recent studies showed that the sequence-
to-sequence (seq2seq) model is a promis-
ing approach for morphological reinflec-
tion. At the CoNLL-SIGMORPHON
2017 Shared Task for universal morpho-
logical reinflection, we basically followed
the approach with some minor variations.
The results were remarkable in a certain
sense. In high-resource scenarios our sys-
tem achieved 91.46% accuracy (only mod-
estly behind the best system by 3.85%),
and in medium-resource scenarios the per-
formance was 65.06% (almost the same as
baseline). In low-resource settings, how-
ever, the performance was only 1.58%,
ranking the worst among submitted sys-
tems. In this paper, we present system de-
scription and error analysis for the results.

1 Introduction

Processing morphological inflection is a funda-
mental task for the analysis and generation of nat-
ural languages and serves as a building block for
many tasks such as machine translation, text an-
alytics, and question answering. Whereas En-
glish is morphologically simple and abundant for
resources, other languages are often morpholog-
ically rich and resource-poor, resulting in severe
performance degradation (Tsarfaty et al., 2010).
To tackle the issue, the CoNLL-SIGMORPHON
2017 Shared Task hosted a shared task on uni-
versal morphological reinflection (Cotterell et al.,
2017), in which participants must solve the task
for 52 languages and for high-, medium-, and low-
resource settings.

Although the shared task comprised two sub-
tasks, we participated only in Task 1. Each data
set in Task 1 consists of three columns. The first

and second column provides a lemma and a tar-
get form, respectively. The third column lists mor-
phosyntactic descriptions (MSDs), or the features
for a target form, where each feature is taken from
a universal set of morphological features called
UniMorph (Sylak-Glassman et al., 2015). The
purpose of the task is to construct a system which
can estimate a target form from a lemma and its
MSDs. For each of 52 languages, participants
cope with the problem under varying sizes of train-
ing data (10,000 for high, 1,000 for medium, and
100 for low). The use of external resources are
not permitted in the main track, but allowed as a
separate track.

To solve the problem, we basically followed
Kann and Schütze (2016a), the winner of the
Shared Task in the previous year (Cotterell et al.,
2016). Unfortunately, our approach experi-
enced severe difficulties in low-resource settings.
In high-resource settings, our system achieved
91.46% accuracy, the 12th among the 20 systems.
In medium-resource setting, the performance was
65.06%, almost the same as that of the baseline
(64.7%). And in low-resource setting, the system
achieved only 1.58%. The cause of the problem
is that if we decrease the number of examples, at
some point, the accuracy of deep learning-based
approach drastically drops. For our system, the
point is somewhere between 110 and 150; at 150,
we still retain the accuracy around 36% but at 110,
the result becomes nonsensical (see Section 5).

This paper is organized as follows. In Section
2, we briefly summarize related researches in this
field. In Section 3, we describe the system descrip-
tion of our approach. In Section 4, we present en-
vironmental settings used in our experiments and
the main results of our work. In Section 5, we dis-
cuss the error analysis of our results.

100



2 Related Work

Morphological inflection has a long-tradition in
natural language processing (NLP). The earli-
est studies used finite-state transducers (Kart-
tunen, 1983; Koskenniemi, 1984; Kaplan and Kay,
1994). The advantages of the approach are that
rules are often hand-crafted and thus suitable in
low-resource settings and that it is relatively easy
and direct to incorporate the linguistic knowledge
of specialists. On the other hand, manual crafting
of such rules is often expensive and usually lan-
guage specialists are not easily available. General
purpose open-source libraries for this approach in-
clude OpenFST (Allauzen et al., 2007) and Foma
(Hulden, 2009). In addition, there are several
language-specific systems such as TRMorph for
Turkish (Çöltekin, 2010) and HornMorpho for the
languages of the Horn of Africa (Gasser, 2011).

In this decade, machine learning for morpho-
logical inflection became a hot topic. One di-
rection is to exploit the paradigmatic nature of
inflection (Durrett and DeNero, 2013; Ahlberg
et al., 2015). For example, Durrett and DeNero
(2013) proposed a multi-step supervised learning
approach. The first phase tries to extract transfor-
mational rules from data sets and consists of three
sub-steps: the alignment of words in training data,
merging spans across the resulting alignments, and
rule extraction from these intermediary informa-
tion. And then the second phase tries to learn the
position and the type of transformation applica-
tion. The advantage of this approach is that we
can obtain concrete paradigms of inflection.

Another recent innovation in this field (Faruqui
et al., 2016; Kann and Schütze, 2016b) is the
use of the sequence-to-sequence (seq2seq) model
(Sutskever et al., 2014) (also known as the
encoder-decoder model (Cho et al., 2014)). No-
tably, Kann and Schütze (2016a) applied the
attention-based version of seq2seq models (Bah-
danau et al., 2015) to the SIGMORPHON 2016
Shared Task (Cotterell et al., 2016) and showed
that their system can learn morphological reinflec-
tion even for extremely morphologically rich lan-
guages such as Maltese and became the winner of
the year.

3 System Description

Our implementation is based on the system of
Kann and Schütze (2016a). We will release the im-
plementation under a BSD lincense on the GitHub

account of the first author 1.

3.1 Basic architecture
3.1.1 Seq2seq model
Fig. 1 shows the basic archicture of our sys-
tem. The figure depicts how an input tuple (dun,
V;PST) is converted to an output string dunned.

In its basic form, the seq2seq model consists
of two recurrent neural networks (RNNs), the en-
coder and the decoder. After the encoder is feeded
with a sequence of input symbols, the hidden layer
of the encoder is used as an input to the decoder,
and finally the decoder emits a sequence of out-
put symbols. In reality, RNNs are substituted by
gated recurrent units (GRUs), inputs are encoded
as bidirectional sequences, and the decoder also
gets an attentional information from a context vec-
tor (Bahdanau et al., 2015).

Given an input example which consists of
a lemma and a set of features, a sequence
of symbols for the system is represented as
{SStartf

+x+SEnd | f ∈ Σϕ, x ∈ ΣL}, where
SStart and SEnd represents a start symbol and an
ending symbol respectively, Σϕ a set of features,
ΣL a set of symbols in a language, and + the rep-
etition of one or more symbols. To improve the
predictive efficiency, f+ should be sorted by some
criteria (Kann and Schütze, 2016a), such as lex-
icographic order (in Fig. 1, V;PST is sorted as
SPST SV ). Likewise, an output string is encoded
as {SStartx

+SEnd | f ∈ x ∈ ΣL}.
For more details, see Bahdanau et al. (2015) and

Kann and Schütze (2016a).

3.1.2 Loss function
Following Faruqui et al. (2016), we used the neg-
ative log-likelihood of the output character se-
quence for our loss function.

3.2 Differences from previous studies
In this section, we describe the differences be-
tween our work and previous researches.

3.2.1 Dimension
We used 300 for symbol embeddings, 200 for hid-
den layers, and 200 for context (attention) vec-
tors, while Kann and Schütze (2016a) used 300 for
symbol embeddings and 100 for hidden layers (the
dimension of context vectors was not described).
We increased the size of hidden layers because at

1https://github.com/hajimes/
conll2017-system

101



Figure 1: The basic architecture of Kann and Schütze (2016a)’s seq2seq model for morphological rein-
flection.

least in this task we found that 100 for hidden lay-
ers was harmful to predictive performance.

3.2.2 Implementation
We implemented the attention-based version of an
encoder-decoder model from scratch with Theano
(The Theano Development Team, 2016), while
Kann and Schütze (2016a) reused Bahdanau et al.
(2015)’s original implementation.

3.2.3 Initialization
We used the Glorot uniform (Glorot and Bengio,
2010) for matrix initialization, while Kann and
Schütze (2016a) used the identity matrix.

3.2.4 Optimization / regularization
Faruqui et al. (2016) used AdaDelta (Zeiler, 2012)
with L2 regularization. Kann and Schütze (2016a)
also used the same optimizer.

We used the AdaMax optimization algorithm
(Kingma and Ba, 2015) with recommended hyper-
parameters in the paper. The method is a combina-
tion of Adam optimization and L∞ regularization;
that is, the bigger the maximum of parameters is,
the bigger the penalty for the model is. The reason
we used AdaMax is that the method is known for
fast convergence. Furthermore, the authors pro-
vided recommended hyperparameters, resulting in
less hyperparameter calibration.

3.2.5 Iteration number
While Kann and Schütze (2016a) simply used 20
training iterations for any language, we continued
training until they are converged: four consecutive
no gains in accuracy for development data where

the maximum is 40 iterations (for some languages,
we hand-tuned the number of training iterations so
this number may vary).

4 Experimental Results

4.1 Environmental settings

We used Amazon Web Services (AWS) and ran
our system on an Amazon EC2 p2.16xlarge
instance, Ubuntu with CUDA 8.0 and cuDNN 6.0.
The instance was equipped with the eight cards of
NVIDIA Tesla K80 (16 GPUs in total).

We trained our model with purely online learn-
ing manner (no mini-batch). Although clock-time
for training depends on language, under high-
resource setting, usually it took about 7 minutes
to train a model by using 10,000 examples (that
is, one iteration for high-resource training dataset)
with one GPU. Hence Time=30 in Table 1 implies
training for the language under high-resource set-
ting took about 210 minutes (using one GPU). We
only participated in the main track, so we did not
use any external resources.

4.2 Results

Table 1 shows the results of our system, descend-
ing order of the results for test data set in high-
resource setting.

Morphologically simple languages such as En-
glish and Persian seem to give high accuracy. Ag-
glutinative languages such as Turkish also tend
to contribute to good results. On the other hand,
highly-inflectional languages such as Latin give
bad performance.

102



High Medium Low
Language Base Dev Test Time Base Dev Test Base Dev Test
norwegian-bokmal 0.750 0.901 0.896 40 0.590 0.772 0.767 0.417 0.015 0.003
georgian 0.933 0.982 0.974 38 0.900 0.864 0.885 0.793 0.012 0.012
lower-sorbian 0.866 0.960 0.953 37 0.670 0.607 0.591 0.362 0.008 0.012
norwegian-nynorsk 0.610 0.866 0.817 37 0.604 0.588 0.557 0.439 0.003 0.007
ukrainian 0.808 0.900 0.908 37 0.734 0.576 0.572 0.523 0.006 0.007
icelandic 0.617 0.850 0.813 36 0.531 0.384 0.412 0.439 0.006 0.006
irish 0.474 0.834 0.831 36 0.424 0.325 0.319 0.317 0.002 0.000
macedonian 0.942 0.936 0.934 36 0.832 0.752 0.762 0.396 0.005 0.002
slovak 0.777 0.942 0.917 36 0.720 0.614 0.614 0.647 0.010 0.006
kurmanji 0.875 0.917 0.920 35 0.790 0.770 0.762 0.633 0.002 0.002
navajo 0.408 0.853 0.851 35 0.385 0.310 0.318 0.306 0.006 0.007
russian 0.900 0.872 0.861 35 0.830 0.526 0.531 0.412 0.000 0.000
serbo-croatian 0.863 0.870 0.888 35 0.570 0.425 0.418 0.285 0.000 0.001
lithuanian 0.662 0.863 0.860 34 0.615 0.404 0.387 0.536 0.003 0.005
slovene 0.798 0.957 0.952 34 0.767 0.629 0.658 0.616 0.013 0.020
faroese 0.651 0.831 0.814 33 0.559 0.365 0.390 0.513 0.003 0.002
northern-sami 0.562 0.928 0.926 32 0.499 0.346 0.344 0.314 0.004 0.005
danish 0.827 0.924 0.884 31 0.753 0.757 0.750 0.567 0.012 0.012
italian 0.901 0.969 0.960 31 0.839 0.866 0.861 0.769 0.001 0.000
bulgarian 0.819 0.951 0.964 30 0.640 0.683 0.655 0.553 0.006 0.004
estonian 0.581 0.965 0.963 30 0.551 0.687 0.658 0.385 0.003 0.001
latin 0.493 0.740 0.709 30 0.449 0.308 0.307 0.336 0.001 0.000
latvian 0.877 0.926 0.922 30 0.852 0.629 0.619 0.790 0.004 0.000
armenian 0.856 0.952 0.941 29 0.785 0.729 0.732 0.722 0.001 0.000
czech 0.841 0.903 0.906 29 0.610 0.620 0.603 0.307 0.003 0.000
polish 0.794 0.885 0.881 29 0.694 0.497 0.496 0.506 0.000 0.002
portuguese 0.975 0.985 0.979 29 0.969 0.827 0.855 0.951 0.007 0.010
sorani 0.646 0.883 0.873 29 0.661 0.565 0.581 0.534 0.007 0.009
english 0.900 0.954 0.942 28 0.832 0.904 0.904 0.784 0.006 0.011
romanian 0.773 0.835 0.828 28 0.630 0.456 0.460 0.151 0.002 0.000
swedish 0.723 0.868 0.875 28 0.635 0.658 0.680 0.421 0.004 0.002
arabic 0.566 0.918 0.902 27 0.553 0.549 0.536 0.380 0.002 0.002
dutch 0.845 0.954 0.943 26 0.796 0.750 0.731 0.588 0.006 0.005
hebrew 0.547 0.984 0.990 26 0.417 0.656 0.673 0.380 0.006 0.006
albanian 0.942 0.985 0.983 25 0.882 0.594 0.612 0.160 0.001 0.003
catalan 0.965 0.967 0.964 25 0.958 0.787 0.772 0.942 0.004 0.004
turkish 0.825 0.940 0.935 25 0.613 0.596 0.607 0.124 0.000 0.001
finnish 0.709 0.845 0.841 24 0.720 0.490 0.512 0.517 0.000 0.000
khaling 0.840 0.996 0.989 24 0.546 0.718 0.693 0.247 0.005 0.009
german 0.705 0.854 0.857 23 0.662 0.594 0.609 0.610 0.004 0.003
quechua 0.972 0.999 0.996 23 0.973 0.914 0.902 0.973 0.008 0.006
hindi 0.961 1.000 1.000 22 0.746 0.839 0.819 0.698 0.009 0.012
persian 0.889 0.994 0.996 21 0.911 0.743 0.717 0.822 0.006 0.005
french 0.982 0.853 0.811 20 0.893 0.713 0.680 0.864 0.003 0.001
spanish 0.954 0.951 0.950 20 0.911 0.798 0.803 0.787 0.001 0.002
urdu 0.991 0.993 0.996 20 0.680 0.875 0.891 0.670 0.045 0.047
welsh 0.752 1.000 0.980 18 0.693 0.850 0.860 0.601 0.010 0.020
hungarian 0.585 0.815 0.791 16 0.453 0.534 0.528 0.255 0.000 0.000
basque 0.060 0.990 1.000 11 0.051 0.750 0.810 0.040 0.020 0.050
haida 0.690 0.990 0.990 9 0.802 0.890 0.880 0.554 0.010 0.010
bengali 0.847 0.990 0.990 4 0.847 0.950 0.950 0.661 0.010 0.010
scottish-gaelic - - - - 0.441 0.860 0.800 0.449 0.360 0.320

Table 1: Results of our system. Base represents the baseline system provided the organizers. Dev
represents the best result for development data. Test represents the final result of our system. Time
represents the number of examples for training convergence (unit: 10k). Note that Scottish Gaelic for
the high-resource setting is omitted because the data was not provided.

103



In high-resource setting, our system achieved
91.46% accuracy, the 12th among the 20 systems.
In medium-resource setting, the performance was
almost the same as baseline 65.06%. And in low-
resource setting, the system achieved only 1.58%.

4.3 Comparison with other systems

A heat map in Fig. 2 shows the accuracy of partic-
ipants under high-resource settings, with the de-
scending order of the average accuracy. Green
color (light color in black-and-white) denotes high
accuracy whereas red (purple at the extreme) color
(dark color in black-and-white) denotes low accu-
racy. Note that the ranking is slightly different
from the official one, because in this figure, if a
system did not participate in some languages, we
treated them as zero accuracy.

As we see, it is hard to tell the difference, be-
cause top systems achieved nearly 100% accuracy
for almost all languages. However, if we carefully
examined, almost all systems (which have higher
performance than the baseline) have similar color
spotting patterns, possibly because these partici-
pants used similar systems, that is, the seq2seq
model (Faruqui et al., 2016; Kann and Schütze,
2016a; Kann et al., 2016). We also see that the
color of the Latin language tends to be yellowish
or reddish, which indicates that this language is
very hard to process by using the seq2seq model.

Heat maps in Fig. 3 and Fig. 4, which depict
the case of medium- and low-resource settings, are
also interesting to see.

Let us see the case of low-resource settings.
It is easy to recognize the systems of UA took
unique approaches. Other systems have simi-
lar color patterns—it may indicate they used the
seq2seq model—but the intensity of colors grad-
ually degrades according to the ranking of these
systems. Then, after crossing a certain point, the
color suddenly becomes purple (nearly 0%) for al-
most all languages (EHU-01-0 and our system
UTNII-01-0).

We will release these figures on the GitHub ac-
count of the first author 2.

2https://github.com/hajimes/
conll2017-stats

5 Discussion

5.1 Convergence speed under high-resource
settings

As we see in Table 1, the number of training
time for morphological reinflection significantly
differs from each language. In the case of Ben-
gali, only 40k (4 iteration for the data set) was
sufficient to achieve the best result, whereas Nor-
wegian Bokmål requires 400k (40 iteration). This
contrasts with Kann and Schütze (2016a)’s ap-
proach where they simply used 20 iterations for
any language.

The following table is a list of the top five lan-
guages for fast convergence.

Language Base Dev Test Time
bengali 0.847 0.990 0.990 4
haida 0.690 0.990 0.990 9
basque 0.060 0.990 1.000 11
hungarian 0.585 0.815 0.791 16
welsh 0.752 1.000 0.980 18

On the other hand, training for the following
five languages was slow to converge.

Language Dev Test Time
norwegian-bokmal 0.901 0.896 40
georgian 0.982 0.974 38
lower-sorbian 0.960 0.953 37
norwegian-nynorsk 0.866 0.817 37
ukrainian 0.900 0.908 37

5.2 Accuracy under low-resource settings

To test why our system gave catastrophic results
under the low-resource setting, we tested more
fine-grained analysis as to the size of resources.

We made several new datasets from
english-train-medium with the size
100, 110, 130, 150, and 500. After we trained
our model on these datasets, model-100 gave the
best result 0.022 on development data, model-
110 0.029, model-130 0.149, model-150 0.356,
model-500 0.843, (and model-1000 0.904 as seen
in Table 1). It seems that a big trench for our
system happens to lie somewhere between 110
and 150 (or 130 and 150)—except Scottish-Gaelic
(see Table 1 and Fig. 4). This may explain
the reason for big gaps in accuracy with other
participants; crossing the trench or not, that is
the question. The abrupt decline of predictive
performance was also observed by Kann and
Schütze (2016b).

104



Figure 2: Comparison with other systems under high-resource settings. The signature of our system is
UTNII-01-0. The ranking is slightly different from the official one, because in this figure, if a system
did not participate in some languages, we treated them as zero accuracy. The last number of a system
name denotes the usage of external resources (0 = no, 1 = yes).

105



Figure 3: Comparison with other systems under medium-resource settings. The signature of our system
is UTNII-01-0. The ranking is slightly different from the official one, because in this figure, if a
system did not participate in some languages, we treated them as zero accuracy. The last number of a
system name denotes the usage of external resources (0 = no, 1 = yes).

106



Figure 4: Comparison with other systems under low-resource settings. The signature of our system is
UTNII-01-0. The ranking is slightly different from the official one, because in this figure, if a system
did not participate in some languages, we treated them as zero accuracy. The last number of a system
name denotes the usage of external resources (0 = no, 1 = yes).

107



One possible solution to mitigate this situation
is to use other regularization approaches such as
dropout (Srivastava et al., 2014), where differ-
ent configurations are trained simultaneously and
probabilistically, although such techniques alone
may not change the inherent nature of our system.
We will try to find how we can lower the trench in
the future.

It is interesting that our system achieved mean-
ingful accuracy for Scottish-Gaelic even under
low-resource settings. Although this tendency is
not global, the system of IIT(BHU)-01-0 also
shows relatively good performance on the lan-
guage, so the robustness for processing Scottish-
Gaelic may not be by pure chance. We plan to
analyze the language in detail, because it will re-
veal what kind of linguistic natures determine the
“trench” of the required number of training exam-
ples for seq2seq systems.

6 Conclusion

In this paper, we presented system description
and error analysis for our system submitted to the
CoNLL-SIGMORPHON 2017 Shared Task. As
the reader sees in our results, pure deep learn-
ing approaches have a major disadvantage, that
is, their predictive performance drops steeply after
crossing a certain point of the number of training
examples. We also showed that the convergence
speed for training the models of morphological re-
inflection highly depends on the type of languages,
which can be useful information to tackle the task
again in the future.

Acknowledgements

This work was supported by CREST, Japan Sci-
ence and Technology Agency. We are also grate-
ful to two anonymous reviewers for their helpful
comments.

References
Malin Ahlberg, Markus Forsberg, and Mans Hulden.

2015. Paradigm classification in supervised learning
of morphology. In Proceedings of the 2015 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies. Association for Computational
Linguistics, Stroudsburg, PA, USA, pages 1024–
1029. https://doi.org/10.3115/v1/N15-1107.

Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wo-
jciech Skut, and Mehryar Mohri. 2007. OpenFst: A

General and Efficient Weighted Finite-State Trans-
ducer Library. In Proceedings of the Twelfth Inter-
national Conference on Implementation and Appli-
cation of Automata. pages 11–23.

Dzmitry Bahdanau, KyungHyun Cho, and Yoshua
Bengio. 2015. Neural Machine Translation
By Jointly Learning To Align and Translate.
In Proceeding of the 3rd International Confer-
ence on Learning Representations (ICLR2015).
http://arxiv.org/abs/1409.0473v3.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learn-
ing Phrase Representations using RNN EncoderDe-
coder for Statistical Machine Translation. In
Proceedings of the 2014 Conference on Empir-
ical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguis-
tics, Stroudsburg, PA, USA, pages 1724–1734.
https://doi.org/10.3115/v1/D14-1179.

Çağrı Çöltekin. 2010. A Freely Available Morpho-
logical Analyzer for Turkish. In Proceedings of
the Seventh conference on International Language
Resources and Evaluation (LREC’10). European
Language Resources Association (ELRA), Valletta,
Malta, pages 820–827.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
Géraldine Walther, Ekaterina Vylomova, Patrick
Xia, Manaal Faruqui, Sandra Kübler, David
Yarowsky, Jason Eisner, and Mans Hulden.
2017. The CoNLL-SIGMORPHON 2017 Shared
Task: Universal Morphological Reinflection in
52 Languages. In Proceedings of the CoNLL-
SIGMORPHON 2017 Shared Task: Universal Mor-
phological Reinflection.

Ryan Cotterell, Christo Kirov, John Sylak-Glassman,
David Yarowsky, Jason Eisner, and Mans Hulden.
2016. The SIGMORPHON 2016 Shared Task—
Morphological Reinflection. In Proceedings
of the 14th Annual SIGMORPHON Work-
shop on Computational Research in Phonetics,
Phonology, and Morphology. pages 10–22.
https://doi.org/10.18653/v1/W16-2002.

Greg Durrett and John DeNero. 2013. Supervised
Learning of Complete Morphological Paradigms. In
Proceedings of the 2013 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.
Association for Computational Linguistics, Atlanta,
Georgia, June, pages 1185–1195.

Manaal Faruqui, Yulia Tsvetkov, Graham Neubig, and
Chris Dyer. 2016. Morphological Inflection Gener-
ation Using Character Sequence to Sequence Learn-
ing. In Proceedings of NAACL-HLT 2016. pages
634–643. https://doi.org/10.18653/v1/N16-1077.

Michael Gasser. 2011. HornMorpho: a system for
morphological processing of Amharic, Oromo, and

108



Tigrinya. In Conference on Human Language Tech-
nology for Development. Alexandria, Egypt, pages
94–99.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics
(AISTATS). volume 9, pages 249–256.

Mans Hulden. 2009. Foma: a finite-state compiler and
library. In Proceedings of the Demonstrations Ses-
sion at EACL 2009. Association for Computational
Linguistics, Athens, Greece, pages 29–32.

Katharina Kann, Ryan Cotterell, and Hinrich Schütze.
2016. Neural Morphological Analysis: Encoding-
Decoding Canonical Segments. In Proceedings of
the 2016 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Compu-
tational Linguistics, Stroudsburg, PA, USA, pages
961–967. https://doi.org/10.18653/v1/D16-1097.

Katharina Kann and Hinrich Schütze. 2016a. MED:
The LMU System for the SIGMORPHON 2016
Shared Task on Morphological Reinflection. In
Proceedings of the 14th Annual SIGMORPHON
Workshop on Computational Research in Phonet-
ics, Phonology, and Morphology. pages 62–70.
https://doi.org/10.18653/v1/W16-2010.

Katharina Kann and Hinrich Schütze. 2016b. Single-
Model Encoder-Decoder with Explicit Morpholog-
ical Representation for Reinflection. In Proceed-
ings of the 54th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 2:
Short Papers). Association for Computational Lin-
guistics, Stroudsburg, PA, USA, pages 555–560.
https://doi.org/10.18653/v1/P16-2090.

Ronald M. Kaplan and Martin Kay. 1994. Regular
Models of Phonological Rule Systems. Computa-
tional Linguistics 20(3):331–378.

Lauri Karttunen. 1983. KIMMO: A General Morpho-
logical Parser. Texas Linguistic Forum 22:165–186.

Diederik P. Kingma and Jimmy Lei Ba. 2015. Adam:
A Method for Stochastic Optimization. In Inter-
national Conference on Learning Representations
2015. arxiv:1412.6980v8.

Kimmo Koskenniemi. 1984. A General Computational
Model for Word-Form Recognition and Production.
In 10th International Conference on Computational
Linguistics and 22nd Annual Meeting of the Asso-
ciation for Computational Linguistics. pages 178–
181. http://aclweb.org/anthology/P84-1038.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov.
2014. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. Journal
of Machine Learning Research 15:1929–1958.
http://jmlr.org/papers/v15/srivastava14a.html.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Net-
works. In Advances in Neural Information Process-
ing Systems 27 (NIPS 2014). pages 3104–3112.

John Sylak-Glassman, Christo Kirov, David Yarowsky,
and Roger Que. 2015. A Language-Independent
Feature Schema for Inflectional Morphology. In
Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and
the 7th International Joint Conference on Nat-
ural Language Processing (Volume 2: Short
Papers). Association for Computational Linguis-
tics, Stroudsburg, PA, USA, pages 674–680.
https://doi.org/10.3115/v1/P15-2111.

The Theano Development Team. 2016.
Theano: A Python framework for fast
computation of mathematical expressions
https://arxiv.org/abs/1605.02688.

Reut Tsarfaty, Djamé Seddah, Yoav Goldberg,
Sandra Kübler, Marie Candito, Jennifer Fos-
ter, Yannick Versley, Ines Rehbein, and Lamia
Tounsi. 2010. Statistical Parsing of Morpho-
logically Rich Languages (SPMRL) What, How
and Whither. In Proceedings of the NAACL
HLT 2010 First Workshop on Statistical Parsing
of Morphologically-Rich Languages. pages 1–12.
http://dl.acm.org/citation.cfm?id=1868772.

Matthew D. Zeiler. 2012. ADADELTA: An Adap-
tive Learning Rate Method. Technical report.
http://arxiv.org/abs/1212.5701.

109


